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bivar.awk Summary statistics from two variables

Description

Read two columns of data values (say X and Y) and computes summary statistics including N,
Mean, SD, Min and Max for X and Y, as well as the correlation between X and Y and the regression
of Y on X.

Usage

bivar.awk(x)

Arguments

X A dataframe with two columns (variables).

Value

Returns an summary statistics for two variables.

Examples

# creating a random dataframe with two columns (variables)
tab <- data.frame(a = sample(1:1000, 100, replace=TRUE),
b = sample(1:1000, 100, replace=TRUE))

# running bivar.awk function
bivar.awk(tab)

CeTF-class The CeTF Class

Description

The CeTF class is data storage class that stores all the results from runAnalysis function.

Value

Returns an CeTF object.
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Slots

Data Includes the raw, tpm and norm (see normgxp) data.

DE Includes the uniquely differentially expressed genes/TFs and the statistics for all genes (see
expDiff).

Input Includes input matrices for RIF (see RIF) and PCIT (see PCIT) for both conditions in
runAnalysis function analysis.

Output Includes the matrix output from RIF analysis (see RIF) and a matrix with PCIT output, and
other two matrix with raw and significant adjacency (see PCIT) for both conditions inside of
runAnalysis function analysis.

Network Network with Gene-Gene and Gene-TF interactions for both conditions (see PCIT), main
TFs resulted from the complete analysis, all the TFs identified in the input data and matrix
annotating all genes and TFs.

CeTFdemo CeTFdemo class object example

Description

A CeTFdemo class object to run the examples in functions. This object was generated after running
the runAnalysis function. This object is the same generated in vignette for complete analysis. Note
that this example data is reduced and don’t have the Data slot.

Usage

data(CeTFdemo)

Format

An CeTF class object

Examples

data(CeTFdemo)

CircosTargets Circos plot for the Transcription Factors/genes targets.

Description

Generate an plot for Transcription Targets (TFs) or any gene targets. This plot consists of sorting
all the chromosomes of any specie based in GTF annotation file and showing how the selected
TF(s)/gene(s) targets are distributed. If a target is connected to the same chromosome as the selected
one so the connection is defined as cis, otherwise it is a trans connection.

Usage

CircosTargets(object, file, nomenclature, selection, cond)



clustCoef 5

Arguments
object CeTF class object resulted from runAnalysis function.
file GTF file or path.
nomenclature  Gene nomenclature: SYMBOL or ENSEMBL.
selection Specify a single or up to 4 TF/gene to be visualized for.
cond The options are conditionl or condition2 based on the conditions previously

defined in runAnalysis function.

Details

The black links are between different chromosomes while the red links are between the same chro-
mosome.

Value

Returns an plot with a specific(s) TF/gene and its targets in order to visualize the chromosome
location of each one.

Examples

## Not run:

CircosTargets(object = out,

file = '/path/to/gtf/specie.gtf’,
nomenclature = 'SYMBOL',
selection = 'TCF4',

cond = 'condition1')

## End(Not run)

clustCoef Calculate the clustering coefficient

Description

Calculate the clustering coefficient for an adjacency matrix.

Usage
clustCoef(mat)
Arguments
mat An adjacency matrix. Calculating the clustering coefficient only makes sense if
some connections are zero i.e. no connection.
Value

Returns the clustering coefficient(s) for the adjacency matrix.
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References

Nathan S. Watson-Haigh, Haja N. Kadarmideen, and Antonio Reverter (2010). PCIT: an R pack-
age for weighted gene co-expression networks based on partial correlation and information the-
ory approaches. Bioinformatics. 26(3) 411-413. https://academic.oup.com/bioinformatics/
article/26/3/411/215002

Examples

# loading a simulated counts data
data('simNorm")

# running PCIT analysis
results <- PCIT(simNorm)

# getting the clustering coefficient
clustCoef(results$adj_sig)

clustCoefPercentage Calculate the clustering coefficient as a percentage

Description

Given an adjacency matrix, calculate the clustering coefficient as a percentage of non-zero adjacen-
cies.

Usage

clustCoefPercentage(mat)

Arguments
mat An adjacency matrix. Calculating the clustering coefficient percentage only
makes sense if some connections are zero i.e. no connection.
Value

Returns the clustering coefficient as a porcentage.

