Package ‘BioNAR’

October 12, 2025
Title Biological Network Analysis in R
Version 1.11.0

Description the R package BioNAR, developed to step by step analysis of PPI
network. The aim is to quantify and rank each protein’s simultaneous
impact into multiple complexes based on network topology and
clustering. Package also enables estimating of co-occurrence of
diseases across the network and specific clusters pointing towards
shared/common mechanisms.

License Artistic-2.0

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Depends R (>=3.5.0), igraph (>=2.0.1.1), poweRlaw, latex2exp,
RSpectra, Rdpack

Imports stringr, viridis, fgsea, grid, methods, AnnotationDbi, dplyr,
GO.db, org.Hs.eg.db (>=3.19.1), rSpectral, WGCNA, ggplot2,
ggrepel, minpack.lm, cowplot, data.table, scales, stats, Matrix

RdMacros Rdpack

Suggests knitr, BiocStyle, magick, rmarkdown, igraphdata, testthat (>=
3.0.0), vdiffr, devtools, pander, plotly, randomcoloR

Config/testthat/edition 3
VignetteBuilder knitr

BugReports https://github.com/1ptolik/BioNAR/issues/
biocViews Software, GraphAndNetwork, Network

LazyData true

git_url https://git.bioconductor.org/packages/BioNAR
git_branch devel

git_last_commit ac4d792

git_last commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-10-12

https://github.com/lptolik/BioNAR/issues/

2 Contents

Author Colin Mclean [aut],
Anatoly Sorokin [aut, cre],
Oksana Sorokina [aut],
J. Douglas Armstrong [aut, fnd],
T. Ian Simpson [ctb, fnd]

Maintainer Anatoly Sorokin <lptolik@gmail.com>

Contents
addEdgeAtts L e 4
annotateGeneNameso e e e e 4
annotateGoBP oL 5
annotateGoCC L L e 6
annotateGOMF oL 7
annotateGOONt L e 7
annotateInterpro L. L e e e 8
annotatePresynaptico e 9
annotateSCHanno L 10
annotateTopOntoOVG e 11
annotate VeIteXo e e e e e e e 12
applpMatrixToGraph e 13
BioNAR e 13
buildConsensusMatrix 14
buildNetwork e 15
calcAlIClustering oL e e e 15
calcBridgeness 16
calcCentrality e e 17
calcCentralityExternalDistances 18
calcCentralityInternalDistances L e 19
calcCIustering o v i e e e e e 20
calcDiseasePairs L 21
calcEntropy e 22
calcMembership L e 23
calcReclusterMatrix e 24
caleSparsness e e 25
clusteringSummary L. e e e 25
clusterORA e 26
compMembership e 28
degreeBinnedGDAS L 29
diSeasome 30
eSCapeANNOtation L e e 30
evalCentralitySignificance 31
findLCC e 32
fitDegree 32
fitSigmoid e 33
flatfile.go.BPcsv 34
flatfile.go.CC.cSV e 35
flatfile.go.ME.csv e 35
flatfile_human_gene2HDO.csv 35
getAnnotationlist L L L L e e 36

getAnnotationVertexList oL o 36

Contents

Index

3

getBridgeness 37
getCentralityMatriX e e 38
getClustering L 39
getClusterSubgraphByID L 40
getCommunityGraph L 41
getDISEases e e e e e 41
getDType e e 42
getDYNAMO e e e 42
getEntropyo 43
getEntropyRate 44
getGNP . . . e 45
getGraphCentralityECDF 46
getIDs . . . e e 47
getPA L L e 47
getRandomGraphCentrality 48
getRObUSINESS e e e e 49
gOfS L e e e 50
law-class 50
layoutByCluster e 51
layoutByRecluster. 51
makeConsensusMatrix L. 52
makeMembershipo 53
markBowTie e 54
metIMatrix e 55
normModularity L. e e e 55
PEIMULE o v it e e e e e e e e e e e 57
plotBridgeness 57
plotEntropy 59
plotRatio 60
plotSigmoid 61
PPI_Presynaptic.CSV. o o e e e e 61
PPI_Presynaptic.gml 61
prepareGDA L e e e e 62
PresynAn.csv 62
recluster 63
removeVertexTerm 63
runPermDisease 64
sampleDegBinnedGDA Lo 65
sampleGraphClust. e 66
SCH_flatfile.csv o o o e 67
SUMMATYSEALS o o e e e e e e e e e e e e e e e e e e 67
unescapeAnnotation e e e e e e e e e e 68
ZETONA . . e 68
70

4 annotateGeneNames

addEdgeAtts Copy edge attributes from one graph to another

Description

Copy edge attributes from one graph to another

Usage

addEdgeAtts (GG, gg)

Arguments
GG igraph object, source of attributes
gg igraph object, attributes recipient
Value

annotated version of gg igraph object

Examples

file <- system.file("extdata"”, "PPI_Presynaptic.gml”, package = "BioNAR")
GG <- igraph::read_graph(file, format="gml")

gg<-findLCC(GG)

gg <- addEdgeAtts(GG, gg)

edge_attr_names(gg)

annotateGeneNames Annotate Human Gene Names

Description

For the protein-protein interaction (PPI) or disease gene interaction (DGN) graphs that have En-
trezID as a vertex name this function extract standard name from org.Hs.eg.db and annotate ver-
tices.

