Package ‘LEA’

October 24, 2025

Title LEA: an R package for Landscape and Ecological Association
Studies

Version 3.21.0

Date 2025-11-3

Author Eric Frichot <eric.frichot@gmail.com>, Olivier Francois
<olivier.francois@grenoble-inp.fr>, Clement Gain
<clement.gain@univ-grenoble-alpes.fr>

Maintainer Olivier Francois <olivier.francois@grenoble-inp.fr>

Depends R (>= 3.3.0), methods, stats, utils, graphics

Suggests knitr

Description LEA is an R package dedicated to population genomics, landscape genomics and
genotype-environment association tests. LEA can run analyses of
population structure and genome-wide tests for local adaptation,
and also performs imputation of missing genotypes.

The package includes statistical methods for estimating ancestry
coefficients from large genotypic matrices and for evaluating the
number of ancestral populations (snmf). It performs statistical
tests using latent factor mixed models for identifying

genetic polymorphisms that exhibit association with
environmental gradients or phenotypic traits (Ifmm?2).

In addition, LEA computes values of genetic offset statistics based
on new or predicted environments (genetic.gap, genetic.offset).
LEA is mainly based on optimized programs

that can scale with the dimensions of large data sets.

License GPL-3

biocViews Software, Statistical Method, Clustering, Regression

URL http://membres-timc.imag.fr/0livier.Francois/lea.html
NeedsCompilation yes

VignetteBuilder knitr

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/LEA

git_branch devel

git_last commit 2c275b2

git_last commit_date 2025-04-15

http://membres-timc.imag.fr/Olivier.Francois/lea.html

2 Contents

Repository Bioconductor 3.22

Date/Publication 2025-10-23

Contents
LEA-package e e 3
ANCESITYMAD .+ .+« v v v v v e 3
ancestrymap2geno oo eu e e e e e e e e e e e e e e 4
ancestrymap2lfmm Lo 5
barchart e 6
create.dataset L e e 8
CIOSS.ENLIOPY . .« . v v v v v it v et e e e e e e e e 9
Cross.entropy.estimation L. .o e e 10
BNV . o v vt e i e e e e e e e e e e e 12
G e 12
GENELIC.ZAP e e e e 13
genetic.offset e 16
GEMO .« . v ot ot e e e e e e e e e e e e e e e 18
geno2lfmm L. 19
IMPULE o o e e e e e e e e e e e e e e e 20
Ifmm e 22
Ifmm.data e e e e e 25
Ifmm.pvalues e 25
Ifmm2 . . . e 27
Ifmm2.test e e e e e e e e 29
Ifmm2geno e 31
offset_example L 32
PCA . o o e e e 32
Ped . . e e 35
ped2geno 36
ped2lfmm 37
Q e 38
read@nV . ..ol 39
read.@en0 L 40
readfmmo 41
1ead.ZSCOTE i i e e e e e 42
SIME . . L L e e e e e 43
snmf.pvalues e 47
SITUCI2EENO .« . v v v v e 49
tracy.widom e 50
tutorial L e e e e e e e e e e 52
Vel e 52
vef22eno ... L L L e 53
vef2lfmm . . L L L e e e e e e 54
WIE.BNV . . . o o vt o e e e e e e e e e e e 55
WIE.ZENO .« . . v v v v e e i e e e e e e e e e e 56
write.lfmm L e e e e 57
ZSCOTES « o v v v v e e e e e e e e e e e e e e e 58
zscore.format L. e 59

Index 60

LEA-package

LEA-package
ies.

LEA: an R package for Landscape and Ecological Associations stud-

Description

LEA is an R package dedicated to landscape genomics and ecological association tests. LEA can
run analyses of population structure and genome scans for local adaptation. It includes statistical
methods for estimating ancestry coefficients from large genotypic matrices and evaluating the num-
ber of ancestral populations (snmf, pca) and identifying genetic polymorphisms that exhibit high
correlation with some environmental gradient or with the variables used as proxies for ecological
pressures (Ifmm). LEA is mainly based on optimized C programs that can scale with the dimension

of very large data sets.

Details
Package:
Type:
Version:
Date:
License:
Author(s)

LEA
Package
2.0
2017-07-16
GPL-3

Eric Frichot Olivier Francois Maintainer: Olivier Francois <olivier.francois @ grenoble-inp.fr>

ancestrymap

ancestrymap format description

Description

Description of the ancestrymap format. The ancestrymap format can be used as an input format

for genotypic matrices in the functions pca, 1fmm and snmf.

Details

The ancestrymap format has one row for each genotype. Each row has 3 columns: the 1st column is
the SNP name, the 2nd column is the sample ID, the 3rd column is th number of alleles. Genotypes
for a given SNP name are written in consecutive lines. The number of alleles can be the number of
reference alleles or the number of derived alleles. Missing genotypes are encoded by the value 9.

Here is an example of a genotypic matrix using the ancestrymap format with 3 individuals and 4

SNPs:

4 ancestrymap2geno

rsoooo SAMPLE®
rsoooo SAMPLE1
rsoooo SAMPLE2
rs11ii SAMPLE®Q
rs11ii SAMPLE1
rs1111 SAMPLE2
rs2222 SAMPLE®
rs2222 SAMPLE1
rs2222 SAMPLE2
rs3333 SAMPLE®
rs3333 SAMPLE1
rs3333 SAMPLE2

R NS Y S Vo TN S T o T S T NG P Gy

Author(s)

Eric Frichot

See Also

ancestrymap2lfmm ancestrymap2geno geno 1fmm.data ped vcf

ancestrymap2geno Convert from ancestrymap to geno format

Description

A function that converts from the ancestrymap format to the geno format.

Usage

ancestrymap2geno(input.file, output.file = NULL, force = TRUE)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
ancestrymap format.
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format. By default, the name of the output file is the same name as the
input file with a .geno extension.
force A boolean option. If FALSE, the input file is converted only if the output file
does not exist. If TRUE, convert the file anyway.
Value
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format.
Author(s)

Eric Frichot

ancestrymap2lfmm 5

See Also

ancestrymap geno read.geno ancestrymap2lfmm geno2lfmm ped21lfmm ped2geno vcf2geno
1fmm2geno

Examples

Creation of of file called "example.ancestrymap”

a file containing 4 SNPs for 3 individuals.
data("example_ancestrymap")
write.table(example_ancestrymap, "example.ancestrymap”,
col.names = FALSE, row.names = FALSE, quote = FALSE)

Conversion from the ancestrymap format ("example.ancestrymap”)
to the geno format ("example.geno”).

By default, the name of the output file is the same name

as the input file with a .geno extension.

Create file: "example.geno”.

output = ancestrymap2geno(”example.ancestrymap”)

Conversion from the ancestrymap format (example.ancestrymap)

to the geno format with the output file called plop.geno.
Create file: "plop.geno”.

output = ancestrymap2geno(”example.ancestrymap”, "plop.geno")

As force = false and the file "example.geno" already exists,
nothing happens.
output = ancestrymap2geno(”example.ancestrymap”, force = FALSE)

ancestrymap2lfmm Convert from ancestrymap fo 1fmm format

Description

A function that converts from the ancestrymap format to the 1fmm format.

Usage

ancestrymap2lfmm(input.file, output.file = NULL, force = TRUE)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
ancestrymap format.
output.file A character string containing a path to the output file, a genotypic matric in the
1fmm format. By default, the name of the output file is the same name as the
input file with a .Jfmm extension.
force A boolean option. If FALSE, the input file is converted only if the output file

does not exist. If TRUE, convert the file anyway.

6 barchart

Value
output.file A character string containing a path to the output file, a genotypic matric in the
1fmm format.
Author(s)

Eric Frichot

See Also

ancestrymap 1fmm.data ancestrymap2geno geno21fmmped2lfmm ped2geno vcf2geno 1fmm2geno

Examples

Creation of a file called "example.ancestrymap”

containing 4 SNPs for 3 individuals.
data("example_ancestrymap")
write.table(example_ancestrymap, "example.ancestrymap”,
col.names = FALSE, row.names = FALSE, quote = FALSE)

Conversion from the ancestrymap format ("example.ancestrymap”)
to the 1fmm format ("example.lfmm").

By default, the name of the output file is the same name

as the input file with a .1fmm extension.

Create file: "example.lfmm”.

output = ancestrymap2lfmm(”example.ancestrymap"”)

Conversion from the ancestrymap format (example.ancestrymap)

to the geno format with the output file called plop.lfmm.
Create file: "plop.lfmm".

output = ancestrymap2lfmm(”example.ancestrymap”, "plop.lfmm")

As force = false and the file "example.lfmm” already exists,
nothing happens.
output = ancestrymap2lfmm(”example.ancestrymap”, force = FALSE)

barchart Bar plot representation of an snmf Q-matrix

Description

This function displays a bar plot/bar chart representation of the Q-matrix computed from an snmf
run. The function can use a sort by Q option. See snmf.

Usage

barchart (object, K, run, sort.by.Q = TRUE, lab = FALSE, ...)

barchart 7

Arguments
object an snmfProject object.
K an integer value corresponding to number of ancestral populations.
run an integer value. Usually the run number that minimizes the cross-entropy cri-
terion.
sort.by.Q a Boolean value indicating whether individuals should be sorted by their ances-
try or not.
lab a list of individual labels.
other parameters of the function barplot.default.
Value

A permutation of individual labels used in the sort.by.Q option (order). Displays the Q matrix.

Author(s)

Olivier Francois

See Also

snmf

Examples

creation of a genotype file: genotypes.geno.
400 SNPs for 50 individuals.

data("tutorial”)
write.geno(tutorial.R, "genotypes.geno")

HHHHHHEEEE
running snmf
HHHHHAEEE

project.snmf <- snmf("genotypes.geno”,
K = 4, entropy = TRUE,
repetitions = 10,
project = "new")

get the cross-entropy value for each run
ce <- cross.entropy(project.snmf, K = 4)

select the run with the lowest cross-entropy value
best <- which.min(ce)

plot the ancestry coefficients for the best run and K = 4
my.colors <- c("tomato”, "lightblue", "olivedrab”, "gold")
barchart(project.snmf, K = 4, run = best,

border = NA, space = @, col = my.colors,

xlab = "Individuals”, ylab = "Ancestry proportions”,
main = "Ancestry matrix") -> bp

8 create.dataset

axis(1, at = 1:length(bp$order),
labels = bp$order, las = 3,
cex.axis = .4)

create.dataset create a data set with masked data

Description
create.dataset creates a data set with a given percentage of masked data from the original data
set. It is used to calculate the cross.entropy criterion.

Usage

create.dataset (input.file, output.file, seed = -1, percentage = 0.05)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
geno format.
output.file A character string containing a path to the output file, a genotypic matrix in
the geno format. The output file is the input file with masked genotypes. By
default, the name of the output file is the same name as the input file with a
_l.geno extension.
seed A seed to initialize the random number generator. By default, the seed is ran-
domly chosen.
percentage A numeric value between 0 and 1 containing the percentage of masked geno-
types.
Details

This is an internal function, automatically called by snmf with the entropy option.

Value
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format.
Author(s)

Eric Frichot

See Also

geno snmf cross.entropy

cross.entropy 9

Examples

Creation of tuto.geno

A file containing 400 SNPs for 50 individuals.
data("tutorial™)

write.geno(tutorial.R, "genotypes.geno")

Creation of the masked data file
Create file: "genotypes_I.geno”
output = create.dataset("genotypes.geno”)

cross.entropy Cross-entropy criterion for snmf runs

Description

Return the cross-entropy criterion for runs of snmfcwith K ancestral populations. The cross-entropy
criterion is based on the prediction of masked genotypes to evaluate the fit of a model with K
populations. The cross-entropy criterion helps choosing the number of ancestral populations or
a best run for a fixed value of K. A smaller value of cross-entropy means a better run in terms
of prediction capability. The cross-entropy criterion is computed by the snmf function when the
entropy Boolean option is TRUE.