References

Nathan S. Watson-Haigh, Haja N. Kadarmideen, and Antonio Reverter (2010). PCIT: an R pack-
age for weighted gene co-expression networks based on partial correlation and information the-
ory approaches. Bioinformatics. 26(3) 411-413. https://academic.oup.com/bioinformatics/
article/26/3/411/215002


https://academic.oup.com/bioinformatics/article/26/3/411/215002
https://academic.oup.com/bioinformatics/article/26/3/411/215002
https://academic.oup.com/bioinformatics/article/26/3/411/215002
https://academic.oup.com/bioinformatics/article/26/3/411/215002
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Examples

# loading a simulated counts data
data('simNorm')

# running PCIT analysis
results <- PCIT(simNorm)

# getting the clustering coefficient as percentage
clustCoefPercentage(results$adj_sig)

densityPlot Density distribution of correlation coefficients and significant PCIT
values

Description
Generate the density plot for adjacency matrices. This function uses the raw adjacency matrix and
significant adjacency matrix resulted from PCIT function.

Usage

densityPlot(mat1, mat2, threshold = 0.5)

Arguments

mat1 Raw adjacency matrix.

mat2 Significant adjacency matrix.

threshold Threshold of correlation module to plot (default: 0.5).
Value

Returns an density plot of raw correlation with significant PCIT values.

Examples

# loading a simulated normalized data
data('simNorm')

# getting the PCIT results
results <- PCIT(simNorm[1:20, 1)

# using the PCIT results to get density distribution of correlation coefficients
densityPlot(matl = results$adj_raw,

mat2 = results$adj_sig,

threshold = 0.5)
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diffusion Network diffusion analysis

Description
Expand node selection using network propagation algorithms generating the expanded network for
a core of genes and the network plot of this subnetwork.

Usage

diffusion(object, cond, genes, cyPath, name = "top_diffusion”, label = TRUE)

Arguments
object CeTF object resulted from runAnalysis function.
cond Which conditions to be used to perform the diffusion analysis. The options are:
network1 (1th condition) and network?2 (2th condition).
genes A single gene or a vector of characters indicating which genes will be used to
perform diffusion analysis.
cyPath System path of Cytoscape software (see details for further informations).
name Network output name (default: top_diffusion)
label If 1abel is TRUE, shows the names of nodes (default: TRUE).
Details

To perform the diffusion analysis is necessary to install the latest Cytoscape software version
(https://cytoscape.org/).

The cyPath argument varies depending on the operating system used, for example:
1. For Windows users: C:/Program Files/Cytoscape_v3.8.0/Cytoscape.exe

2. For Linux users: /home/user/Cytoscape_v3.8.0/Cytoscape

3. For macOS users: /Applications/Cytoscape_v3.8.0/cytoscape.sh

Value

Returns a list with the plot of the network and a table with the diffusion network.

Examples

## Not run:
data(CeTFdemo)

result <- diffusion(object = CeTFdemo,
cond = 'networkl',
genes = c('ENSGOQ000@185591', 'ENSGOQ000179094"),
cyPath = 'C:/Program Files/Cytoscape_v3.7.2/Cytoscape.exe’,
name = 'top_diffusion',
label = TRUE)

## End(Not run)


https://cytoscape.org/
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enrichdemo Enrichment data

Description

Enrichemnt result from CeTFdemo using the genes of condition 1 network.

Usage

data(enrichdemo)

Format

An list

Examples

data(enrichdemo)

enrichPlot Plots to visualize the enrichment analysis results

Description

Generate three types of plots to visualize the enrichment analysis results from getEnrich function.
The plots are an circular barplot, barplot and dotplot.

Usage

enrichPlot(res, showCategory = 10, type = "circle")

Arguments

res A dataframe with getEnrich results.
showCategory Number of enriched terms to display (default: 10).

type Type of plot: circle, bar or dot (default: circle).