Usage

annotateGeneNames(gg, orgDB = org.Hs.eg.db, keytype = "ENTREZID")

Arguments
gg igraph object to annotate
orgDB ordDB object, by default human is assumed from org.Hs.eg.db

keytype type of IDs stored in the name vertex attribute, by default ENTREZID is assumed.

annotateGoBP 5

Details

If vertex name attrubite stores not EntrezID or network is build not from human genes, other
OrgDb-class object could be provided in orgDB and one of keytypes from that object that cor-
respond to the nature of the vertex name attrubite could be provided in the keytype attribute.

If for some vertices name attrubite does not match keys with particular keytypes in the orgDB
object, empty string is added as GeneName.

Value

igraph object with new vertex attribute GeneName

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")

gg <- igraph::read_graph(file, format="gml")

agg<-annotateGeneNames(gg)

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273")

paste(V(agg)$GeneName[idx], 'GRPEL1')

annotateGoBP Add GO BP annotation to the graph vertices

Description

The function loads an annotation data matrix called annoF, which contains three columns; the first
containing gene Entrez IDs, the second gene GO BP ID terms, the third gene GO BP description
terms. The function then performs a many-to-one mapping of each matrix row to a network vertex
using matching Entrez IDs, filling the vertices attributes GO_BP_ID and GO_BP.

Usage

annotateGoBP(gg, annoF, idatt = "name")

Arguments
gg graph to update
annoF annotation matrix in Pair form
idatt optional name of the vertex attribute to map to the annotation data. frame first
column
Value

annotated igraph object

See Also

getAnnotationVertexList

6 annotateGoCC

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
sfile<-system.file("extdata"”, "flatfile.go.BP.csv", package = "BioNAR")
goBP <- read.table(sfile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")

sgg <- annotateGoBP(gg, goBP)

annotateGoCC Add GO CC annotation to the graph vertices

Description

The function loads an annotation data matrix called annoF, which contains three columns; the first
containing gene Entrez IDs, the second gene GO ID terms, the third gene GO CC description terms.
The function then performs a many-to-one mapping of each matrix row to a network vertex using
matching Entrez IDs, filling the vertices attributes GO_CC_ID and GO_CC.

Usage

annotateGoCC(gg, annoF, idatt = "name"”)

Arguments
g8 graph to update
annoF annotation matrix in Pair form
idatt optional name of the vertex attribute to map to the annotation data. frame first
column
Value

annotated igraph object

See Also

getAnnotation VertexList

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
sfile<-system.file("extdata”, "flatfile.go.CC.csv", package = "BioNAR")
goCC <- read.table(sfile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")

sgg <- annotateGoCC(gg, goCC)

annotateGoMF 7

annotateGoMF Add GO MF annotation to the graph vertices

Description

The function loads an annotation data matrix called annoF, which contains three columns; the first
containing gene Entrez IDs, the second gene GO MF ID terms, the third gene GO MF description
terms. The function then performs a many-to-one mapping of each matrix row to a network vertex
using matching Entrez IDs, filling the vertices attributes GO_MF_ID and GO_MF.

Usage

annotateGoMF (gg, annoF, idatt = "name")

Arguments
gg graph to update
annoF annotation matrix in Pair form
idatt optional name of the vertex attribute to map to the annotation data. frame first
column
Value

annotated igraph object

See Also

getAnnotation VertexList

Examples

file <- system.file("extdata"”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
sfile<-system.file("extdata”, "flatfile.go.MF.csv"”, package = "BioNAR")
goMF <- read.table(sfile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")

sgg <- annotateGoMF(gg, goMF)

annotateGOont Annotate nodes with GO terms

Description

For the protein-protein interaction (PPI) or disease gene interaction (DGN) graphs that have En-
trezID as a vertex name this function extract GeneOntolgy annotation from orgDB, which should be
OrgDb-class, split them into three ontology group (MF,BP,CC) and annotate vertices with .

Usage
annotateGOont(gg, orgDB = org.Hs.eg.db, keytype = "ENTREZID", idatt = "name"”)

8 annotatelnterpro

Arguments
gg igraph object to annotate
orgDB ordDB object, by default human is assumed from org.Hs.eg.db
keytype type of IDs stored in the name vertex attribute, by default ENTREZID is assumed.
idatt optional name of the vertex attributes that contains IDs matching the keytype
Details

If vertex name attrubite stores not EntrezID or network is build not from human genes, other
OrgDb-class object could be provided in orgDB and one of keytypes from that object that cor-
respond to the nature of the vertex name attrubite could be provided in the keytype attribute.