Usage

cross.entropy(object, K, run)

Arguments
object A snmfProject object.
K The number of ancestral populations.
run A vector of run labels.
Value
res A matrix containing the cross-entropy criterion for runs with K ancestral popu-
lations.
Author(s)

Eric Frichot

See Also

geno snmf G Q

10 cross.entropy.estimation

Examples

Example of analyses using snmf

creation of a genotype file: genotypes.geno.
The data contains 400 SNPs for 50 individuals.
data("tutorial”)

write.geno(tutorial.R, "genotypes.geno")

HHH A
running snmf
S HEEHHEHEE

Runs with K = 3 populations
cross-entropy is computed for 2 runs.
project = NULL
project = snmf("genotypes.geno”,
K =3,
entropy = TRUE,
repetitions = 2,
project = "new")

get the cross-entropy for all runs for K = 3
ce = cross.entropy(project, K = 3)

get the cross-entropy for the 2nd run for K = 3
ce = cross.entropy(project, K = 3, run = 2)

cross.entropy.estimation
compute the cross-entropy criterion

Description

Calculate the cross-entropy criterion. This is an internal function, automatically called by snmf. The
cross-entropy criterion is a value based on the prediction of masked genotypes to evaluate the error
of ancestry estimation. The criterion will help to choose the best number of ancestral population (K)
and the best run among a set of runs in snmf. A smaller value of cross-entropy means a better run
in terms of prediction capacity. The cross.entropy.estimation function displays the cross-entropy
criterion estimated on all data and on masked data based on the input file, the masked data file
(created by create.dataset, the estimation of the ancestry coefficients Q and the estimation of
ancestral genotypic frequencies, G (calculated by snmf). The cross-entropy estimation for all data
is always lower than the cross-entropy estimation for masked data. The cross-entropy estimation
useful to compare runs is the cross-entropy estimation for masked data. The cross-entropy criterion
can also be automatically calculated by the snmf function with the entropy option.

Usage

cross.entropy.estimation (input.file, K, masked.file, Q.file, G.file,
ploidy = 2)

cross.entropy.estimation 11

Arguments

input.file

K

masked.file

Q.file

G.file

ploidy

Value

A character string containing a path to the input file without masked genotypes,
a genotypic matrix in the geno format.

An integer corresponding to the number of ancestral populations.

A character string containing a path to the input file with masked genotypes, a
genotypic matrix in the geno format. This file can be generated with the func-
tion, create.dataset). By default, the name of the masked data file is the same
name as the input file with a _I.geno extension.

A character string containing a path to the input ancestry coefficient matrix Q.
By default, the name of this file is the same name as the input file with a K.Q
extension.

A character string containing a path to the input ancestral genotype frequency
matrix G. By default, the name of this file is the same name as the input file with
aK.Gextension (input_file.K.G).

1 if haploid, 2 if diploid, n if n-ploid.

cross.entropy.estimation returns a list containing the following components:

masked. ce

all.ce

Author(s)

Eric Frichot

References

The value of the cross-entropy criterion of the masked genotypes.

The value of the cross-entropy criterion of all the genotypes.

Frichot E, Mathieu F, Trouillon T, Bouchard G, Francois O. (2014). Fast and Efficient Estimation
of Individual Ancestry Coefficients. Genetics, 194(4) : 973-983.

See Also

geno create.dataset snmf

Examples

Creation of tuto.geno
A file containing 400 SNPs for 50 individuals.

data("tutorial”)

write.geno(tutorial.R, "genotypes.geno"”)

The following command are equivalent with
project = snmf("genotypes.geno”, entropy = TRUE, K = 3)
cross.entropy(project)

Creation

Create file:

of the masked data file
"genotypes_I.geno"

output = create.dataset("genotypes.geno")

run of snmf with genotypes_I.geno and K = 3
project = snmf("genotypes_I.geno", K = 3, project = "new”

12 G

calculate the cross-entropy

res = cross.entropy.estimation(”genotypes.geno”, K = 3, "genotypes_I.geno",
"./genotypes_I.snmf/K3/runl/genotypes_I_r1.3.Q",
"./genotypes_I.snmf/K3/runl/genotypes_I_r1.3.G")

get the result

res$masked. ce

res$all.ce

#remove project
remove.snmfProject("genotypes_I.snmfProject”)

env Environmental input file format for 1fmm

Description
Description of the env format. The env format can be used as an input format for the environmental
variables in the 1fmm function.

Details

The env format has one row for each individual. Each row contains one value for each environmen-
tal variable (separated by spaces or tabulations).

Here is an example of an environmental file using the env format with 3 individuals and 2 variables:

0.252477 ©.95250639
0.216618 0.10902647
-0.47509 0.07626694

Author(s)

Eric Frichot

See Also

1fmm 1fmm2 read.env write.env

G Ancestral allele frequencies from a snmf run

Description
Return the snmf output matrix of ancestral allele frequency matrix for the chosen run with K ances-
tral populations. For an example, see snmf.

Usage

G(object, K, run)

genetic.gap 13

Arguments
object A snmfProject object.
K The number of ancestral populations.
run A chosen run.
Value
res A matrix containing the ancestral allele frequencies for a run with K ancestral
populations.
Author(s)

Eric Frichot

See Also

geno snmf Q cross.entropy

Examples

#i## Example of analyses using snmf #i##

creation of a genotype file: genotypes.geno.
The data contain 400 SNPs for 50 individuals.
data("tutorial”)

write.geno(tutorial.R, "genotypes.geno")

HHHHHHAEEE
running snmf
A

Two runs for K =1 to 5
project.snmf = snmf("genotypes.geno"”,
K =3,
repetitions = 2,
project = "new”

get the ancestral genotype frequency matrix, G, for the 2nd run for K = 3.
freq = G(project.snmf, K = 3, run = 2)

genetic.gap Genetic gap: genetic offset and genetic distance between environ-
ments.

Description

The function returns estimates of the geometric genetic offset (genetic gap) computed from grids
of new and predicted environments. The estimates are based on the covariance matrix of effect
sizes obtained from an 1fmm2 model. The function takes as input the data that are used to adjust
the LFMM, a matrix of environmental variables measured at new locations (new.env) or at the
same locations as in the LFMM estimates (new.env = env is accepted), and a matrix of predicted
environmental variables for the new locations (pred.env) in the same format as the new.env ones.

14

Usage

genetic.gap

genetic.gap (input, env, new.env, pred.env, K, scale, candidate.loci)

Arguments

input

env

new.env

pred.env

scale

candidate.loci

Value

offset

distance

eigenvalues

A genotypic matrix or a character string containing a path to the input file. The
genotypic matrix must be in the 1fmm format without missing values (9 or NA).
See impute for completion based on nonnegative matrix factorization. Also
consider R packages for reading large matrices.

A matrix of environmental covariates or a character string containing a path
to the environmental file. The environmental matrix must be in the env format
without missing values. The variables must be encoded as numeric and sampled
at the same locations as for the genotype matrix.

A matrix of new environmental covariates or a character string containing a path
to the new environmental data. The data are environmental covariates sampled
at locations that can differ from those used in the estimation of the LFMM (env).
By default, the matrix provided as the env argument is used. The new environ-
mental matrix must be in the env format without missing values. The variables
must be encoded as numeric

A matrix of predicted (new) environmental covariates or a character string con-
taining a path to the predicted environmental data file. The predicted environ-
mental matrix must be in the env format without missing values, and of same
dimension as the new.env matrix. All variables must be encoded as numeric
and sampled at the same locations as for the new.env matrix. Predicted envi-
ronmental covariates typically result from bioclimatic models (eg, worldclim).

An integer or a sequence of integers corresponding to the number of latent fac-
tors in the LFMM. The number of latent factors could be estimated from the
elbow point in the PCA screeplot for the genotype matrix. For a sequence of
values, an average prediction will be returned.

A logical value indicating whether the environmental data are scaled or not. If
scale == TRUE, then all environmental matrices are centered and scaled from the
columwise mean and standard deviations of the env matrix. This option should
be used only to evaluate the relative importance of environmental variables with
the eigenvalues of the covariance matrix of effect sizes when the environmental
data have different scales.

A vector specifying which loci (column label) in the genotype matrix are in-
cluded in the computation of the genetic offset. The default value includes all
loci.

A vector of genomic offset values computed for every sample location in new. env
and pred.env. The genomic offset is the genetic gap defined in (Gain et al.
2023).

A vector of environmental distance values computed for every sample location
in new.env and pred.env. The distances to an estimate of the risk of nonadapt-
edness that includes correction for confounding factors and analyzes multiple
predictors simultaneously (modified version of RONA).

Eigenvalues of the covariance matrix of LFMM effect sizes. They represent
the relative importance of combinations of environmental variables described

genetic.gap 15

in vectors when the environmental data have similar scales. To be used with
scale == TRUE.

vectors Eigenvectors of the covariance matrix of LFMM effect sizes representing com-
binations of environmental variablessorted by importance (eigenvalues).

Author(s)

Olivier Francois, Clement Gain

References

Gain, C., etal. (2023). A quantitative theory for genomic offset statistics. bioRxiv, 10.1101/2023.01.02.522469.

Gain C, Francois O. (2021). LEA 3: Factor models in population genetics and ecological ge-
nomics with R. Molecular Ecology Resources. Molecular Ecology Resources 21 (8), 2738-2748.
doi.org/10.1111/1755-0998.13366.

See Also
1fmm.data 1fmm2
Examples
Example of genetic offset computation using 1fmm2 #i##
data("offset_example")
Y <- offset_example$geno
X <- offset_example$env

X.pred <- offset_example$env.pred

#PCA of the genotype data suggests k = 2 factors
plot(prcomp(Y), col = "blue”)

genetic gap

g.gap <- genetic.gap(input =Y,

env = X,
pred.env = X.pred,
K =2)

return the values of the offset (genetic gap) for each sample location
round(g.gap$offset, digit = 3)

plot the squared root of the genetic gap vs Euclidean environmental distance
Delta = X - X.pred

dist.env = sqrt(rowSums(Delta*2))

plot(dist.env, sqrt(g.gap$offset), cex = .6)

plot RONA vs the genetic gap
plot(g.gap$offset, g.gap$distance, cex = .6)

with scaled variables
g.gap.scaled <- genetic.gap(input =Y,
env = X,
pred.env = X.pred,

16 genetic.offset

scale = TRUE,
K=2)

Scaling does not change genetic gaps
plot(g.gap$offset, g.gap.scaled$offset, cex = .6)

But scaling is useful for evaluating the relative importance of environmental variables
Only two dimensions of the environmental space influence the genetic gap

barplot(g.gap.scaled$eigenvalues, col = "orange", xlab = "Axes", ylab = "Eigenvalues")

The loadings for the first two variables indicate their relative contribution to local adaptation
g.gap.scaled$vectors[,1:2]

#rm(list = 1s())

genetic.offset Genetic offset and genetic distance between environments.

Description

The function returns estimates of the geometric genetic offset computed from grids of new and
predicted environments. The function takes as input the data that are used to adjust the LFMM,
a matrix of environmental variables measured at new locations (new.env) or at the same locations
as in the LFMM estimates (new.env = env is accepted), and a matrix of predicted environmental
variables for the new locations (pred.env) in the same format as the new.env ones. It is equivalent
to genetic. gap function.