Value

Returns a circle, bar or dot plot of enrichment analysis results.
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Examples
# loading enrichdemo
data(enrichdemo)
# circle barplot
enrichPlot(res = enrichdemo$results,
showCategory = 10,
type = 'circle')
# barplot
enrichPlot(res = enrichdemo$results,
showCategory = 10,
type = 'bar')
# dotplot
enrichPlot(res = enrichdemo$results,
showCategory = 10,
type = 'dot')
expDiff Differential expression analysis
Description
This function returns the differentially expressed genes when comparing two conditions.
Usage
expDiff(
exp,
anno = NULL,
conditions = NULL,
1fc = 1.5,
padj = 0.05,
diffMethod = "Reverter”
)
Arguments
exp Count data where the rows are genes and coluns the samples.
anno A single column dataframe. The column name must be cond’, and the row-
names must be the names of samples.
conditions A character vector containing the name of the two conditions. The first name
will be selected as reference.
1fc log2 fold change module threshold to define a gene as differentially expressed
(default: 1.5).
padj Significance value to define a gene as differentially expressed (default: 0.05).
diffMethod Choose between Reverter or DESeq2 method (default: *Reverter’). The DESeq2

method is only for counts data (see details).



expDiff 11

Details
The Reverter option to diffMethod parameter works as follows:
1. Calculation of mean between samples of each condition for all genes;

Subtraction between mean of control condition relative to other condition;

Calculation of variance of subtraction previously obtained;

S

The last step calculates the differential expression using the following formula, where X is the
result of substraction (item 2) and var is the variance calculated in item 3:

— (sum(x)/length(z))

diff =1 T

The DESeq2 option to diffMethod parameter is recommended only for count data. This method
apply the differential expression analysis based on the negative binomial distribution (see DESeq).

Value

Returns an list with all calculations of differentially expressed genes and the subsetted differentially
expressed genes by Ifc and/or padj.

References

REVERTER, Antonio et al. Simultaneous identification of differential gene expression and connec-
tivity in inflammation, adipogenesis and cancer. Bioinformatics, v. 22, n. 19, p. 2396-2404, 2006.
https://academic.oup.com/bioinformatics/article/22/19/2396/240742

Examples

# loading a simulated counts data
data('simCounts"')

# creating the dataframe with annotation for each sample
anno <- data.frame(cond = c(rep('cond1', 10), rep('cond2', 10)))

# renaming colums of simulated counts data
colnames(simCounts) <- paste(colnames(simCounts), anno$cond, sep = '_')

# renaming anno rows
rownames (anno) <- colnames(simCounts)

# performing differential expression analysis using Reverter method
out <- expDiff(exp = simCounts,
anno = anno,

conditions = c('cond1', 'cond2'),
1fc = 2,
padj = 0.05,

diffMethod = 'Reverter')


https://academic.oup.com/bioinformatics/article/22/19/2396/240742

12 getDE

getData Data accessor for a CeTF class object.

Description

The Data accessor access the raw, tpm and normalized data from runAnalysis function analysis.
Usage
getData(x, type = "raw")

## S4 method for signature 'CeTF'
getData(x, type = "raw”)

Arguments

X CeTF-class object

type Type of data: raw, tpm or norm (default: raw)
Value

Returns the raw, tpm or normalized data.

See Also

runAnalysis.

Examples

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

getData(CeTFdemo)

getDE Differential Expression accessor for a CeTF class object.

Description

The DE accessor access the differential expression resulted from runAnalysis function analysis.
Usage
getDE(x, type = "unique")

## S4 method for signature 'CeTF'
getDE(x, type = "unique")
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Arguments

X CeTF-class object

type Type of DE matrix: unique and all (default: unique)
Value

Returns the DE genes with the statistics.

See Also

runAnalysis.

Examples

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

getDE (CeTFdemo)

getEnrich Enrichment analysis for genes of network

Description

Enrichment analysis of a set of genes derived from the network of any condition using cluster-
Profiler. Given a vector of genes, this function will return the enrichment related to the selected
database.

Usage

getEnrich(
genes,
organismDB,
keyType,
ont,
fdrMethod = "BH",
fdrThr = 0.05,
minGSSize = 5,
maxGSSize = 500

Arguments

genes Should be an R vector object containing the interesting gene list.

organismDB clusterProfiler supports a lot of different organisms. Users can check the follow-
ing link (https://www.bioconductor.org/packages/release/data/annotation/) and
search for annotations starting with *org.*.

keyType The ID type of the input genes (i.e. SYMBOL, ENTREZID, ENSEMBL, etc.).
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ont The functional categories for the enrichment analysis. The available ontologies
are Biological Process (BP), Molecular Function (MF) and Cellular Component
(CO).
fdrMethod Has five FDR methods: holm, hochberg, hommel, bonferroni, BH, BY, fdr and
none(default: BH).
fdrThr The significant threshold for selected pathways (default: 0.05).
minGSSize Will be exclude the categories with the number of annotated genes less than
minGSSize for enrichment analysis (default: 5).
maxGSSize Will be exclude the categories with the number of annotated genes larger than
maxGSSize for enrichment analysis (default: 500).
Value

Returns an list with the results of the enrichment analysis of the genes and a network with the
database ID (column 1) and the corresponding genes (column 2).