If for some vertices name attrubite does not match keys with particular keytypes in the orgDB
object, empty string is added as GeneName.

Value

igraph object with new vertex attribute GeneName

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
ggG0 <- annotateGOont(gg)

annotatelnterpro Add InterPro Family and Domain annotation to the graph vertices

Description

Function takes data from annoF matrix and add them to attributes InterPro_Family for term and
InterPro_Family_ID for IDs.

Usage

annotatelnterpro(gg, annoF, annoD, idatt = "name")
Arguments

gg graph to update

annoF family annotation matrix in Pair form

annoD domain annotation matrix in Pair form

idatt optional name of the vertex attributes that contains Entrez IDs
Details

Function takes data from annoD matrix and add them to attributes InterPro_Domain for term and
InterPro_Domain_ID for IDs.

annotatePresynaptic 9

Value

annotated igraph object

See Also

getAnnotation VertexList

annotatePresynaptic Add presynaptic functional groups

Description

Function takes from anno matrix manually curated presynaptic genes functional annotation de-
rived from Boyken at al. (2013) doi:10.1016/j.neuron.2013.02.027 and add them to attributes
PRESYNAPTIC.

Usage

annotatePresynaptic(gg, anno, idatt = "name")
Arguments

gg graph to update

anno annotation matrix in Pair form

idatt optional name of the vertex attributes that contains Entrez IDs
Value

annotated igraph object

See Also

getAnnotation VertexList

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
sfile<-system.file("extdata”, "PresynAn.csv", package = "BioNAR")

pres <- read.csv(sfile,skip=1,header=FALSE,strip.white=TRUE, quote="")

gg <- annotatePresynaptic(gg, pres)

doi:10.1016/j.neuron.2013.02.027

10 annotateSCHanno

annotateSCHanno Add SCHanno synaptic functional groups

Description

The function loads an annotation data matrix of functional groups for schizopherina risk genes (1)
called anno, which contains three columns; the first containing gene Entrez IDs, the second gene
functional group ID terms, the third gene functional group description terms. The function then
performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez
IDs, filling the SCHanno vertices attribute.

Usage

annotateSCHanno(gg, anno, idatt = "name")
Arguments

gg igraph object to annotate

anno annotation matrix in Pairs form

idatt optional name of the vertex attributes that contains Entrez IDs
Details

References:

1. Lips E, Cornelisse L, Toonen R, Min J, Hultman C, the International Schizophernia Consor-
tium, Holmans P, Donovan M, Purcell S, Smit A, Verhage M, Sullivan P, Visscher P, D P:
Functional gene group analysis identifies synaptic gene groups as risk factor for schizophre-
nia. Molecular Psychiatry 2012,17:996-1006.

Value

annotated igraph object

See Also

getAnnotation VertexList

Examples

file <- system.file("extdata”, "PPI_Presynaptic.csv”, package = "BioNAR")
tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)

afile<-system.file("extdata”, "SCH_flatfile.csv", package = "BioNAR")

dis <- read.table(afile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")

agg<-annotateSCHanno(gg, dis)

annotateTopOntoOVG 11

annotateTopOntoOVG Annotate graph with disease terms

Description

The function loads a human disease annotation matrix called dis, which contains three columns;
the first containing gene Entrez IDs, the second gene Human Disease Ontology (HDO) ID terms,
the third gene HDO description terms. For human protein-protein interaction (PPI) or disease-gene
networks (DGN) that have human Entrez IDs for the igraph vertex name attribute. The function
then performs a many-to-one mapping of each matrix row to a network vertex using matching
Entrez IDs, filling the vertices attributes TopOnto_OVG_HDO_ID and TopOnto_OVG.

Usage

annotateTopOntoOVG(gg, dis, idatt = "name")

Arguments

gg igraph object to annotate

dis annotation matrix in Pairs form

idatt optional name of the vertex attributes that contains Entrez IDs
Value

annotated igraph object

See Also

getAnnotation VertexList

Examples

file <- system.file("extdata”, "PPI_Presynaptic.csv”, package = "BioNAR")
tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)

read HDO data extracted from hxin/topOnto.HDO.db for synaptic network
afile<-system.file("extdata”, "flatfile_human_gene2HDO.csv",

package = "BioNAR")

dis <- read.table(afile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")

agg<-annotateTopOntoOVG(gg, dis)

12 annotate Vertex

annotateVertex Generic annotation function

Description

Function to build and fill a vertex attribute given an igraph object. Where parameter ‘name’ is the
new vertex attribute name and values are filled from a two column data.frame supplied to ’value’
attribute. The first containing vertex name IDs, and the second the vertex annotation value.