Usage

genetic.offset (input, env, new.env, pred.env, K, scale, candidate.loci)

Arguments

input A genotypic matrix or a character string containing a path to the input file. The
genotypic matrix must be in the 1fmm format without missing values (9 or NA).
See impute for completion based on nonnegative matrix factorization. Also
consider R packages for reading large matrices.

env A matrix of environmental covariates or a character string containing a path
to the environmental file. The environmental matrix must be in the env format
without missing values. The variables must be encoded as numeric and sampled
at the same locations as for the genotype matrix.

new.env A matrix of new environmental covariates or a character string containing a path
to the new environmental data. The data are environmental covariates sampled
at locations that can differ from those used in the estimation of the LFMM (env).
By default, the matrix provided as the env argument is used. The new environ-
mental matrix must be in the env format without missing values. The variables
must be encoded as numeric

pred.env A matrix of predicted (new) environmental covariates or a character string con-
taining a path to the predicted environmental data file. The predicted environ-
mental matrix must be in the env format without missing values, and of same
dimension as the new.env matrix. All variables must be encoded as numeric
and sampled at the same locations as for the new.env matrix. Predicted envi-
ronmental covariates typically result from bioclimatic models (eg, worldclim).

genetic.offset 17

K An integer or a sequence of integers corresponding to the number of latent fac-
tors in the LFMM. The number of latent factors could be estimated from the
elbow point in the PCA screeplot for the genotype matrix. For a sequence of
values, an average prediction will be returned.

scale A logical value indicating whether the environmental data are scaled or not. If
scale == TRUE, then all environmental matrices are centered and scaled from the
columwise mean and standard deviations of the env matrix. This option should
be used only to evaluate the relative importance of environmental variables with
the eigenvalues of the covariance matrix of effect sizes when the environmental
data have different scales.

candidate.loci A vector specifying which loci (column label) in the genotype matrix are in-
cluded in the computation of the genetic offset. The default value includes all
loci.

Value

offset A vector of genomic offset values computed for every sample location in new. env
and pred.env. The genomic offset is the genetic gap defined in (Gain et al.
2023).

distance A vector of environmental distance values computed for every sample location
in new.env and pred.env. The distances to an estimate of the risk of nonadapt-
edness that includes correction for confounding factors and analyzes multiple
predictors simultaneously (modified version of RONA).

eigenvalues Eigenvalues of the covariance matrix of LFMM effect sizes. They represent
the relative importance of combinations of environmental variables described
in vectors when the environmental data have similar scales. To be used with
scale == TRUE.

vectors Eigenvectors of the covariance matrix of LFMM effect sizes representing com-
binations of environmental variablessorted by importance (eigenvalues).

Author(s)

Olivier Francois, Clement Gain

References

Gain, C., et al. (2023). A quantitative theory for genomic offset statistics. bioRxiv, 10.1101/2023.01.02.522469.

Gain C, Francois O. (2021). LEA 3: Factor models in population genetics and ecological ge-
nomics with R. Molecular Ecology Resources. Molecular Ecology Resources 21 (8), 2738-2748.
doi.org/10.1111/1755-0998.13366.

See Also

1fmm.data 1fmm2

Examples
#i## Example of genetic offset computation using 1fmm2 #i##
data("offset_example”)

Y <- offset_example$geno

18 geno

X <- offset_example$env
X.pred <- offset_example$env.pred

#PCA of the genotype data suggests k = 2 factors
plot(prcomp(Y), col = "blue")

genetic offset

g.gap <- genetic.offset(input =Y,

env = X,
pred.env = X.pred,
K =2)

return the values of the offset (genetic gap) for each sample location
round(g.gap$offset, digit = 3)

plot the squared root of the genetic gap vs Euclidean environmental distance
Delta = X - X.pred

dist.env = sqrt(rowSums(Delta*2))

plot(dist.env, sqrt(g.gap$offset), cex = .6)

plot RONA vs the genetic gap
plot(g.gap$offset, g.gap$distance, cex = .6)

with scaled variables
g.gap.scaled <- genetic.offset(input =YV,

env = X,

pred.env = X.pred,
scale = TRUE,
K=2)

Scaling does not change genetic offsets
plot(g.gap$offset, g.gap.scaled$offset, cex = .6)

But scaling is useful for evaluating the relative importance of environmental variables
Two dimensions in environmental space have influence on the genetic offset

barplot(g.gap.scaled$eigenvalues, col = "orange", xlab = "Axes", ylab = "Eigenvalues")

The loadings for the first two variables indicate their relative contribution to local adaptation
g.gap.scaled$vectors[,1:2]

#rm(list = 1s())

geno Input file for snmf

Description

Description of the geno format. The geno format can be used as an input format for genotypic
matrices in the functions snmf, 1fmm, and pca.

geno2lfmm 19

Details

The geno format has one row for each SNP. Each row contains 1 character for each individual: 0
means zero copy of the reference allele. 1 means one copy of the reference allele. 2 means two
copies of the reference allele. 9 means missing data.

Here is an example of a genotypic matrix using the geno format with 3 individuals and 4 loci:

112
010
091
121
Author(s)

Eric Frichot

See Also

geno2lfmm 1fmm2geno ancestrymap2geno ped2geno vcf2geno read.geno write.geno

geno21fmm Convert from geno to 1fmm format

Description

A function that converts from the geno format to the 1fmm format.

Usage

geno2lfmm(input.file, output.file = NULL, force = TRUE)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
geno format.
output.file A character string containing a path to the output file, a genotypic matrix in the
1fmm format. By default, the name of the output file is the same name as the
input file with a .Jfmm extension.
force A boolean option. If FALSE, the input file is converted only if the output file
does not exist. If TRUE, convert the file anyway.
Value
output.file A character string containing a path to the output file, a genotypic matrix in the
1fmm format.
Author(s)

Eric Frichot

20

impute

See Also

1fmm.data geno ancestrymap2lfmmancestrymap2geno ped21fmmped2geno vcf2geno 1fmm2geno
read.genowrite.geno

Examples

Creation of a file called "genotypes.geno” in the working directory
with 400 SNPs for 50 individuals.

data("tutorial™)

write.geno(tutorial.R, "genotypes.geno")

Conversion from the geno format ("”genotypes.geno")

to the 1fmm format ("genotypes.lfmm").

By default, the name of the output file is the same name
as the input file with a .1fmm extension.

Create file: "genotypes.lfmm".
output = geno2lfmm("genotypes.geno")

Conversion from the geno format ("genotypes.geno")

to the 1fmm format with the output file called "plop.lfmm”.
Create file: "plop.lfmm”.

output = geno2lfmm("”genotypes.geno”, "plop.lfmm")

As force = false and the file "genotypes.lfmm” already exists,
nothing happens.
output = geno2lfmm("genotypes.geno”, force = FALSE)

impute Impute missing genotypes using an snmf object

Description

Impute missing genotypes in a genotype file (.Ifmm) by using ancestry and genotype frequency
estimates from an snmf run. The function generates a new 1fmm file. See 1fmm and 1fmm2.

Usage

impute (object, input.file, method, K, run)

Arguments

object An snmfProject object.

input.file A path (character string) to an input file in Ifmm format with missing genotypes.
The same input data must be used when generating the snmf object.

method A character string: "random" or "mode". With "random", imputation is per-
formed by using the genotype probabilities. With "mode", the most likely geno-
type is used for matrix completion.

K An integer value. The number of ancestral populations.

run An integer value. A particular run used for imputation (usually the run number

that minimizes the cross entropy criterion).

impute 21

Value
NULL The function writes the imputed genotypes in an output file having the "_im-
puted.lfmm" suffix.
Author(s)

Olivier Francois

References

Gain C, Francois O. (2021). LEA 3: Factor models in population genetics and ecological genomics
with R. Molecular Ecology Resources, doi.org/10.1111/1755-0998.13366.

See Also

snmf 1fmm 1fmm2

Examples

Example of analysis #i##

data("tutorial”)
creation of a genotype file with missing genotypes
The data contain 400 SNPs for 50 individuals.

dat = as.numeric(tutorial.R)
dat[sample(1:1length(dat), 100)] <- 9

dat <- matrix(dat, nrow = 50, ncol = 400)
write.lfmm(dat, "genotypes.lfmm")

WA
running snmf
S HHEHEEEE

project.snmf = snmf("genotypes.1lfmm”, K = 4,
entropy = TRUE, repetitions = 10,
project = "new")

select the run with the lowest cross-entropy value
best = which.min(cross.entropy(project.snmf, K = 4))

Impute the missing genotypes
impute(project.snmf, "genotypes.lfmm”, method = 'mode', K = 4, run = best)

Compare with truth
Proportion of correct imputation results:
mean(tutorial.R[dat == 9] == read.lfmm("genotypes.lfmm_imputed.lfmm”)[dat == 9])

22

Ifmm

1fmm

Fitting Latent Factor Mixed Models (MCMC algorithm)

Description

Latent Factor Mixed Models (LFMMs) are factor regression models in which the response vari-
able is a genotypic matrix, and the explanatory variables are environmental measures of ecological
interest or trait values. The 1fmm function estimates latent factors and effect sizes based on an
MCMC algorithm. The resulting object can be used in the function 1fmm.pvalues to identify
genetic polymorphisms exhibiting association with ecological gradients or phenotypes, while cor-
recting for unobserved confounders. An exact and computationally efficient least-squares method
is implemented in the function 1fmm2 which should be the prefered option.

Usage

1fmm(input.file, environment.file, K,

project ="'

d =09, all

'continue”,

= FALSE,

missing.data = FALSE, CPU = 1,

iterations
seed = -1,

= 10000, burnin = 5000,
repetitions = 1,

epsilon.noise = 1e-3, epsilon.b = 1000,
random.init = TRUE)

Arguments

input.file

A character string containing a path to the input file, a genotypic matrix in the
1fmm{1fmm_format} format. The matrix must not contain missing values. See
impute for completion based on nonnegative matrix factorization.

environment.file

K

project

all

missing.data

CPU

iterations

A character string containing a path to the environmental file, an environmental
data matrix in the env format.

An integer corresponding to the number of latent factors.

1

A character string among "continue", "new", and "force". If "continue", the
results are stored in the current project. If "new", the current project is removed
and a new project is created. If "force", the results are stored in the current
project even if the input file has been modified since the creation of the project.

An integer corresponding to the fit of an 1fmm model with the d-th variable only
from environment.file. By default (if NULL and all are FALSE), 1fmm fits
each variable from environment.file sequentially and independently.

A Boolean option. If TRUE, 1fmm fits all variables from the environment.file
at the same time. This option is not compatible with the d option.

A Boolean option. If TRUE, the input.file contains missing genotypes. Cau-
tion: 1fmm requires imputed genotype matrices. See impute.

A number of CPUs to run the parallel version of the algorithm. By default, the
number of CPUs is 1.

The total number of cycles for the Gibbs Sampling algorithm.

Ifmm 23

burnin The burnin number of cycles for the Gibbs Sampling algorithm.
seed A seed to initialize the random number generator. By default, the seed is ran-

domly chosen. The seed is initialized in each run of the program. For modifying
the default setting, provide one seed per run.

repetitions A number of replicate runs for the Gibbs Sampler algorithm.
epsilon.noise A prior parameter for variances.
epsilon.b A prior parameter for the variance of correlation coefficients.

random.init A Boolean option. If TRUE, the Gibbs Sampler is initiliazed randomly. Other-
wise, it is initialized with zero values.

Value

1fmm returns an object of class 1fmmProject.

The following methods can be applied to an object of class 1fmmProject:

show Display information about all analyses.

summary Summarize analyses.
\link{z.scores}
Return the 1fmm output vector of z.scores for some runs.
\1link{1fmm.pvalues?}
Return the vector of adjusted p-values for a combination of runs with K latent
factors, and for the d-th predictor.
load.lfmmProject (file = "character™)
Load the file containing an IfmmProject objet and show the object.
remove.lfmmProject (file = "character”)
Erase a 1fmmProject object. Caution: All the files associated with the object
will be removed.
export.lfmmProject(file.lfmmProject)
Create a zip file containing the full 1fmmProject object. It allows users to move
the project to a new directory or a new computer (using import). If you want to
overwrite an existing export, use the option force == TRUE.
import.lfmmProject(file.lfmmProject)
Import and load an 1fmmProject object from a zip file (made with the export
function) into the chosen directory. If you want to overwrite an existing project,
use the option force == TRUE.
combine.lfmmProject(file.lfmmProject, toCombine.lfmmProject)
Combine to.Combine.lfmmProject into file.lfmmProject. Caution: Only
projects with runs coming from the same input file can be combined. If the same
input file has different names in the two projects, use the option force == TRUE.

Author(s)

Eric Frichot Olivier Francois

References

Frichot E, Schoville SD, Bouchard G, Francois O. (2013). Testing for associations between loci
and environmental gradients using latent factor mixed models. Molecular biology and evolution,
30(7), 1687-1699.