Examples

## Not run:

# load the CeTF class object resulted from runAnalysis function
library(org.Hs.eg.db)

data(CeTFdemo)

# getting the genes in network of condition 1
genes <- unique(c(as.character(NetworkData(CeTFdemo, 'networkl')[, 'genel']),
as.character(NetworkData(CeTFdemo, 'networkl')[, 'gene2'])))

# performing getEnrich analysis

condl <- getEnrich(genes = genes, organismDB = org.Hs.eg.db, keyType = 'ENSEMBL',
ont = 'BP', fdrMethod = "BH", fdrThr = 0.05, minGSSize = 5,
maxGSSize = 500)

## End(Not run)

getGroupGO Functional Profile of a gene set at specific GO level

Description

Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will
return the GO profile at a specific level.

Usage

getGroupGO(genes, ont = "BP", keyType, annoPkg, level = 3)
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Arguments
genes Character vector with the genes to perform the functional profile.
ont One of "MF’, ’BP’, and *CC’ subontologies (default: "BP’).
keyType Key type of inputted genes (i.e. ’ENSEMBL’, "'SYMBOL’, ’ENTREZID”).
annoPkg Package of annotation of specific organism (i.e. org.Hs.eg.db, org.Bt.eg.db,
org.Rn.eg.db, etc).
level Specific GO Level (default: 3).
Value

Returns an list with the results of the functional profile of the genes and a network with the ontolo-
gies (column 1) and the corresponding genes (column 2).

Examples

## Not run:
# load the annotation package
library(org.Hs.eg.db)

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

# getting the genes in network of condition 1
genes <- unique(c(as.character(NetworkData(CeTFdemo, 'networkl')[, 'genel']),
as.character(NetworkData(CeTFdemo, 'network1')[, 'gene2'])))

# performing getGroupGO analysis

cond1l <- getGroupGO(genes = genes,
ont = 'BP',
keyType = '"ENSEMBL',
annoPkg = org.Hs.eg.db,
level = 3)

## End(Not run)

gtfToBed Converts GTF to BED

Description

Converts a GTF to BED format.

Usage
gtfToBed(gtf)

Arguments

gtf A GTF as data.frame.
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Value

Returns a data.frame in BED format.

heatPlot Heatmap-like functional classification

Description
Heatmap-like functional classification to visualize the enrichment analysis results from getEnrich
function. The plot contains the heatmap with the associated pathways genes, the significance of the
enrichment and a barplot with the enrichment ratio.

Usage

heatPlot(res, diff, showCategory = 10, font_size = 6)

Arguments
res A dataframe with getEnrich results.
diff A dataframe with all differentialy expressed genes obtained from runAnalysis
function. For better understanding, simply use the getDE accessor with "all’
option.

showCategory Number of enriched terms to display (default: 10).

font_size Size of gene row names (default: 6).

Value

Returns a Heatmap-like functional classification

Examples

# loading enrichdemo and CeTFdemo object
data(enrichdemo)
data(CeTFdemo)

heatPlot(res = enrichdemo$results,
diff = getDE(CeTFdemo, 'all'),
showCategory = 10)
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histPlot Histogram of connectivity distribution

Description

Generate the histogram for adjacency matrix to show the clustering coefficient distribution.

Usage

histPlot(mat)

Arguments

mat Adjacency matrix resulting from PCIT analysis in which has some zero values.

Value

Returns the histogram of connectivity distribution.

Examples

# loading a simulated normalized data
data(simNorm)

# getting the PCIT results for first 30 genes
results <- PCIT(simNorm[1:30, 1)

# plotting the histogram for PCIT significance results
histPlot(results$adj_sig)

InputData Input data accessor for a CeTF class object.