Usage
annotateVertex(gg, name, values, idatt = "name")
Arguments
gg igraph object to annotate
name name of the attribute
values annotation data.frame
idatt optional name of the vertex attribute to map to the annotation data. frame first
column
Details

As a first step all attributes with provided names will be removed.

Value

igraph object where vertex attribute name contains annotation terms separated by semicolon.

See Also

getAnnotation VertexList

Examples

gl <- make_star(10, mode="undirected")

V(g1)$name <- letters[1:10]
m<-rbind(data.frame(ID=letters[1:10], terms=letters[1:10]),
data.frame(ID=letters[1:10], terms=LETTERS[1:10]))
g2<-annotateVertex(gl, name='cap', values=m)

V(g2)$cap

applpMatrix ToGraph 13

applpMatrixToGraph Add attributes to the vertex.

Description
This function suits more for updating calculated vertex properties rather than node annotation. For
the later case use annotateVertex.

Usage

applpMatrixToGraph(gg, m)

Arguments
gg igraph object
m matrix of values to be applied as vertex attributes. matrix should contains col-
umn "ID" to map value to the vertex.
Details

Unlike annotateVertex, which is able to collapse multiple annotation terms, this function assume
that vertex ID values are unique in the m matrix and corresponds to the name vertex attribute. If
graph has no name vertex attribute error will be raised.

Value

modified igraph object

See Also

annotate Vertex

Examples

gl <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]
m<-cbind(ID=letters[1:10],capital=LETTERS[1:10])
g1<-BioNAR: :applpMatrixToGraph(gl,m)
V(g1)$capital

BioNAR BioNAR: Biological Network Analysis in R

Description

The R package BioNAR, developed to step by step analysis of PPI network. The aim is to quantify
and rank each protein’s simultaneous impact into multiple complexes based on network topology
and clustering. Package also enables estimating of co-occurrence of diseases across the network
and specific clusters pointing towards shared/common mechanisms.

14 buildConsensusMatrix

Author(s)

Maintainer: Anatoly Sorokin <lptolik@gmail.com>

Authors:

¢ Colin Mclean <Colin.D.Mclean@ed. ac.uk>
¢ Oksana Sorokina <oksana.sorokina@ed.ac.uk>

* J. Douglas Armstrong <Douglas.Armstrong@ed. ac.uk> [funder]
Other contributors:

 T. Ian Simpson <Ian.Simpson@ed. ac.uk> [contributor, funder]

See Also
Useful links:

* Report bugs at https://github.com/1ptolik/BioNAR/issues/

buildConsensusMatrix Build a consensus matrix from list of resampled clustering matrices
outputted from the function sampleGraphClust

Description

Build a consensus matrix from list of resampled clustering matrices outputted from the function
sampleGraphClust

Usage

buildConsensusMatrix(lcc)

Arguments

lcc list of membership matrices obtained from the sampleGraphClust

Details

Function build a consensus matrix from list of membership matrices, which are a three column
matrix: the first column contains the vertex IDs of input network; the second column the vertex
IDs of the subsampled network, or -1 if the vertex has been masked; the third column the cluster
membership of subsampled network, or -1 if vertex has been masked. The randomised resampled
membership matrices could be obtained from the function sampleGraphClust.

Value

consensus matrix of Nvert X Nvert

https://github.com/lptolik/BioNAR/issues/

buildNetwork 15

buildNetwork Build network from data.table

Description

Wrapper for graph_from_data_frame function which will always return the largest connect com-
ponent for a given network ff. The function will also annotated the edges in ff with PubMed data
from kw if provided.

Usage

buildNetwork(ff, kw = NA, LCC = TRUE, simplify = TRUE)

Arguments
ff network structure data.frame with first two columns defining the network edge
nodes
kw pmid keyword annotation data.frame. If NA no annotation will be added
LCC if TRUE only largest connected component is returned
simplify if TRUE loops and multiple edges will be removed
Value

igraph object of the largest connected component

Examples

f<-data.frame(A=c('A', 'A', 'B', 'D'), B=c('B', 'C', 'C', 'E'))
gg<-buildNetwork(f)

V(gg) $name
calcAllClustering Calculate memberships for all clustering algorithms and store them
on the graph vertices.
Description

This function will call calcClustering for each clustering algorithm given in our predefined list.
In the event no clustering could be performed, warnings will be issued and no new vertex attribute
added to the graph.

Usage

calcAllClustering(gg, weights = NULL)

16 calcBridgeness

Arguments
gg graph for analysis
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.
Value

new graph object with all membership results stored as a vertex attribute.

See Also

calcClustering

Examples

gl <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]
gl<-calcAllClustering(gl)
clusteringSummary(g1)

calcBridgeness Helper function that uses getBridgeness fo calculate graph node
bridgeness values for selected algorithm and consensus matrix and
save them as a graph attribute BRIDGENESS.<alg> with <alg> re-
placed by the selected algorithm name.