24 Ifmm

See Also

1fmm.data z.scores 1fmm.pvalues pca 1fmm tutorial

Examples

Example of analysis using 1fmm

data("tutorial”)

creation of a genotype file: genotypes.lfmm.
The file contains 400 SNPs for 50 individuals.
write.lfmm(tutorial.R, "genotypes.lfmm")

Creation of a phenotype/environment file: gradient.env.
One environmental predictor for 40 individuals.
write.env(tutorial.C, "gradients.env")

HSHHEHHEHEH
running 1fmm
SR

main options, K: (the number of latent factors),
CPU: the number of CPUs.

Runs with K = 6 and 5 repetitions.
runs with 6000 iterations
including 3000 iterations for burnin.
Around 30 seconds per run.
project = 1fmm("genotypes.lfmm”,
"gradients.env”,
K=6,
repetitions = 5,
project = "new")

get adjusted p-values using all runs
pv = 1fmm.pvalues(project, K = 6)

Evaluate FDR and POWER (TPR)
for (alpha in c(.05,.1,.15,.2)) {
expected FDR
print(paste(”expected FDR:", alpha))
L = length(pv$pvalues)
Benjamini-Hochberg's mehod for an expected FDR = alpha.
w = which(sort(pv$pvalues) < alpha * (1:L)/L)
candidates = order(pv$pvalues)[w]

estimated FDR and True Positive Rate

The targets SNPs are loci 351 to 400

Lc = length(candidates)

estimated.FDR = length(which(candidates <= 350))/Lc

estimated.TPR = length(which(candidates > 350))/50

print(paste("FDR:", estimated.FDR, "True Positive Rate:", estimated.TPR))

remove project
remove.lfmmProject("genotypes_gradients.lfmmProject")

Ifmm.data 25

1fmm.data Input file for 1fmm

Description

Description of the 1fmm format. The 1fmm format can be used as an input format for genotypic
matrices in the functions snmf, 1fmm, 1fmm2, and pca.

Details

The 1fmm format has one row for each individual. Each row contains one value at each loci (sep-
arated by spaces or tabulations) corresponding to the number of alleles. The number of alleles
corresponds to the number of reference alleles or the number of derived alleles. Missing genotypes
are encoded by the value -9 or the value 9.

For the use of functions 1fmm and 1fmm2 missing genotypes must be removed or imputed with the
function impute.

Here is an example of a genotypic matrix using the 1fmm format with 3 individuals and 4 loci:

N — =
(ST
- 0o
o =

Author(s)

Eric Frichot

See Also

1fmm 1fmm2 geno21fmm 1fmm2geno ancestrymap2lfmm ped21fmm read.lfmmwrite.lfmm

1fmm.pvalues P-values from lfmm runs

Description

Returns a vector of p-values computed from a combination of 1fmm runs. For an example, see 1fmm.

Usage

1fmm.pvalues (object, genomic.control, lambda, K, d, all, run)

Arguments

object An IfmmProject object.
genomic.control

A Boolean value. If TRUE, the p-values are automatically calibrated using ge-
nomic control. If FALSE, the p-values are calculated by rescaling the chi-squared
test statistics using the lambda parameter.

26

lambda

all

run

Value

pvalues

GIF

Author(s)

Ifmm.pvalues

A numeric value. The lambda value is used as inflation factor to rescale the
chi-squared statistics in the computation of p-values. This option requires that
genomic.control = FALSE. The default value of lambda is equal to 1.0 (no
rescaling).

An integer value. The number of latent factors used in the model.
An integer value. Computes the p-values for the d-th covariable in the model.
A Boolean value. Each variable is considered separately (Obscure parameter).

An integer vector representing a list of runs to be combined in the computation
of p-values (by default, all runs).

A vector of combined p-values for each locus.

The inflation factor value used for correcting the test statistics.

Eric Frichot Olivier Francois

See Also

1fmm.data 1fmm

Examples

Example of analyses using 1fmm

data("tutorial”)

creation of a genotype file, "genotypes.lfmm”.

The data contain 400 SNPs for 50 individuals.

write.lfmm(tutorial.R, "genotypes.lfmm")

creation of an environmental variable file, "gradient.env”.

The data contain one environmental variable measured for 50 individuals.
write.env(tutorial.C, "gradients.env")

S
1fmm runs
S

main options, K: (the number of latent factors),

#

CPU: the number of CPUs.

runs with K = 3 and 2 repetitions.
around 15 seconds per run.

project
project

1fmm("genotypes.1lfmm”, "gradients.env", K = 3, repetitions = 2,

iterations = 6000, burnin = 3000, project = "new")

get adjusted p-values using the genomic control method
p = 1fmm.pvalues(project, K = 3)

hist(p$pvalues, col = "yellow3")

get adjusted p-values using lambda = 0.6

Ifmm?2

27

p = 1fmm.pvalues(project, genomic.control = FALSE,
lambda = 0.6, K = 3)

hist(p$pvalues, col = "yellow3")

1fmm2

Fitting Latent Factor Mixed Models (Least squares algorithm)

Description

Latent Factor Mixed Models (LFMMs) are factor regression models in which the response variable
is a genotypic matrix, and the explanatory variables are environmental measures of ecological in-
terest or trait values. The 1fmm2 function estimates latent factors based on an exact least-squares
approach. The resulting object can be used by the function 1fmm2. test to identify genetic poly-
morphisms exhibiting association with ecological gradients or phenotypes, while correcting for
unobserved confounders. An MCMC estimation algorithm is implemented in the function 1fmm,
but this version should be prefered.

Usage

1fmm2 (input, env, K, lambda, effect.sizes)

Arguments

input

env

lambda

effect.sizes

Value

A genotypic matrix or a character string containing a path to the input file. The
genotypic matrix must be in the 1fmm{1fmm_format} format without missing
values (9 or NA). See impute for completion based on nonnegative matrix fac-
torization and consider R packages for reading large matrices.

A matrix of environmental covariates or a character string containing a path
to the environmental file. The environment matrix must be in the env format
without missing values. Response variables must be encoded as numeric.

An integer corresponding to the number of latent factors. The number of latent
factors could be estimated from the elbow point in the PCA screeplot for the
genotype matrix.

A positive numeric value for a ridge regularization parameter. The default value
is set to le-5.

A logical value that indicates whether the matrix of effect sizes should be re-
turned or not. The default value is set to FALSE for saving memory space.

1fmm2 returns an object of class 1fmm2Class that contains K estimated latent factors @U and their

loadings @V.

The following method can be applied to an object of class 1fmm2Class:

\link{1fmm2.test}

P-values adjusted for the K latent factors computed by 1fmm?2.

28 Ifmm2

Author(s)

Olivier Francois

References

Caye K, Jumentier B, Lepeule J, Francois O. (2019). LFMM 2: fast and accurate inference of
gene-environment associations in genome-wide studies. Molecular biology and evolution, 36(4),
852-860.

Gain C, Francois O. (2021). LEA 3: Factor models in population genetics and ecological genomics
with R. Molecular Ecology Resources. doi: 10.1111/1755-0998.13366
See Also

1fmm.data impute 1fmm2. test pca 1fmm tutorial

Examples

Example of analysis using 1fmm2

Simulation with 10 target loci, with effect sizes ranging between -10 an 10
n = 100 individuals and L = 1000 loci

X <- as.matrix(rnorm(100)) # causal environmental variable
B <- rep(0, 1000)

target <- sample(1:1000, 10) # target loci

B[target] <- runif(10, -10, +10) # effect sizes

Creating hidden factors and loadings

U <- t(tcrossprod(as.matrix(c(-1,0.5,1.5)), X))+ matrix(rnorm(300), ncol = 3)
V <= matrix(rnorm(3000), ncol = 3)

Simulating a binarized matrix containing haploid genotypes
Simulation performed with the generative LFMM

Y <- tcrossprod(as.matrix(X), B) + tcrossprod(U, V) + matrix(rnorm(100000, sd = .5), nrow = 100)
Y <- matrix(as.numeric(Y > @), ncol = 1000)

HHHHHHHEEE A
Fitting an LFMM with K = 3 factors
HHEHHAEEE AR

mod2 <- 1fmm2(input =Y, env = X, K = 3)

Computing P-values and plotting their minus logl1@ values
Target loci are highlighted

pv <- 1fmm2.test(object = mod2, input =Y, env = X, linear = TRUE)
plot(-logl@(pv$pvalues), col = "grey”, cex = .4, pch = 19)
points(target, -logl@(pv$pvalues[target]), col = "red")

#rm(list = 1s())

Ifmm?2.test 29

1fmm2. test P-values adjusted for latent factors computed by 1fmm2.

Description

The function returns a vector of p-values for association between loci and environmental variables
adjusted for latent factors computed by 1fmm2. As input, it takes an object of class 1fmm2Class
with the data that were used to adjust the LFMM. If full is set to FALSE, the function computes
significance values (p-values) for each environmental variable, otherwise it returns p-values for the
full set of environmental variables.

Usage

1fmm2.test (object, input, env, full, genomic.control, linear, family)

Arguments

object An object of class 1fmm2Class.

input A genotypic matrix or a character string containing a path to the input file. The
genotypic matrix must be in the 1fmm{1fmm_format} format without missing
values (9 or NA). See impute for completion based on nonnegative matrix fac-
torization and consider R packages for reading large matrices.

env A matrix of environmental covariates or a character string containing a path
to the environmental file. The environment matrix must be in the env format
without missing values. Variables must be encoded as numeric.

full A logical value. If TRUE, p-values are computed for the full set of environmental

variables (a single value at each locus). If FALSE, p-values are computed for
each environmental variable (as many values as environmental variable at each
locus).

genomic.control
A logical value. If TRUE, the p-values are recalibrated by using genomic control
after correction for confounding.

linear A logical value indicating whether linear or generalized linear models should be
used to perform the association tests. If FALSE, family should be provided in
the next argument.

family a family for generalized linear models used in the association tests. The default
is binomial(link = "logit")), which requires that y is between 0 and 1.

Value
pvalues If full is set to FALSE, a matrix of p-values for all loci and for each environ-
mental variable. Otherwise a vector of p-values for all loci (all environmental
variables are included in the model).
zscores If full is set to FALSE, a matrix of z-scores for each locus and each environ-
mental variable.
fscores If full is set to TRUE, a vector of f-scores for each locus.

adj.r.squared If full is set to TRUE, a vector of R squared values or variances explained by all
environmental variables for all loci. The values are uncalibrated.

gif If full is set to FALSE, a vector of genomic inflation factors computed for each
environmental variable. A single genomic inflation factor otherwise.

30 Ifmm2.test

Author(s)

Olivier Francois

References

Caye K, Jumentier B, Lepeule J, Francois O. (2019). LFMM 2: fast and accurate inference of
gene-environment associations in genome-wide studies. Molecular biology and evolution, 36(4),
852-860.

See Also

1fmm.data 1fmm2

Examples
Example of analysis using 1fmm2

Simulation with 10 target loci, with effect sizes ranging between -10 an 10
n = 100 individuals and L = 1000 loci

X <- as.matrix(rnorm(100)) # environmental variable
B <- rep(0@, 1000)

target <- sample(1:1000, 10) # target loci
B[target] <- runif(10, -10, +10) # effect sizes

Creating hidden factors and loadings

U <- t(tcrossprod(as.matrix(c(-1,0.5,1.5)), X)) + matrix(rnorm(300), ncol = 3)
V <= matrix(rnorm(3000), ncol = 3)

Simulating a binarized matrix containing haploid genotypes
Simulation performed with the generative LFMM

Y <- tcrossprod(as.matrix(X), B) + tcrossprod(U, V) + matrix(rnorm(100000, sd = .5), nrow = 100)
Y <- matrix(as.numeric(Y > @), ncol = 1000)

HHHEHHAEHE AR
Fitting an LFMM with K = 3 factors
HHHHHHAEEEE AR

mod2 <- 1fmm2(input =Y, env = X, K = 3)

Computing P-values and plotting their minus logl1@ values
Target loci are highlighted

pv <- 1fmm2.test(object = mod2, input =Y, env = X, linear = TRUE)
plot(-logl@(pv$pvalues), col = "grey”, cex = .4, pch = 19)
points(target, -logl@(pv$pvalues[target]), col = "red")

Ifmm2geno 31

1fmm2geno Convert from 1fmm to geno format

Description

A function that converts from the 1fmm format to the geno format.