Description
The input accessor access the input matrices used for RIF and PCIT analysis to both conditions
resulted from runAnalysis function analysis.

Usage

InputData(x, analysis = "rif")

## S4 method for signature 'CeTF'
InputData(x, analysis = "rif")
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Arguments
X CeTF-class object
analysis Type of analysis: rif, pcitl, pcit2. The numbers 1 and 2 correspond to the re-
spective condition (default: rif).
Value

Returns the Inputs used for RIF and PCIT.

See Also

runAnalysis.

Examples

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

InputData(CeTFdemo)

netConditionsPlot Network plot of gene-gene/gene-TFs interactions

Description

Generate the network plot of gene-gene/gene-TFs interactions for both conditions.

Usage

netConditionsPlot(x)
Arguments

X CeTF object resulted from runAnalysis function.
Value

Returns the network plot for both conditions.

Examples

# loading a simulated counts data
data('simCounts')

# performing runAnalysis function
out <- runAnalysis(mat = simCounts,

conditions=c('condl', 'cond2'),
1fc = 3,
padj = 0.05,

TFs = paste@('TF_", 1:1000),
nSamples1 = 10,
nSamples2= 10,
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tolType = 'mean’,
diffMethod = 'Reverter',
data.type = 'counts')

# plotting networks conditions
netConditionsPlot(out)

netGOTFPlot

Plot a network for Ontologies, genes and TFs

Description

Generate the plot of groupGO network result of getGroupGO function, and the integrated network
of genes, GOs and TFs.

Usage

netGOTFP1
netCond
results
netGO,
anno,

ot(

’

GO,

groupBy = "pathways”,

TFs = N

genes = NULL,

ULL,

keyTFs = NULL,

size =
type =

Arguments

netCond
resultsGo

netGO
anno

groupBy

TFs
genes
keyTFs

size

type

0.5,
NULL

Network of a specific condition. Can be found in result of runAnalysis (see
NetworkData and NetworkData).

Dataframe with the results of getGroupGO (first element of list). This result can
be filtered by applying filters for pathways selection.

Dataframe with the results of getGroupGO (second element of list).

Annotation of gene or TFs. Can be found in result of runAnalysis function
(see NetworkData).

Which variables do you want to group in GO type? The options are: *pathways’,
"TFs’ and "genes’ (default: ’pathways’).

A character with selected TFs.

A character with selected genes.

TFs identified as importants by runAnalysis (see NetworkData). This argu-
ment is used only if the type argument equals Integrated.

Size of nodes labels (default: 0.5).

Type of plot selected (GO or Integrated). If GO will plot the associated GO

grouped by some variable, and if Integrated will plot a integrated network with
genes, GO and TFs.
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Value

Returns a list with the plot of the network for GO or integrated output under a condition and the
table used to plot the network.

Examples

## Not run:
# load the annotation package
library(org.Hs.eg.db)

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

# getting the genes in network of condition 1
genes <- unique(c(as.character(NetworkData(CeTFdemo, 'networkl')[, 'genel']),
as.character(NetworkData(CeTFdemo, 'network1')[, 'gene2'])))

# performing getGroupGO analysis

cond1l <- getGroupGO(genes = genes,
ont = 'BP',
keyType = '"ENSEMBL',
annoPkg = org.Hs.eg.db,
level = 3)

# selecting only first 12 pathways
t1 <- head(condl$results, 12)

# subsetting the network to have only the first 12 pathways
t2 <- subset(cond1$netGO, cond1$netGO%$genel %in% as.character(ti[, 'ID']))

# generate the GO plot grouping by pathways

pt <- netGOTFPlot(netCond = NetworkData(CeTFdemo, 'networkl'),
resultsGO = t1,
netGO = t2,
anno = NetworkData(CeTFdemo, 'annotation'),
groupBy = 'pathways',
keyTFs = NetworkData(CeTFdemo, 'keytfs'),
type = 'GO")

pt$plot

head(pt$tab$~GO:0006807" )

# generate the Integrated plot

pt <- netGOTFPlot(netCond = NetworkData(CeTFdemo, 'networkl'),
resultsGO = t1,
netGO = t2,
anno = NetworkData(CeTFdemo, 'annotation'),
groupBy = 'pathways',
keyTFs = NetworkData(CeTFdemo, 'keytfs'),
type = 'Integrated')

pt$plot

head(pt$tab)

## End(Not run)
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NetworkData Networks data accessor for a CeTF class object.