Description

Helper function that uses getBridgeness to calculate graph node bridgeness values for selected
algorithm and consensus matrix and save them as a graph attribute BRIDGENESS . <alg> with <alg>
replaced by the selected algorithm name.

Usage

calcBridgeness(gg, alg, conmat)

Arguments

gg igraph object

alg clustering algorithm

conmat consensus matrix calculated with that algorithm
Value

graph with additional attributes to store Bridgeness value

calcCentrality 17

See Also

getBridgeness

Examples

library(BioNAR)

karate <- make_graph("Zachary")

We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]

set.seed(100)

gg <- calcClustering(karate, 'louvain')

cnmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
gg<-calcBridgeness(gg, alg = 'louvain', cnmat)

hist(V(gg)$BRIDGENESS. louvain)

calcCentrality Calculate the vertex centrality measures

Description
Calculate the vertex centrality measures (degree, betweenness, closeness, semi-local, etc....) for
each graph vertex and store each result as new vertex attribute in the graph.

Usage
calcCentrality(gg, weights = NULL)

Arguments
gg igraph object
weights Possibly a numeric vector giving edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute).
Details

A wrapper function that first calls getCentralityMatrix, to calculate all vertex centrality mea-
sures, and then applpMatrixToGraph to store each centrality result as a new vertex attribute in the
graph. The use of weights explained in details in getCentralityMatrix.

Value

modified igraph object

See Also

getCentralityMatrix()

Examples

data(karate,package="igraphdata')
ggm<-calcCentrality(karate)
V(ggm) $DEG

18 calcCentralityExternalDistances

calcCentralityExternalDistances

Function to calculate a distance matrix between a list of permuted
vertex centrality matrices and a unperturbed reference matrix.

Description

Function to calculate a distance matrix between a list of permuted vertex centrality matrices and a
unperturbed reference matrix.

Usage

calcCentralityExternalDistances(m, 1, keepOrder = FALSE, dist = "euclidean")

Arguments
m reference matrix, for example centrality obtained by invocation getCentralityMatrix
1 list of permuted matrix, for example centrality obtained by invocation getRandomGraphCentrality
keepOrder if FALSE valuess will be sorted
dist methods available from dist function
Value

matrix with seven columns containing distances between each element of 1 and reference matrix m

See Also

getRandomGraphCentrality
getCentralityMatrix

calcCentralityInternalDistances

Examples

data(karate,package="igraphdata')

m<-getCentralityMatrix(karate)

gnp<-list()

for(i in 1:10){
gnp[[i]]<-getRandomGraphCentrality(karate,type = 'gnp')

3

gnpEDist<-calcCentralityExternalDistances(m,gnp)

summary (gnpEDist)

calcCentralityInternalDistances 19

calcCentralityInternalDistances
Function calculates a set of distance metrics between each vertex pair
given a list of vertex centrality matrices

Description

Function calculates a set of distance metrics between each vertex pair given a list of vertex centrality
matrices

Usage

calcCentralityInternalDistances(l, keepOrder = FALSE, dist = "euclidean")

Arguments
1 list of matrices, for example centrality obtained by invocation getRandomGraphCentrality
keepOrder if FALSE values will be sorted before distance calculations
dist methods available from dist function

Value

matrix with seven columns containing distances between all pairs of 1 elements.

See Also

getRandomGraphCentrality
getCentralityMatrix

calcCentralityExternalDistances

Examples

data(karate,package="igraphdata')

m<-getCentralityMatrix(karate)

gnp<-list()

for(i in 1:10){
gnp[[i]]<-getRandomGraphCentrality(karate,type = 'gnp')

3

gnpIDist<-calcCentralityInternalDistances(gnp)

summary (gnpIDist)

20 calcClustering

calcClustering Calculate community membership for given clustering algorithm and
store the results as new vertex attributes in the graph..

Description

When applying resampling the clustering results of a clustering algorithm applied to a graph can
differ due to the stochastic nature of the resampling algorithm. To allow reproducible down-
stream analysis clustering results are stored as vertex attributes in the graph. This function call
getClustering and stores community membership as new vertex attribute in the graph, and Mod-
ularity as a new graph attribute prefix with the alg name.

Usage
calcClustering(gg, alg, weights = NULL)

Arguments
gg igraph object to cluster
alg algorithm to apply
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.
Details

NOTE: getClustering verifies algorithm names with match.arg so correct membership will be
calculated, but name of the attribute is taken from alg argument, so it is possible that vertex attribute
name won’t exactly match name of the algorithm from 1ink{getClustering}.

Value

modified igraph object with calculated membership stored as a vertex attribute and modularity as a
graph attribute

See Also

getClustering

Examples

karate <- make_graph("Zachary")

We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]
g<-calcClustering(karate, 'louvain')

vertex_attr_names(g)

graph_attr(g, 'louvain')

calcDiseasePairs 21

calcDiseasePairs Calculate each disease-disease pair overlap given a list of disease
terms.