Usage
1fmm2geno(input.file, output.file = NULL, force = TRUE)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
1fmm format.
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format. By default, the name of the output file is the same name of the
input file with a .geno extension.
force A boolean option. If FALSE, the input file is converted only if the output file
does not exist. If TRUE, convert the file anyway.
Value
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format.
Author(s)

Eric Frichot

See Also

1fmm.data geno ancestrymap2lfmmancestrymap2geno geno2lfmmped21fmm ped2geno vcf2geno

Examples

Creation of a file called "genotypes.lfmm” in the working directory,
with 400 SNPs for 50 individuals.

data("tutorial”)

write.lfmm(tutorial.R, "genotypes.lfmm")

Conversion from the 1fmm format ("genotypes.lfmm")

to the geno format ("genotypes.geno”).

By default, the name of the output file is the same name
as the input file with a .geno extension.

Create file: "genotypes.geno”.
output = 1fmm2geno("”genotypes.lfmm")

Conversion from the 1fmm format ("genotypes.lfmm")

to the geno format with the output file called "plop.geno”.
Create file: "plop.geno”.

output = 1fmm2geno("genotypes.lfmm”, "plop.geno”)

32 pca

As force = false and the file "genotypes.geno” already exists,
nothing happens.
output = 1fmm2geno("genotypes.lfmm”, force = FALSE)

offset_example Example data for genetic offset analysis

Description

The data set is composed of a genotypic matrix stored in a Ifmm format (geno) containing 200
individuals genotyped at 510 SNPs, a matrix with 4 correlated environmental variables measured
for each individual in the env format, and a matrix with the same 4 variables after environmental
change (env.pred).

Value
geno A genotypic matrix that contains haploid genotypes for 200 individuals at 510
SNPs (Ifmm format).
env A matrix with 4 correlated environmental variables measured for 200 genotyped
individuals.
env.pred A matrix with the same 4 variables predicted for the 200 individuals after envi-
ronmental change.
pca Principal Component Analysis
Description

The pca function performs a principal component analysis of a genotypic matrix encoded in one of
the following formats: 1fmm, geno, ancestrymap, ped or vcf. The pca function computes eigen-
values, eigenvectors, and standard deviations for all principal components and the projections of
individuals on each component. Thepca function returns an object of class "pcaProject” containing
the output data and the input parameters.

Usage
pca (input.file, K, center = TRUE, scale = FALSE)

Arguments
input.file A character string containg the path to the genotype input file, a genotypic matrix
in the 1fmm format.
K An integer corresponding to the number of principal components calculated. By
default, all principal components are calculated.
center A boolean option. If TRUE, the data matrix is centered (default: TRUE).
scale A boolean option. If TRUE, the data matrix is centered and scaled (default:

FALSE).

pca 33

Value
pca returns an object of class pcaProject containing the following components:

eigenvalues The vector of eigenvalues.
eigenvectors The matrix of eigenvectors (one column for each eigenvector).
sdev The vector of standard deviations.

projections The matrix of projections (one column for each projection).

The following methods can be applied to the object of class pcaProject returned by pca:

plot Plot the eigenvalues.

show Display information on analysis.

summary Summarize analysis.

tracy.widom Perform Tracy-Widom tests for eigenvalues.

load.pcaProject(file.pcaProject)
Load the file containing a pcaProject object and return the pcaProject object.

remove.pcaProject(file.pcaProject)
Erase a pcaProject object. Caution: All the files associated with the pcaProject
object will be removed except the genotype file.
export.pcaProject(file.pcaProject)
Create a zip file containing the full pcaProject object. It allows users to move
the project to a new directory or a new computer (using import). If you want to
overwrite an existing export, use the option force == TRUE.
import.pcaProject(file.pcaProject)
Import and load an pcaProject object from a zip file (made with the export
function) into the chosen directory. If you want to overwrite an existing project,
use the option force == TRUE.

Author(s)

Eric Frichot

See Also

1fmm.data snmf 1fmm 1fmm2 tutorial

Examples

I

Create a genotype file "genotypes.lfmm’
with 1000 SNPs for 165 individuals.
data("tutorial”)

write.lfmm(tutorial.R, "genotypes.lfmm")

S
Perform PCA
S

run PCA

Available options: K (the number of PCs),

center and scale.

Creation of genotypes.pcaProject - the pcaProject object.
a directory genotypes.pca containing:

34

genotypes.eigenvalues - eigenvalues,
genotypes.eigenvectors - eigenvectors,
genotypes.sdev - standard deviations,
genotypes.projections - projections,

ETgE T T

Create a pcaProject object: pc.
pc <- pca("genotypes.lfmm”, scale = TRUE)

HHHEHHHEHEE
Display information
HHHEHHAAHEE

Display information on analysis.
show(pc)

Summarize analysis.
summary (pc)

R HHHHHEEHE R
Graphical outputs
HHHHHHHEHEEAH

par(mfrow=c(2,2))

Plot eigenvalues.
plot(pc, lwd=5, col="blue", cex = .7, xlab=("Factors"), ylab="Eigenvalues")

PC1-PC2 plot.
plot(pc$projections)

PC3-PC4 plot.
plot(pc$projections[,3:4])

Plot standard deviations.
plot(pc$sdev)

AR AR
Perform Tracy-Widom tests
HHHHHHARHEE

Perfom Tracy-Widom tests for all eigenvalues.

Create file: genotypes.tracyWidom - tracy-widom test information,
in the directory genotypes.pca/.

tw <- tracy.widom(pc)

Plot the percentage of variance explained by each component.
plot(tw$percentage)

Show p-values for the Tracy-Widom tests.
tw$pvalues

A
Manage a pca project
AR

All the project files for a given input matrix are
automatically saved into a pca project directory.
The name of the pcaProject file is the same name as

pca

ped 35

the name of the input file with a .pcaProject extension

("genotypes.pcaProject”).

The name of the pcaProject directory is the same name as

the name of the input file with .pca extension ("genotypes.pca/")

There is only one pca Project for each input file including all the runs.

An pcaProject can be load in a different session.
project = load.pcaProject("genotypes.pcaProject”)

An pcaProject can be exported to be imported in another directory
or in another computer
export.pcaProject("”genotypes.pcaProject”)

dir.create("test”, showWarnings = TRUE)

#import

newProject = import.pcaProject(”genotypes_pcaProject.zip”, "test”)
remove

remove.pcaProject("test/genotypes.pcaProject”)

A pcaProject can be erased.
Caution: All the files associated with the project will be removed.
remove.pcaProject("genotypes.pcaProject”)

ped ped format description

Description

Description of the ped format. The ped format can be used as an input format for genotypic matrices
in the functions snmf, 1fmm, and pca.

Details

The ped format has one row for each individual. Each row contains 6 columns of information
for each individual, plus two genotype columns for each SNP. Each column must be separated
by spaces or tabulations. The genotype format must be either 0OACGT or 01234, where 0 means
missing genotype. The first 6 columns of the genotype file are: the 1st column is the family ID,
the 2nd column is the sample ID, the 3rd and 4th columns are the sample IDs of parents, the Sth
column is the gender (male is 1, female is 2), the 6th column is the case/control status (1 is control,
2 is case), the quantitative trait value or the population group label.

The ped format is described here.

Here is an example with 3 individuals and 4 SNPs:

1 SAMPLE®@ 0 6 2 212331121

2 SAMPLE1 2 061221130411

3 SAMPLE2 0 © 21 22331412
Author(s)

Eric Frichot

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml\#ped

36 ped2geno

See Also

ped21fmm ped2geno geno 1fmm.data ancestrymap vcf

ped2geno Convert from ped to geno format

Description

A function that converts from the ped format to the geno format.

Usage

ped2geno(input.file, output.file = NULL, force = TRUE)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
ped format.
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format. By default, the name of the output file is the same name as the
input file with a .geno extension.
force A boolean option. If FALSE, the input file is converted only if the output file
does not exist. If TRUE, convert the file anyway.
Value
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format.
Author(s)

Eric Frichot

See Also

ped geno ancestrymap2lfmm ancestrymap2geno geno2lfmm ped21fmm vcf2geno 1fmm2geno

Examples

Creation of a file called "example.ped”
with 4 SNPs for 3 individuals.
data("example_ped")
write.table(example_ped, "example.ped”,
col.names = FALSE, row.names = FALSE, quote = FALSE)

Conversion from the ped format ("example.ped”)

to the geno format ("example.geno”).

By default, the name of the output file is the same name
as the input file with a .geno extension.

Create file: "example.geno”.

output = ped2geno(”example.ped”)

ped2lfmm 37

Conversion from the ped format ("example.ped")

to the geno format with the output file called "plop.geno”.
Create file: "plop.geno”.

output = ped2geno(”example.ped”, "plop.geno”)

As force = false and the file "example.geno” already exists,
nothing happens.
output = ped2geno("example.ped”, force = FALSE)

ped21fmm Convert from ped to 1fmm format

Description

A function that converts from the ped format to the 1fmm format.

Usage
ped2lfmm(input.file, output.file = NULL, force = TRUE)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
ped format.
output.file A character string containing a path for the output file, a genotypic matricx in
the 1fmm format. By default, the name of the output file is the same name as the
input file with a .Ifmm extension.
force A boolean option. If FALSE, the input file is converted only if the output file
does not exist. If TRUE, convert the file anyway.
Value
output.file A character string containing a path for the output file, a genotypic matricx in
the 1fmm format.
Author(s)
Eric Frichot
See Also

ped 1fmm.data ancestrymap2lfmmancestrymap2geno geno2lfmmped2geno vcf2geno 1fmm2geno

Examples

Creation of a file called "example.ped”
with 4 SNPs for 3 individuals.
data("example_ped")
write.table(example_ped, "example.ped”,
col.names = FALSE, row.names = FALSE, quote = FALSE)

Conversion from the ped format ("example.ped")
to the 1fmm format ("example.lfmm”).

38 Q

By default, the name of the output file is the same name
as the input file with a .1fmm extension.
Create file: "example.lfmm”.

output = ped2lfmm(”example.ped")

Conversion from the ped format ("example.ped"”)

to the geno format with the output file called "plop.lfmm".
Create file: "plop.lfmm".

output = ped2lfmm("”example.ped”, "plop.lfmm")

As force = false and the file "example.lfmm” already exists,
nothing happens.
output = ped2lfmm(”example.ped”, force = FALSE)

Q Admixture coefficients from a snmf run

Description
Return the snmf output matrix of admixture coefficients for the chosen run with K ancestral popu-
lations. For an example, see snmf.

Usage
Q(object, K, run)

Arguments
object A snmfProject object.
K The number of ancestral populations.
run A chosen run.
Value
res A matrix containing the admixture coefficients for the chosen run with K ances-
tral populations.
Author(s)

Eric Frichot

See Also

geno snmf G cross.entropy

Examples

Example of analysis using snmf #i##

Creation of the genotype file: genotypes.geno.
The data contain 400 SNPs for 50 individuals.
data("tutorial™)

write.geno(tutorial.R, "genotypes.geno")

read.env 39

S
running snmf
HHHEHHEREE

project.snmf <- snmf("genotypes.geno”,
K =3,
repetitions = 2,
project = "new")

get the ancestry coefficients for the 2nd run for K = 3.
Q.3 <- Q(project.snmf, K = 3, run = 2)

cluster assignment for each individual
cluster <- apply(Q.3, 1, which.max)
table(cluster)

read.env Read environmental file in the envformat

Description

Read a file in the env format.