Description
The networks accessor access the networks, key TFs and annotations for each gene and TF resulted
from PCIT analysis and runAnalysis function analysis.

Usage

NetworkData(x, type = "networkl")

## S4 method for signature 'CeTF'
NetworkData(x, type = "networkl")

Arguments
X CeTF-class object
type Type of data: network1, network?2, keytfs, tfs or annotation.The numbers 1 and
2 correspond to the respective condition (default: networkl).
Value

Returns the Outputs used for RIF and PCIT.

See Also

runAnalysis.

Examples

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

NetworkData(CeTFdemo)

normExp Normalized expression transformation

Description

Normalize the expression data of any type of experiment by columns, applying log(x + 1)/log(2).

Usage

normexp (tab)

Arguments

tab A matrix or dataframe of expression data (i.e. TPM, counts, FPKM).
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Value

Returns a table with normalized values.

Examples

# loading a simulated counts data
data('simCounts"')

# getting the TPM matrix from counts
tpm <- apply(simCounts, 2, function(x) {
(1e+06 * x)/sum(x)
b

# normalizing TPM data
norm <- normExp(tpm)

OutputData Output data accessor for a CeTF class object.

Description
The output accessor access the output matrices and lists used for RIF and PCIT analysis to both
conditions resulted from runAnalysis function analysis.

Usage

OutputData(x, analysis = "rif", type = "tab")

## S4 method for signature 'CeTF'
OutputData(x, analysis = "rif", type = "tab")

Arguments
X CeTF-class object
analysis Type of analysis: rif, pcitl, pcit2. The numbers 1 and 2 correspond to the re-
spective condition (default: rif).
type Type of matrix for PCIT output: tab, adj_raw or adj_sig (default: tab).
Value

Returns the Outputs used for RIF and PCIT.

See Also

runAnalysis.
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Examples

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

OutputData(CeTFdemo)

PCIT Partial Correlation and Information Theory (PCIT) analysis

Description

The PCIT algorithm is used for reconstruction of gene co-expression networks (GCN) that combines
the concept partial correlation coefficient with information theory to identify significant gene to
gene associations defining edges in the reconstruction of GCN.

Usage

PCIT(input, tolType = "mean")

Arguments

input A correlation matrix.

tolType Type of tolerance (default: mean’) given the 3 pairwise correlations (see tolerance).
Value

Returns an list with the significant correlations, raw adjacency matrix and significant adjacency
matrix.

References

REVERTER, Antonio; CHAN, Eva KF. Combining partial correlation and an information theory
approach to the reversed engineering of gene co-expression networks. Bioinformatics, v. 24, n.
21, p. 2491-2497, 2008. https://academic.oup.com/bioinformatics/article/24/21/2491/
192682

Examples

# loading a simulated normalized data
data('simNorm")

# getting the PCIT results for first 30 genes
results <- PCIT(simNorm[1:30, 1)

# printing PCIT output first 15 rows
head(results$tab, 15)


https://academic.oup.com/bioinformatics/article/24/21/2491/192682
https://academic.oup.com/bioinformatics/article/24/21/2491/192682
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pcitC A helper to calculate PCIT implemented in C/C++

Description

Calculates the correlation matrix using PCIT algorithm

Usage

pcitC(cor, tolType)

Arguments

cor A correlation matrix.

tolType Type of tolerance (default: *'mean’) given the 3 pairwise correlations (see tolerance.
Value

Correlation matrix resulted from PCIT algorithm.

See Also

(see PCIT)

Examples

library(Matrix)

# loading a simulated normalized data
data('simNorm")

# calculating the correlation matrix
suppressWarnings(gene_corr <- cor(t(simNorm[1:30, 1)))
gene_corr[is.na(gene_corr)] <- @

# getting the PCIT correlation results for first 30 genes
results <- pcitC(cor = Matrix(gene_corr, sparse = TRUE),
tolType = 1)

refGenes List of reference genes for 5 different organisms to perform enrichment

Description

List with protein codings for 5 organisms that must be used as reference genes for functional en-
richment. This list was generated using Ensembl GTF. The organisms are: Human (Homo sapiens),
Mouse (Mus musculus), Zebrafish (Danio rerio), Cow (Bos taurus) and Rat (Rattus norvegicus).
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Usage

data(refGenes)

Format

An list.