Description

Calculate each disease-disease pair overlap (or separation) on a given PPI network model, based on
analysis described in Menche et al. 2015

Usage
calcDiseasePairs(
g8,
name,
diseases = NULL,
permute = c("none”, "random”, "binned")
)
Arguments
gg interactome network as igraph object
name name of the attribute that stores disease annotation
diseases list of diseases to match
permute type of permutations. none — no permutation is applied, random — annotation
is randomly shuffled, binned — annotation is shuffled in a way to preserve node
degree-annotation relationship by degreeBinnedGDAs.
Value

list with three matrices:

* disease_separation — Ndisease X Ndisease matrix of separations
» gene_disease_separation — Ngenes X Ndisease+2 matrix of gene-disease separation

* disease_localisation — matrix with diseases in rows and number of genes (N), average and
standard deviation of gene-disease separation in columns

References
Menche, J. et al. Uncovering disease-disease relationships through the incomplete interactome.
Science, 347, (6224):1257601 (2015).

See Also

degreeBinnedGDAs
sampleDegBinnedGDA

22 calcEntropy

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")

gg <- igraph::read_graph(file, format="gml")

agg<-annotateGeneNames(gg)

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273")

paste(V(agg)$GeneName[idx], 'GRPEL1')

p <- calcDiseasePairs(

age,

name = "TopOntoOVGHDOID",

diseases = c("DOID:10652", "DOID:3312", "DOID:12849"),

permute = "n

)

p$disease_separation

calcEntropy Calculate the graph entropy for each perturbed vertex, and save the
results as new vertex attributes in the graph.

Description
This function calculate the graph entropy for each perturbed vertex by calling getEntropy, and
save the results as new vertex attributes SR_UP and SR_DOWN in the graph.

Usage
calcEntropy(gg, maxSr = NULL, exVal = NULL)

Arguments
gg igraph object
maxSr the maximum entropy rate maxS R, if NULL getEntropyRate will be called.
exVal expression values boundaries. Two columns are expected: xx and lambda. If
NULL default values c(2,14) and c(-14,14) will be used for xx and lambda
respectively.
Details

According to Teschendorf et al., 2010, network entropy measure quantifies the degree of random-
ness in the local pattern information flux around single genes. For instance, in metastatic cancer
this measure was found significantly higher than in non-metastatic and helped to identify genes and
entire pathways involved on metastasis. However, for the assessment of scale-free structure we do
not actually require gene expression data as it based solely on the network topology.

Value

graph with SR_UP and SR_DOWN vertex attributes storing the graph entropy values with over- or
under-expressing each vertex.

See Also

getEntropy()
Other Entropy Functions: getEntropy(), getEntropyRate(), plotEntropy()

calcMembership 23

Examples

file <- system.file("extdata”, "PPI_Presynaptic.csv”, package = "BioNAR")

tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)

gg<-annotateGeneNames(gg)

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(gg)$name == '80273"')

paste(V(gg)$GeneName[idx], 'GRPEL1')

gg<- calcEntropy(gg)

calcMembership Calculate cluster memberships for the graph.

Description

Calculates the clustering membership for one of the 10 clustering algorithms defined in function
getClustering

Usage

calcMembership(

gg,
alg = c("lec”, "wt", "fc", "infomap”, "louvain”, "sgG1", "sgG2", "sgG5", "spectral”),

weights = NULL

)
Arguments
gg igraph object to cluster
alg algorithm name
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If it is NULL and no such attribute is present, then the edges will
have equal weights. Set this to NA if the graph has a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.
Value

data.frame with columns names and membership

See Also

getClustering

Examples

karate <- make_graph("Zachary")

We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]
m<-calcMembership(karate, 'lec')

head(m)

24 calcReclusterMatrix

calcReclusterMatrix Hierarchical graph clustering

Description

This function takes in a gg and initial vertex community membership values mem as returned by
calcMembership, and then performs a reclustering of the graph given the clustering algorithm alg
to those clusters of size greater than CnMAX

Usage
calcReclusterMatrix(
gg,
mem,
alg,
CnMAX = 10,

weights = NULL,
keepSplit = FALSE

)
Arguments
gg graph to cluster
mem data.frame with previous level clustering results
alg algorithm to apply
CnMAX maximus size of the cluster in mem that will not be processed
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.
keepSplit logical, wether to keep previous membership in the output matrix
Value

remembership matrix, that contains vertex ID membership and result of reclustering

Examples

data(karate,package="igraphdata')
alg<-'louvain'

mem<-calcMembership(karate,alg = alg)
remem<-calcReclusterMatrix(karate,mem,alg,10)

calcSparsness 25

calcSparsness Calculate sparsness of the graph.