Usage

read.env(input.file)

Arguments
input.file A character string containing a path to the input file, an environmental data
matrix in the env format.
Value
R A matrix containing the environmental variables with one line for each individ-
ual and one column for each environmental variable.
Author(s)

Eric Frichot

See Also

env write.env 1fmm

Examples

Creation of an environmental matrix, C

containing 2 environmental variables for 3 individuals.

C contains one line for each individual and one column for each variable.
C = matrix(runif(6), ncol=2, nrow=3)

Write C in a file called "example.env”.

40

Create file:

read.geno

"example.env”.

write.env(C, "example.env")

Read the file "example.env”.
C = read.env("example.env")

read.geno

read a file in the geno format

Description

Read a file in the geno format.

Usage

read.geno(input.file)

Arguments

input.file

Value

Author(s)

Eric Frichot

See Also

A character string containing a path to the input file, a genotypic matrix in the
geno format.

A matrix containing the genotypes with one line for each individual and one
column for each SNP.

write.geno geno snmf geno2lfmm 1fmm2geno ancestrymap2geno ped2geno vcf2geno

Examples

tutorial contains a matrix of genotypes R with 1000 SNPs for 165 individuals.
and a matrix with an environmental variable C.

data("tutorial™)

Write R in a file called "genotypes.geno”.

Create file:

"genotypes.geno”.

write.geno(tutorial.R, "genotypes.geno")

Read the file "genotypes.geno”.
R = read.geno("genotypes.geno")

read.lfmm 41

read.lfmm Read files in the 1fmm format

Description

Read a file in the 1fmm format.

Usage

read.1lfmm(input.file)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
1fmm format.
Value
R A matrix containing the genotypes with one line per individual and one column
per SNP.
Author(s)
Eric Frichot
See Also

write.lfmm 1fmm.data 1fmm geno2lfmm 1fmm2geno ancestrymap2lfmm ped21fmm

Examples

tutorial contains a matrix of genotypes R with 1000 SNPs for 165 individuals.
and a matrix with an environmental variable C.
data("tutorial”)

write R in a file called "genotypes.lfmm”
Create file: "genotypes.lfmm".
write.lfmm(tutorial.R, "genotypes.lfmm")

read the file "genotypes.lfmm”.
R = read.lfmm("genotypes.1lfmm")

42 read.zscore

read.zscore Read the output files of 1fmm

Description
Read the output file from 1fmm. This is an internal function. Zscores of a run can be accessed using
the function z. scores.

Usage

read.zscore(input.file)

Arguments
input.file a character string containing a path to the output of 1fmm.
Value
R A matrix containing the 1fmm results with one line per SNP. The first column is
the zscore. The second column is the -log10(p-value). The third column is the
p-value.
Author(s)
Eric Frichot
See Also

zscore.format 1fmm

Examples

Example of analyses using 1fmm

data("tutorial™)

creation of the genotype file, genotypes.lfmm.

It contains 400 SNPs for 50 individuals.
write.lfmm(tutorial.R, "genotypes.lfmm")

creation of the environment file, gradient.env.

It contains 1 environmental variable for 4@ individuals.
write.env(tutorial.C, "gradients.env")

W
runs of 1lfmm
S

main options, K: (the number of latent factors),
CPU: the number of CPUs.

Toy runs with K = 3 and 2 repetitions.

around 15 seconds per run.

project = NULL

project = 1fmm("genotypes.lfmm”, "gradients.env”, K = 3,
iterations = 6000, burnin = 3000, project = "new"”

snmf

43

res = read.zscore("./genotypes_gradients.1fmm/K3/runl/genotypes_ri1_s1.3.zscore")

snmf

Estimates individual ancestry coefficients and ancestral allele fre-
quencies.

Description

snmf estimates admixture coefficients using sparse Non-Negative Matrix Factorization algorithms,
and provides STRUCTURE-like outputs.

Usage

snmf (input.file, K,

project

"continue”,

repetitions = 1, CPU = 1,

alpha =

10, tolerance = 0.00001, entropy = FALSE, percentage = 0.05,

I, iterations = 200, ploidy = 2, seed = -1, Q.input.file)

Arguments

input.file

project

repetitions
CPU

alpha

tolerance

entropy

percentage

iterations

A character string containing a the path to the input file, a genotypic matrix in
the geno format.

An integer vector corresponding to the number of ancestral populations for
which the snmf algorithm estimates have to be calculated.

A character string among "continue", "new", and "force". If "continue", the
results are stored in the current project. If "new", the current project is removed
and a new one is created to store the result. If "force", the results are stored in
the current project even if the input file has been modified since the creation of
the project.

An integer corresponding with the number of repetitions for each value of K.

A number of CPUs to run the parallel version of the algorithm. By default, the
number of CPUs is 1.

A numeric value corresponding to the snmf regularization parameter. The results
can depend on the value of this parameter, especially for small data sets.

A numeric value for the tolerance error.

A boolean value. If true, the cross-entropy criterion is calculated (see create.dataset
and cross.entropy.estimation).

A numeric value between 0 and 1 containing the percentage of masked geno-
types when computing the cross-entropy criterion. This option applies only if
entropy == TRUE (see cross.entropy).

The number of SNPs to initialize the algorithm. It starts the algorithm with a
run of snmf using a subset of nb.SNPs random SNPs. If this option is set with
nb.SNPs, the number of randomly chosen SNPs is the minimum between 10000
and 10 % of all SNPs. This option can considerably speeds up snmf estimation
for very large data sets.

An integer for the maximum number of iterations in algorithm.

44 snmf
ploidy 1 if haploid, 2 if diploid, n if n-ploid.
seed A seed to initialize the random number generator. By default, the seed is ran-
domly chosen.
Q.input.file A character string containing a path to an initialization file for Q, the individual
admixture coefficient matrix.
Value
snmf returns an object of class snmfProject.
The following methods can be applied to the object of class snmfProject:
plot Plot the minimal cross-entropy in function of K.
show Display information about the analyses.
summary Summarize the analyses.
\1link{Q} Return the admixture coefficient matrix for the chosen run with K ancestral pop-
ulations.
\1ink{G} Return the ancestral allele frequency matrix for the chosen run with K ancestral
populations.
\link{cross.entropy}
Return the cross-entropy criterion for the chosen runs with K ancestral popula-
tions.
\link{snmf.pvalues?}
Return the vector of adjusted p-values for a run with K ancestral populations.
\link{impute} Return a geno or 1fmm file with missing data imputation.
\link{barchart}
Return a bar plot representation of the Q matrix from a run with K ancestral
populations .
load.snmfProject(file.snmfProject)
Load the file containing an snmfProject objet and return the snmfProject object.
remove.snmfProject(file.snmfProject)
Erase a snmfProject object. Caution: All the files associated with the object
will be removed.
export.snmfProject(file.snmfProject)
Create a zip file containing the full snmfProject object. It allows to move the
project to a new directory or a new computer (using import). If you want to
overwrite an existing export, use the option force == TRUE.
import.snmfProject(file.snmfProject)
Import and load an snmfProject object from a zip file (made with the export
function) into the chosen directory. If you want to overwrite an existing project,
use the option force == TRUE.
combine.snmfProject(file.snmfProject, toCombine.snmfProject)
Combine to.Combine.snmfProject into file.snmfProject. Caution: Only
projects with runs coming from the same input file can be combined. If the same
input file has different names in the two projects, use the option force == TRUE.
Author(s)

Eric Frichot

snmf 45

References

Frichot E, Mathieu F, Trouillon T, Bouchard G, Francois O. (2014). Fast and Efficient Estimation
of Individual Ancestry Coefficients. Genetics, 194(4): 973-983.

See Also

geno pca 1fmm Q barchart tutorial

Examples

Example of analysis using snmf

Creation of the genotype file: genotypes.geno.
The data contain 400 SNPs for 50 individuals.
data("tutorial”)

write.geno(tutorial.R, "genotypes.geno")

HHHHHHA
running snmf
S HEEHHEHEHE

project.snmf = snmf("genotypes.geno”,
K=1:10,
entropy = TRUE,
repetitions = 10,
project = "new")

plot cross-entropy criterion of all runs of the project
plot(project.snmf, cex = 1.2, col = "lightblue”, pch = 19)

get the cross-entropy of the 10 runs for K = 4
ce = cross.entropy(project.snmf, K = 4)

select the run with the lowest cross-entropy for K = 4
best = which.min(ce)

display the Q-matrix

my.colors <- c("tomato”, "lightblue",
"olivedrab”, "gold")

barchart(project.snmf, K = 4, run = best,
border = NA, space = @, col = my.colors,

xlab = "Individuals”, ylab = "Ancestry proportions”,
main = "Ancestry matrix") -> bp
axis(1, at = 1:length(bp$order),
labels = bp$order, las = 3, cex.axis = .4)
SR
Post-treatments
S HHHEHEEHE

show the project
show(project.snmf)

46

snmf

summary of the project
summary (project.snmf)

get the cross-entropy for all runs for K = 4
ce = cross.entropy(project.snmf, K = 4)

get the cross-entropy for the 2nd run for K = 4
ce = cross.entropy(project.snmf, K = 4, run = 2)

get the ancestral genotype frequency matrix, G, for the 2nd run for K = 4.
freq = G(project.snmf, K = 4, run = 2)

W
Advanced snmf run options
S

Q.input.file: init a run with a given ancestry coefficient matrix Q.
To run the example, remove the comment character

Example where Q is initialized with the matrix resulting
from a previous run with K = 4

project.snmf = snmf("genotypes.geno”, K = 4,
Q.input.file = "./genotypes.snmf/K4/run1/genotypes_r1.4.Q", project = "new")

I: init the Q matrix of a run from a smaller run with 100 randomly chosen
SNPs.
project.snmf = snmf("genotypes.geno”, K = 4, I = 100, project = "new")

CPU: run snmf with 2 CPUs.
project.snmf = snmf("genotypes.geno”, K = 4, CPU = 2, project = "new")

percentage: run snmf and calculate the cross-entropy criterion with 10% of
masked genotypes, instead of 5% of masked genotypes.
project.snmf = snmf ("genotypes.geno”, K =4, entropy = TRUE, percentage = 0.1, project = "new")

seed: choose the seed for the random generator.
project.snmf = snmf("genotypes.geno”, K = 4, seed = 42, project = "new")

alpha: choose the regularization parameter.
project.snmf = snmf("genotypes.geno”, K = 4, alpha = 100, project = "new")

tolerance: choose the tolerance parameter.
project.snmf = snmf("genotypes.geno”, K = 4, tolerance = 0.0001, project = "new")

HHHHHHEEEER A
Manage an snmf project
HHH A A

All the runs of snmf for a given file are
automatically saved into an snmf project directory and a file.
The name of the snmfProject file is the same name as

snmf.pvalues 47

the name of the input file with a .snmfProject extension

("genotypes.snmfProject”).

The name of the snmfProject directory is the same name as

the name of the input file with a .snmf extension ("genotypes.snmf/")

There is only one snmf Project for each input file including all the runs.

An snmfProject can be load in a different session.
project.snmf = load.snmfProject("genotypes.snmfProject”)

An snmfProject can be exported to be imported in another directory
or in another computer
export.snmfProject("genotypes.snmfProject”)

dir.create("test”, showWarnings = TRUE)

#import

newProject = import.snmfProject("genotypes_snmfProject.zip”, "test")

combine projects

combinedProject = combine.snmfProject(”genotypes.snmfProject”, "test/genotypes.snmfProject”)
remove

remove.snmfProject("test/genotypes.snmfProject”)

An snmfProject can be erased.
Caution: All the files associated with the project will be removed.
remove.snmfProject(”genotypes.snmfProject”)

snmf.pvalues P-values for snmf population differentiation tests

Description

Returns a vector of p-values computed from an snmf run.

Usage

snmf.pvalues (object, genomic.control, lambda, ploidy, entropy, fisher, K, run)

Arguments

object An snmfProject object.

genomic.control
A Boolean value. If TRUE, the p-values are automatically calibrated using ge-
nomic control. If FALSE, the p-values are calculated by rescaling the chi-squared
test statistics using the lambda parameter.

lambda A numeric value. The lambda value is used as an inflation factor to rescale the
chi-squared statistics in the computation of p-values. This option requires that
genomic.control = FALSE. The default value of lambda is equal to 1.0 (no
rescaling).

ploidy An integer value among 1 or 2. Tests are implemented for haploids and diploids
(to be extended to polypoids).

entropy A Boolean value. If TRUE, the run of minimum entropy is used for computing
the p-values.