References

https://www.ensembl.org/info/data/ftp/index.html

Examples

data(refGenes)

RIF Regulatory Impact Factors (RIF) analysis

Description

The RIF algorithm identify critical transcript factors (TF) from gene expression data.

Usage

RIF(input, nta = NULL, ntf = NULL, nSamples1 = NULL, nSamples2 = NULL)

Arguments
input A matrix of expression with differentially expressed genes and transcript factors
in rows, and the samples in columns.
nta Number of Differentially Expressed (DE) genes.
ntf Number of Transcription Factors (TFs).
nSamples1 Number of samples of condition 1.
nSamples?2 Number of samples of condition 2.
Details

The input matrix must have the rows and columns ordered by the following request:

1. rows: DE genes followed by TFs;
2. columns: samples of conditionl followed by samples of condition2.
Value

Returns an dataframe with the regulatory impact factors metric for each transcript factor.

References

REVERTER, Antonio et al. Regulatory impact factors: unraveling the transcriptional regulation
of complex traits from expression data. Bioinformatics, v. 26, n. 7, p. 896-904, 2010. https:
//academic.oup.com/bioinformatics/article/26/7/896/212064


https://www.ensembl.org/info/data/ftp/index.html
https://academic.oup.com/bioinformatics/article/26/7/896/212064
https://academic.oup.com/bioinformatics/article/26/7/896/212064
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Examples

# load RIF input example
data('RIF_input')

# performing RIF analysis
RIF_out <- RIF(input = RIF_input,

nta = 104,
ntf = 50,
nSamplesl = 10,
nSamples2 = 10)
RIFPlot Relationship plots between RIF1, RIF2 and DE genes

Description
Generate plots for the relationship between the RIF output analysis (RIF1 and RIF2) and for differ-
entially expressed genes (DE).

Usage

RIFPlot(object, color = "darkblue”, type = "RIF")

Arguments

object CeTF object resulted from runAnalysis function.

color Color of points (default: darkblue)

type Type of plot. The available options are: RIF or DE (default: RIF)
Details

This function can only be used after using the runAnalysis function as it uses the CeTF class
object as input.

Value

Returns a relationship plot between RIF1 and RIF2 or a plot with the relationship between RIF1 or
RIF2 with DE genes.

Examples

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

# performing RIFPlot for RIF

RIFPlot(object = CeTFdemo,
color = 'darkblue',
type = 'RIF')

# performing RIFPlot for DE
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RIFPlot(object = CeTFdemo,
color 'darkblue’,
type = 'DE')

RIF_input Regulatory Impact Factors (RIF) input

Description
Data used to the examples of RIF analysis. This data was generated based on simulated counts and
normalized data.

Usage
data(RIF_input)

Format

An dataframe.

Examples

data(RIF_input)

runAnalysis Whole analysis of Regulatory Impact Factors (RIF) and Partial Cor-
relation and Information Theory analysis (PCIT)

Description

This function uses RIF and PCIT algorithms to run the whole pipeline analysis. The pipeline is
composed by 4 steps:

1. Step 1: Data adjustment;

2. Step 2: Differential expression analysis;

3. Step 3: Regulatory Impact Factors analysis;

4. Step 4: Partial Correlation and Information Theory analysis.

Usage

runAnalysis(
mat,
conditions = NULL,
1fc = 2.57,
padj = 0.05,
TFs = NULL,
nSamples1 NULL,
nSamples2 = NULL,
tolType = "mean”,
diffMethod = "Reverter”,
data.type = NULL
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Arguments
mat Count data where the rows are genes and coluns the samples (conditions).
conditions A vector of characters identifying the names of conditions (i.e. ¢('normal’, *tu-
mor’)).
1fc logFoldChange module threshold to define a gene as differentially expressed
(default: 2.57).
padj Significance value to define a gene as differentially expressed (default: 0.05).
TFs A vector of character with all transcripts factors of specific organism.
nSamples1 Number of samples that correspond to first condition.
nSamples?2 Number of samples that correspond to second condition.
tolType Tolerance calculation type (see tolerance) (default: *mean’).
diffMethod Method to calculate Differentially Expressed (DE) genes (see expDiff) (default:
’Reverter’)
data.type Type of input data. If is expression (FPKM, TPM, etc) or counts.
Value

Returns an CeTF class object with output variables of each step of analysis.