Description

For a simple unweighted, undirected graph G(N,E). Network sparseness is defined as the ratio of
the actual number of graph edges (E) to the maximum number of edges possible in a graph with
same number of vertices (N): E/binom(N,2)

Usage

calcSparsness(gg)
Arguments

gg graph to evaluate
Value

sparsness value

Examples

file <- system.file("extdata”, "PPI_Presynaptic.csv”, package = "BioNAR")
tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)

calcSparsness(gg)

clusteringSummary Matrix of cluster characteristics

Description
Function to calculate basic summary statistics after apply clustering algorithm:

* N — number of vertices in the graph vcount

* mod — clustering modularity modularity, the ratio of edges found within communities to the
number of edges found between communities, relative to a randomised model

* C — number of clusters
* Cnl — number of singletones (clusters of size 1)
* Cn100 — number of clusters containing more than 100 nodes

* mu — the ratio of edges found within communities to the number of edges found between
communities

* Min. C — minimum of the cluster size

* Ist Qu. C — first quartile of the cluster size
* Median C — median of the cluster size

* Mean C — average cluster size

* 3rd Qu. C - third quartile of the cluster size

¢ Max. C — maximum of the cluster size

26 clusterORA

Usage

clusteringSummary (

gg,
att = c("lec”, "wt"”, "fc", "infomap”, "louvain”, "sgG1", "sgG2", "sgG5", "spectral”)

)

Arguments

gg graph to analyse

att vector of attribute names that contains membership data
Value

matrix of clustering characteristics

Examples

data(karate,package="igraphdata')
g<-calcAllClustering(karate)
clusteringSummary(g)

clusterORA Calculate annotation enrichment for clusters in the graph

Description

Calculate the cluster enrichment of a graph given a clustering algorithm alg and vertex annotation
attribute 'name’. Function generates an enrichment table, one row for each cluster, containing: size
of the cluster (Cn), number of annotated vertices in the graph F, (Fn), number of annotated vertices
in the cluster p (Mu), odds ratio (OR) and its 95% Confidence interval [CT;, C'I,] (CI1 and CIu), two
fold enrichment values F. (Fe) and F. (Fc). We also provide the list of vertices from the cluster
that contribute to the annotation term, p.value of enrichment (pval) and depletion (palt) using the
Hypergeometric test, adjusted p.values using Benjamini and Yekutieli correction (BY).

Usage

clusterORA(g, alg, name, vid = "name”, alpha = 1, col = COLLAPSE)

Arguments
g graph to get annotation from
alg cluster algorithm and membership attribute name
name annotation attribute name
vid attribute to be used as a vertex ID
alpha probability threshold

col list separation character in attribute, by default is ;

clusterORA 27

Details

Given the enrichment results, we can calculate the log of the Odds Ratio (OR) as:

(N_Fn+ﬂ_cn)

—In(®
m(OR) = (= = —)

)

and it’s upper and lower 95% Confidence Interval:

1 1 1
+ +
Co—p Fo—p N—-F,+p—0C,

CI(n(OR)) = In(OR) + 1.96\/ % +

Using the odds ratio allows us to distinguish functionally enriched communities relative to func-
tionally depleted communities.

Two types of fold enrichment values calculated as follow:

Value

)
Fe=1an

()
Fe=ta

A table with overrepresentation results. Each row corresponds to a tested annotation in particular
cluster. The columns are the following:

alg — name of the clustering algorithm;

cl — cluster ID;

FL — name of the enriched term;

N — number vertices in the network;

Fn — number of vertices in the graph annotated by term F1 (F},);
Cn - size of the cluster;

Mu — number of vertices in the cluster annotated by term F1 (u);
OR - odds ratio ;

CIl — odds ratio 95% confidence interval lower bound (C1;);
ClIu - odds ratio 95% confidence interval upper bound(C'I,,);

Fe — fold enrichment F;

Fc — fold enrichment F;

pval — an enrichment p-value from hypergeometric test;

padj — a BY-adjusted p-value;

palt — an depletion p-value from hypergeometric test;

paltadj — a BY-adjusted depletion p-value;

overlapGenes — vector with overlapping genes.

28 compMembership

Examples

options("show.error.messages"=TRUE)

file <- system.file("extdata"”, "PPI_Presynaptic.gml”, package = "BioNAR")
g <- igraph::read_graph(file, format="gml")
anL<-getAnnotationVertexList(g, 'TopOntoOVGHDOID')

res<-clusterORA(g, alg='louvain', name='TopOntoOVGHDOID', vid='name')
andf<-unique(data.frame(ID=vertex_attr(g, 'TopOntoOVGHDOID'),
Term=vertex_attr(g, 'TopOntoOVG')))

rr<-merge(andf, res, by.y='FL', by.x="ID")

rrforder(rr$cl), 1

compMembership Calculate cluster memberships for one of the graph component.