48 snmf.pvalues

fisher A Boolean value. If TRUE, F-distributions are used to test the null-hypothesis,
Chi-squared otherwise.

K An integer value. The number of genetic clusters.

run An integer for the run number used the computation of p-values (by default, the

minimum entropy run).

Value
p.values A vector of p-values for each locus for the population differentiation test.
GIF The inflation factor value used in the test.

Author(s)

Olivier Francois

References

Martins, H., Caye, K., Luu, K., Blum, M. G. B., Francois, O. (2016). Identifying outlier loci in ad-
mixed and in continuous populations using ancestral population differentiation statistics. Molecular
Ecology, 25(20), 5029-5042.

See Also

snmf

Examples

#i## Example of analyses using snmf ###

data("tutorial™)

creation of a genotype file, "genotypes.lfmm”.
The data contain 400 SNPs for 50 individuals.
write.geno(tutorial.R, "genotypes.geno")

S
snmf runs
S

main options, K: the number of ancestral populations,
entropy: cross-entropy criterion,

CPU: the number of CPUs.

project.snmf = snmf("genotypes.geno”,

K =4,

entropy = TRUE,
ploidy = 2,
repetitions = 10,
project = "new”

genome scan using adjusted p-values (genomic control method)

p = snmf.pvalues(project.snmf, entropy = TRUE, ploidy = 2, K = 4)
p$GIF

struct2geno 49

par(mfrow = c(2,1))
hist(p$pvalues, col = "orange")

plot(-logl@(p$pvalues), pch = 19, col = "blue”, cex = .7)

struct2geno Conversion from the STRUCTURE format to the geno format.

Description

The function converts a multiallelic genotype file in the STRUCTURE format into a file in the
’geno’ for snmf and the "Ifmm’ format for 1fmm.

Usage

struct2geno (input.file, ploidy, FORMAT, extra.row, extra.column)

Arguments

input.file A character string. A path to a STRUCTURE or a TESS input file of multiallelic
markers (eg, microsatellites) for haploid or diploid individuals. Missing data
must be encoded as "-9" or as any negative value. Individual genotypes are
encoded using either one or two rows of data.

ploidy An integer value (1 or 2). Value 2 for diploids and 1 for haploids.

FORMAT An integer value equal to 1 for markers encoded using one row of data for each
individual, and 2 for markers encoded using two rows of data for each individual.

extra.row An integer value indicating the number of extra rows in the header of the input

file (eg, marker ids).

extra.column an integer value indicating the number of extra columns in the input file. Extra
columns can include individual ids, pop ids, geographic coordinates, etc.

Value

NULL. Output files in the geno’ and the *Ifmm’ format record individual genotypes for each allele
at each marker.

Author(s)

Olivier Francois

See Also

1fmm.data geno 1fmm snmf

50

Examples

Example of conversion from a STRUCTURE format

#i## Artificial data with 10 diploid individuals and 1@ STR markers

FORMAT = 1
Input file: 'dat.str’

dat.str <- matrix(sample(c(101:105,-9),
200, prob = c(rep(1,5), 0.1),
replace = TRUE),
nrow = 10, ncol = 20)
write.table(dat.str,
file = "dat.str",
col.names = FALSE,
row.names = FALSE,
quote = FALSE)

Conversion
struct2geno("dat.str”, ploidy = 2, FORMAT = 1)

snmf run and barplot
s <- snmf("dat.str.geno”, K = 2, project = "new")
barchart(s, K = 2, run = 1, xlab = "Individuals")

tracy.widom

tracy.widom

Tracy-Widom test for eigenvalues

Description

Perform tracy-widom tests on a set of eigenvalues to determine the number of significative eigen-
values and calculate the percentage of variance explained by each principal component. For an

example, see pca.

Usage

tracy.widom (object)

Arguments

object a pcaProject object.

Value

tracy.widom returns a list containing the following components:

eigenvalues The sorted input vector of eigenvalues (by descreasing order).

twstats The vector of tracy-widom statistics.

pvalues The vector of p-values associated with each eigenvalue.

effecn The vector of effective sizes.

percentage The vector containing the percentage of variance explained by each principal

component.

tracy.widom 51

Author(s)

Eric Frichot

References

Tracy CA and Widom H. (1994). Level spacing distributions and the bessel kernel. Commun
Math Phys. 161 :289-309. Patterson N, Price AL and Reich D. (2006). Population structure and
eigenanalysis. PLoS Genet. 2 :20.

See Also

pca 1fmm.data 1fmm

Examples

Creation of the genotype file "genotypes.lfmm”
with 1000 SNPs for 165 individuals.
data("tutorial”)

write.lfmm(tutorial.R, "genotypes.lfmm")

HHEHHHHHRHEEEEHEHEE

Perform a PCA

HHHHHHHAHEE

run of PCA

Available options, K (the number of PCs calculated),
center and scale.

Creation of genotypes.pcaProject - the pcaProject object.
a directory genotypes.pca containing:

Create files: genotypes.eigenvalues - eigenvalues,

genotypes.eigenvectors - eigenvectors,

genotypes.sdev - standard deviations,

genotypes.projections - projections,

Create a pcaProject object: pc.
pc = pca(”genotypes.1lfmm”, scale = TRUE)

HHHHHHARHE
Perform Tracy-Widom tests
SRR

Perfom Tracy-Widom tests on all eigenvalues.

Create file: genotypes.tracyWidom - tracy-widom test information,
in the directory genotypes.pca/.

tw = tracy.widom(pc)

Plot the percentage of variance explained by each component.
plot(tw$percentage)

Display the p-values for the Tracy-Widom tests.
tw$pvalues

remove pca Project
remove.pcaProject(”genotypes.pcaProject”)

52 vef

tutorial Example tutorial data sets

Description

This data set is composed of a genotypic matrix stored in tutorial.R with 50 individuals genotyped
at 400 SNPs. The last 50 SNPs are correlated with an environmental variable recorded in tutorial.C.
The data are a subset of the data shown in the computer note associated with the package (Frichot
and Francois 2015).

Value
tutorial.R A genotypic matrix for 50 individuals genotyped at 400 SNPs. The last 50 SNPs
are correlated with an environmental variable stored in tutorial.C.
tutorial.C An environmental variable measured for 50 individuals.
vef vcf format description
Description

Description of the vcf format. The vef format can be used as an input format for genotypic matrices
in the functions snmf, 1fmm, and pca.

Details

The vcf format is described here.

Here is an example of a genotypic matrix using the vcf format with 3 individuals and 4 loci:

##fileformat=VCFv4.1

##FORMAT=<ID=GM, Number=1,Type=Integer,Description="Genotype meta">
##INFO=<ID=VM,Number=1,Type=Integer,Description="Variant meta">
##INFO=<ID=SM,Number=1,Type=Integer,Description="SampleVariant meta">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLEQ SAMPLE1 SAMPLE?2
1001 rse000 T C 999 . VM=1;SM=100 GT:GM 1/0:1 @/1:2 1/1:3

1002 rs1111 G A 999 . VM=2;SM=101 GT:GM 0/0:6 0/1:7 0/0:8

1003 notres G AA 999 . VM=3;SM=102 GT:GM 0/0:11 ./.:12 @/1:13

1004 rs2222 G A 999 . VM=3;SM=102 GT:GM 0/0:11 . 1/0:13

1003 notres GA A 999 . VM=3;SM=102 GT:GM @/0:11 ./.:12 0/1:13

1005 rs3333 G A 999 . VM=3;SM=102 GT:GM 1/0:11 1/1:12 @/1:13

_ a A A A A

Author(s)

Eric Frichot

See Also

vcf2geno vef21fmm geno 1fmm ped ancestrymap

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

vcf2geno

53

vcf2geno

Convert from vcf to geno format

Description

A function that converts from the vcf format to the geno format. Note: This function may be
obsolete. Conversion in accepted format such as ped can be obtained with the program vcftools.

Usage

vcf2geno(input.file, output.file = NULL, force = TRUE)

Arguments

input.file

output.file

force

Value

output.file

Author(s)

Eric Frichot

See Also

A character string containing a path to the input file, a genotypic matrix in the
vcf format.

A character string containing a path to the output file, a genotypic matrix in the
geno format. By default, the name of the output file is the same name as the
input file with a .geno extension.

A boolean option. If FALSE, the input file is converted only if the output file
does not exist. If TRUE, convert the file anyway.

A character string containing a path to the output file, a genotypic matrix in the
geno format.

vcf geno ancestrymap2lfmm ancestrymap2geno ped21fmm ped2geno 1fmm2geno geno21fmm

Examples

Creation of a

file called "example.vcf”

with 4 SNPs for 3 individuals.
data("example_vcf")
write.table(example_vcf, "example.vcf"”,col.names =

c("#CHROM"

"POS”, "ID", "REF”, "ALT", "QUAL", "FILTER”, "INFO",

"FORMAT"”, "SAMPLE®@", "SAMPLE1", "SAMPLE2"),

row.names =

Conversion

#

By default,
#

Create files:
#

#

FALSE, quote = FALSE)

from the vcf format ("example.vcf™)

to the geno format ("example.geno”).

the name of the output file is the same name
as the input file with a .geno extension.
"example.geno”,

"example.vcfsnp” - SNP informations,
"example.removed” - removed lines.

54 vef2lfmm

output = vcf2geno("example.vcf")

Conversion from the vcf format ("example.vcf”)

to the geno format with the output file called "plop.geno”.
Create files: "plop.geno”,

"plop.vcfsnp” - SNP informations,

"plop.removed” - removed lines.

output = vcf2geno("example.vcf”, "plop.geno")

As force = false and the file "example.geno” already exists,
nothing happens.
output = vcf2geno("example.vcf"”, force = FALSE)

vcef21lfmm Convert from vcf to 1fmm format

Description

A function that converts from the vcf format to the 1fmm format. Note: This function may be
obsolete. Conversion in accepted format such as ped can be obtained with the program vcftools.

Usage

vcef2lfmm(input.file, output.file = NULL, force = TRUE)

Arguments
input.file A character string containing a path to the input file, a genotypic matrix in the
vcf format.
output.file A character string containing a path to the output file, a genotypic matrix in the
1fmm format. By default, the name of the output file is the same name as the
input file with a .Ifmm extension.
force A boolean option. If FALSE, the input file is converted only if the output file
does not exist. If TRUE, convert the file anyway.
Value
output.file A character string containing a path to the output file, a genotypic matrix in the
1fmm format.
Author(s)
Eric Frichot
See Also

vef 1fmm.data ancestrymap2lfmm ancestrymap2geno ped21fmm ped2geno vcf2geno

write.env 55

Examples

Creation of a file called "example.vcf”

with 4 SNPs for 3 individuals.

data("example_vcf")

write.table(example_vcf, "example.vcf"”,col.names =
c("#CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO",
"FORMAT", "SAMPLE@", "SAMPLE1", "SAMPLE2"),
row.names = FALSE, quote = FALSE)

Conversion from the vcf format ("example.vcf”)

to the 1fmm format ("example.lfmm”).

By default, the name of the output file is the same name
as the input file with a .1fmm extension.

Create files: "example.lfmm”,

"example.vcfsnp” - SNP informations,

"example.removed” - removed lines.

output = vcf2lfmm(”example.vcf™)

Conversion from the vcf format ("example.vcf”)

to the 1fmm format with the output file called "plop.lfmm”.
Create files: "plop.lfmm",

"plop.vcfsnp” - SNP informations,

"plop.removed” - removed lines.

output = vcf2lfmm("example.vcf”, "plop.lfmm")

As force = false and the file "example.lfmm” already exists,
nothing happens.
output = vcf2lfmm("example.vcf"”, force = FALSE)

write.env Write files in the env format

Description

Write a file in the env format.