See Also

CeTF-class

Examples

data('simCounts"')
out <- runAnalysis(mat = simCounts,

conditions=c('condl', 'cond2'),
1fc = 3,
padj = 0.05,

TFs = paste@('TF_"', 1:1000),
nSamples1 = 10,

nSamples2= 10,

tolType = 'mean’,

diffMethod = 'Reverter’,
data.type = 'counts')

simCounts Simulated counts data

Description
Simulated counts data created using PROPER package. This data contains 21,000 genes, 1,000
transcript factors and 20 samples (divided in two conditions).

Usage

data(simCounts)
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Format

An dataframe.

Examples

data(simCounts)

simNorm Simulated normalized data

Description
Simulated normalized data created using PROPER package. This data contains 69 genes, and 10
samples (correspondent to only one condition).

Usage

data(simNorm)

Format

An dataframe.

Examples

data(simNorm)

SmearPlot Smear plot for Differentially Expressed genes and TFs

Description

Generate an plot for Differentially Expressed (DE) genes and for specific TF that shows the relation-
ship between log(baseMean) and Difference of Expression or log2FoldChange. This plot enables
to visualize the distribution of DE genes and TF in both conditions.

Usage

SmearPlot(
object,
diffMethod,
1fc = 1.5,
conditions,

TF = NULL,
padjust = 0.05,
label = FALSE,
type = NULL
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Arguments
object CeTF class object resulted from runAnalysis function.
diffMethod Method used to calculate Differentially Expressed (DE) genes (see expDiff).
1fc logFoldChange module threshold to define a gene as differentially expressed
(default: 1.5).
conditions A vector of characters identifying the names of conditions (i.e. c¢('normal’, ’tu-
moral’)).
TF Specity a single TF to be visualized for (used only if type argument equals TF).
padjust Significance value to define a gene as differentially expressed in DESeq?2 diffMethod
option (default: 0.05).
label If label is TRUE, shows the names of single TF and its respectives (default:
FALSE).
type Type of plot (DE or TF). If DE, will plot the smear plot for all differentally
expressed genes and TFs for both conditions, and if TF, will plot the smear plot
for a specific TF and their targets. targets for both conditions (default: FALSE).
Value

Returns an plot of log2(baseMean) by log2FoldChange or difference of expression for genes and
TFs differentially expressed or for a single TF and its targets for both conditions.

Examples

# load the CeTF class object resulted from runAnalysis function
data(CeTFdemo)

#performing SmearPlot for DE genes and TFs
SmearPlot(object = CeTFdemo,
diffMethod = 'Reverter',

1fc = 1.5,
conditions = c('untrt', 'trt'),
type = 'DE')

#performing SmearPlot for DE genes and TFs
SmearPlot(object = CeTFdemo,

diffMethod = 'Reverter',

1fc = 1.5,

conditions = c('untrt', 'trt'),

TF = '"ENSG00000205189",

label = FALSE,

type = 'TF'")

TFs Transcripition Factors data

Description

Transcripition Factors data from Kai Wang and Hiroki Nishida, 2015 for Homo sapiens.
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Usage
data(TFs)

Format

An character vector with TFs for Homo sapiens.

References

See https://doi.org/10.1186/s12859-015-0552-x
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Examples
data(TFs)
tolerance Tolerance level between 3 pairwise correlations implemented in
C/C++
Description

Calculates the local tolerance for every trio of genes.

Usage

tolerance(a, b, c, tolType)

Arguments

a Correlation value between the genes A and B.

b Correlation value between the genes B and C.

c Correlation value between the genes A and C.

tolType Calculation type for tolerance (1 for mean, 2 for min and 3 for max).
Value

Returns the value of tolerance.

See Also

See vignette for more details about the pairwise correlations.

Examples
tolerance(0.5, -0.65, 0.23, tolType = 1)
tolerance(0.5, -0.65, 0.23, tolType = 2)
tolerance(0.5, -0.65, 0.23, tolType = 3)


https://doi.org/10.1186/s12859-015-0552-x
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