Usage
write.env(R, output.file)
Arguments
R A matrix containing the environmental variables with one line for each individ-
ual and one column for each environmental variable. The missing genotypes
have to be encoded with the value 9.
output.file A character string containing a path to the output file, an environmental data
matrix in the env formt.
Value
output.file A character string containing a path to the output file, an environmental data

matrix in the env formt.

56 write.geno

Author(s)

Eric Frichot

See Also

read.env env 1fmm

Examples

Creation of an environmental matrix C

containing 2 environmental variables for 3 individuals.

C contains one line for each individual and one column for each variable.
C = matrix(runif(6), ncol=2, nrow=3)

Write C in a file called "tuto.env".
Create file: "tuto.env".
write.env(C,"tuto.env")

Read the file "tuto.env”.
C = read.env("tuto.env")

write.geno Write files in the geno format

Description

Write a file in the geno format.

Usage

write.geno(R, output.file)

Arguments
R A matrix containing the genotypes with one line for each individual and one
column for each SNP. The missing genotypes have to be encoded with the value
9.
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format.
Value
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format.
Author(s)

Eric Frichot

See Also

read.geno geno snmf geno21fmm 1fmm2geno ancestrymap2geno ped2geno vcf2geno

write.Ifmm 57

Examples

Creation of a file called "genotypes.geno” in the working directory,
with 1000 SNPs for 165 individuals.
data("tutorial™)

Write R in a file called "genotypes.geno”.
Create file: "genotypes.geno".
write.geno(tutorial.R, "genotypes.geno")

Read the file "genotypes.geno”.
R = read.geno("genotypes.geno")

write.lfmm Write files in the 1fmm format

Description

Werite a file in the 1fmm format.

Usage

write.lfmm(R, output.file)

Arguments
R A matrix containing the genotypes with one line for each individual and one
column for each SNP. The missing genotypes have to be encoded with the value
9.
output.file A character string containing a path to the output file, a genotypic matrix in the
1fmm format.
Value
output.file A character string containing a path to the output file, a genotypic matrix in the
geno format.
Author(s)
Eric Frichot
See Also

read.lfmm 1fmm.data 1fmm geno21fmm 1fmm2geno ancestrymap2lfmm ped21fmm

Examples

Creation of a file called "genotypes.geno” in the working directory,
with 1000 SNPs for 165 individuals.
data("tutorial”)

write R in a file called "genotypes.lfmm”
Create file: "genotypes.1lfmm”.
write.lfmm(tutorial.R, "genotypes.lfmm")

58 z.scores

read the file "genotypes.lfmm”.
R = read.lfmm("genotypes.1lfmm")

z.scores z-scores from an lfmm run

Description
Return the 1fmm output matrix of zscores for the chosen runs with K latent factors, the d-th variable
and the all option. For an example, see 1fmm.

Usage

z.scores (object, K, d, all, run)

Arguments

object A IfmmProject object.

K The number of latent factors.

d The d-th variable.

all A Boolean option. If true, the run with all variables at the same time. If false,

the runs with each variable separately.

run A list of chosen runs.
Value

res A matrix containing a vector of z-scores for the chosen runs per column.
Author(s)

Eric Frichot

See Also

1fmm 1fmm.data

Examples

Example of analyses using 1fmm

data("tutorial™)

creation of the genotype file, genotypes.lfmm.

It contains 400 SNPs for 50 individuals.
write.lfmm(tutorial.R, "genotypes.lfmm")

creation of the environment file, gradient.env.

It contains 1 environmental variable for 4@ individuals.
write.env(tutorial.C, "gradients.env")

S
runs of 1fmm
HHHHHE

zscore.format 59

main options, K: the number of latent factors,
CPU: the number of CPUs.

Toy runs with K = 3 and 2 repetitions.

around 15 seconds per run.

project = NULL

project = 1fmm("genotypes.lfmm”, "gradients.env”, K = 3, repetitions = 2,
iterations = 6000, burnin = 3000, project = "new")

ETS

get the z-scores for all runs for K = 3
z = z.scores(project, K = 3)

ETS

get the z-scores for the 2nd run for K = 3
= z.scores(project, K = 3, run = 2)

N

remove
remove.lfmmProject("genotypes_gradients.lfmmProject”)

zscore. format Output file format for 1fmm

Description

Description of the zscore output format of 1fmm.

Details

The zscore format has one row for each SNP. Each row contains three values: The first value is the
zscore, the second value is the -log10(pvalue), the third value is the p-value (separated by spaces or
tabulations).

Author(s)

Eric Frichot

See Also

1fmm 1fmm.data env

Index

* conversion create.dataset, 8
ancestrymap2geno, 4 cross.entropy, 9
ancestrymap2lfmm, 5 G, 12
geno21fmm, 19 impute, 20
1fmm2geno, 31 Q, 38
ped2geno, 36 snmf, 43
ped21fmm, 37 snmf .pvalues, 47
vcf2geno, 53 * tutorial
vcf21fmm, 54 1fmm, 22

x format 1fmm2, 27
ancestrymap, 3 pca, 32
env, 12 snmf, 43
geno, 18 tutorial, 52
1fmm.data, 25 $,pcaProject-method (pca), 32
ped, 35
vef, 52 adjusted.pvalues,lfmmProject-method

(1fmm), 22
ancestrymap, 3, 4-6, 32, 36, 52
ancestrymap2geno, 4, 4, 6, 19, 20, 31, 36, 37,

zscore. format, 59
* Ifmm2
genetic.gap, 13

genetic.offset, 16 40, 33, 54, 56
1fmm. 22 ancestrymap2lfmm, 4, 5, 5, 20, 25, 31, 36, 37,
1fmm’2 27 41,53, 54,57
" 1fmm2. test, 29 barchart, 6, 45
mln;mm » barchart,snmfProject-method (snmf), 43

lot.defaul
1fmm.pvalues, 25 barplot.default, 7

z.scores, 58

combine.lfmmProject (1fmm), 22
* offset_example

combine.lfmmProject,character,character-method

offset_example, 32 (1fmm), 22
* package combine.snmfProject (snmf), 43
LEA-package, 3 combine.snmfProject,character,character-method
* pca (snmf), 43
pca, 32 create.dataset, 8, 8, 10, 11,43
tracy.widom, 50 cross.entropy, 8,9, 13, 38, 43
* read/write cross.entropy, snmfProject-method
read.env, 39 (snmf), 43
read.geno, 40 cross.entropy.estimation, 10, 43
read.1lfmm, 41
read.zscore, 42 eigenvalues (pca), 32
write.env, 55 eigenvalues,pcaProject-method (pca), 32
write.geno, 56 eigenvectors (pca), 32
write.lfmm, 57 eigenvectors,pcaProject-method (pca), 32
* snmf env, 12, 14, 16, 22, 27, 29, 39, 55, 56, 59

60

INDEX

example_ancestrymap (ancestrymap), 3
example_geno (geno), 18
example_lfmm (1fmm.data), 25
example_ped (ped), 35
example_vcf (vcf), 52
export.lfmmProject (1fmm), 22
export.lfmmProject, character-method
(1fmm), 22
export.pcaProject (pca), 32
export.pcaProject,character-method
(pca), 32
export.snmfProject (snmf), 43
export.snmfProject, character-method
(snmf), 43

G, 9, 12,38

G, snmfProject-method (snmf), 43

genetic.gap, 13, 16

genetic.offset, 16

geno, 4, 5,8 9,11, 13,18, 19, 20, 31, 32, 36,
38,40, 43,45,49, 52, 53, 56

geno2lfmm, 5, 6, 19, 19, 25, 31, 36, 37, 40, 41,
53,56, 57

import.lfmmProject (1fmm), 22

import.lfmmProject,character-method
(1fmm), 22

import.pcaProject (pca), 32

import.pcaProject,character-method
(pca), 32

import.snmfProject (snmf), 43

import.snmfProject,character-method
(snmf), 43

impute, 14, 16, 20, 22, 25, 27-29

impute, snmfProject-method (snmf), 43

LEA-package, 3

1fmm, 3, 5, 6, 12, 14, 16, 18-22, 22, 24-29,
31-33, 35, 37, 39,41, 42, 45,49, 51,
52, 54, 56-59

1fmm.data, 4, 6, 15, 17, 20, 24, 25, 26, 28, 30,
31,33, 36, 37,41,49, 51, 54, 57-59

1fmm.pvalues, 22, 24, 25

1fmm2, 12, 15, 17, 20-22, 25, 27, 27, 30, 33

1fmm2. test, 27, 28, 29

1fmm2geno, 5, 6, 19, 20, 25, 31, 36, 37, 40, 41,
53,56, 57

1fmmClass-method (z.scores), 58

load.1lfmmProject (1fmm), 22

load.lfmmProject, character-method
(1fmm), 22

load.pcaProject (pca), 32

61

load.pcaProject, character-method (pca),
32

load.snmfProject (snmf), 43

load.snmfProject, character-method
(snmf), 43

mlog1@p.values,lfmmProject-method
(1fmm), 22

of fset_example, 32

p.values,lfmmProject-method (1fmm), 22

pca, 3, 18, 24, 25, 28, 32, 35, 45, 50-52

ped, 4, 32, 35, 36, 37, 52

ped2geno, 5, 6, 19, 20, 31, 36, 36, 37, 40, 53,
54, 56

ped21fmm, 5, 6, 20, 25, 31, 36, 37,41, 53, 54,
57

plot,l1fmmProject-method (1fmm), 22

plot,pcaProject-method (pca), 32

plot,snmfProject-method (snmf), 43

projections (pca), 32

projections,pcaProject-method (pca), 32

Q,9,13,38,45
Q, snmfProject-method (snmf), 43

read.env, 12, 39, 56
read.geno, 5, 19, 20, 40, 56
read.lfmm, 25, 41, 57
read.zscore, 42
remove.lfmmProject (1fmm), 22
remove.lfmmProject, character-method
(1fmm), 22
remove.pcaProject (pca), 32
remove.pcaProject, character-method
(pca), 32
remove.snmfProject (snmf), 43
remove.snmfProject,character-method
(snmf), 43

sdev (pca), 32

sdev, pcaProject-method (pca), 32

show, 1fmmClass-method (1fmm), 22

show, 1fmmProject-method (1fmm), 22

show, pcaProject-method (pca), 32

show, snmfClass-method (snmf), 43

show, snmfProject-method (snmf), 43

snmf, 3,6-13, 18, 21, 25, 33, 35, 38, 40, 43,
43,48, 49, 52, 56

snmf .pvalues, 47

struct2geno, 49

summary, 1fmmProject-method (1fmm), 22

summary,pcaProject-method (pca), 32

62

summary, snmfProject-method (snmf), 43

tracy.widom, 50
tracy.widom,pcaProject-method (pca), 32
tutorial, 24, 28, 33,45, 52

vef, 4, 32, 36,52, 53, 54

vcf2geno, 5, 6, 19, 20, 31, 36, 37, 40, 52, 53,
54, 56

vcf21fmm, 52, 54

write.env, 12, 39, 55
write.geno, 19, 20, 40, 56
write.1lfmm, 25,41, 57

z.scores, 24,42, 58
z.scores,lfmmProject-method (1fmm), 22
zscore. format, 42, 59

INDEX

	LEA-package
	ancestrymap
	ancestrymap2geno
	ancestrymap2lfmm
	barchart
	create.dataset
	cross.entropy
	cross.entropy.estimation
	env
	G
	genetic.gap
	genetic.offset
	geno
	geno2lfmm
	impute
	lfmm
	lfmm.data
	lfmm.pvalues
	lfmm2
	lfmm2.test
	lfmm2geno
	offset_example
	pca
	ped
	ped2geno
	ped2lfmm
	Q
	read.env
	read.geno
	read.lfmm
	read.zscore
	snmf
	snmf.pvalues
	struct2geno
	tracy.widom
	tutorial
	vcf
	vcf2geno
	vcf2lfmm
	write.env
	write.geno
	write.lfmm
	z.scores
	zscore.format
	Index