Description

Calculates the clustering membership for one of the 10 clustering algorithms defined in function
getClustering for selected graph component

Usage

compMembership(
g8,
alg = c("lec”, "wt", "fc", "infomap”, "louvain”, "sgG1", "sgG2", "sgG5", "spectral”),
compnum = 0,
weights = NULL

)
Arguments
gg igraph object to cluster
alg algorithm name
compnum number of the componet to cluster
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If it is NULL and no such attribute is present, then the edges will
have equal weights. Set this to NA if the graph has a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.
Value

data.frame with columns names and membership

See Also

getClustering

degreeBinnedGDA s 29

degreeBinnedGDAs Prepare mapping for degree-aware annotation shuffling.

Description

Function to randomly shuffle vertex annotation terms, whilst preserving the vertex degree originally
found with that annotation term.

Usage

degreeBinnedGDAs(gg, GDA, dtype)

Arguments
gg graph to analyse
GDA vertex annotations returned by prepareGDA
dtype list of unique annotation terms to analyze
Value

mapping matrix between vertices, vertex-degree groups and annotation terms.

See Also

prepareGDA
getAnnotationList

sampleDegBinnedGDA

Examples

options("show.error.messages"=TRUE)

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")

agg<-annotateGeneNames(gg)

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273"')

paste(V(agg)$GeneName[idx], 'GRPEL1')

gda<-prepareGDA(agg, 'TopOntoOVGHDOID')

m<-degreeBinnedGDAs(agg, gda, getAnnotationList(gda))

c(dim(m), vcount(agg), length(getAnnotationList(gda)))

head(m)

30 escapeAnnotation

diseasome Barabasi’s Diseasome Network

Description

In the paper Goh.t al. (2007) doi:10.1073/pnas.0701361104 Barabasi with colleagues published
Diseasome: a network of disorders and disease genes linked by known disorder—gene associations.
We extract definition of the genes, disorders and interactions from papers supplementary materials
and store it as graph object.

Usage

diseasome

Format

A bipartite graph as graph object.

Vertex attributes: ‘name’ for the node ID, ‘Name’ for the human readable node name, ‘Disor-
der.class’, ‘Type’ for the human readable node type, ‘label’ and ‘shape’ for plotting the graph,
‘type’ the node type for bipartite graph representation.

Details

Diseasesome is a bipartite graph that have nodes of two types gene and disease and links are
allowed only between nodes of different types. It could be projected to Human Disease Network
(HDN) and Disease Gene Network (DGN).

Source

Goh, K.-I. et al. The human disease network. Proc. Natl. Acad. Sci. U.S.A. 104, 8685-8690
(2007). https://pnas.org/doi/full/10.1073/pnas.0701361104

escapeAnnotation Escapes elements of list in annotation.

Description

In situations when a given list of annotation ID terms may not be well formatted, and therefore not
be interoperated as unique. For example, given a list of HDO IDs: HDO:14, HDO:143, HDO:1433,
and HDO: 14330, a grep for the term HDO: 14 could return: HDO:143, HDO:1433, HDO:14330. To
avoid this all terms should be enclosed in escape characters, which unlikely to find within annotation
itself.

Usage

escapeAnnotation(annVec, col = COLLAPSE, esc = ESC)

evalCentralitySignificance 31

Arguments
annVec vector of annotation strings
col term list separator character
esc escape character

Details

NOTE: spaces are treated as regular characters, no trimming is applied before or after escaping.

Value

vector of annotation strings with elements escaped

See Also

unescapeAnnotation

Examples

annVec<-apply(matrix(letters, ncol=13), 2, paste, collapse=';")
cbind(annVec, escapeAnnotation(annVec, ';', '|'))

evalCentralitySignificance
Compare distance distributions of internal and external distances

Description

Function to compare two distance distributions using the Kolmogorov-Smirnov test. Where the
first distance distribution is generated internally and calculates the distance between random graph
centralities. The second distance distribution is generated externally, and measures the distance
between random and the original graph centralities.

Usage

evalCentralitySignificance(dmi, dme)

Arguments

dmi distribution of internal distances between random graph centralities

dme distribution of external distances between random and original graph centralities
Value

list of lists for each centrality value in the input matrix three element list is created where ks con-
tains Kolmogorov-Smirnov test result from class ks. test; pval contains Kolmogorov-Smirnov
test pvalue; and dt contains input distribution.

See Also

ks.test

32 fitDegree

Examples

data(karate,package="igraphdata')

m<-getCentralityMatrix(karate)

gnp<-list()

for(i in 1:10){
gnp[[i]]<-getRandomGraphCentrality(karate,type = 'gnp')

}

gnpIDist<-calcCentralityInternalDistances(gnp)

gnpEDist<-calcCentralityExternalDistances(m,gnp)

simSig<-evalCentralitySignificance(gnpIDist,gnpEDist)
sapply(simSig, function(.x).xksp.value)

findLCC Find Largest Connected Component of the graph

Description

Find Largest Connected Component of the graph

Usage
findLCC(GG)

Arguments

GG igraph object to analyze

Value

igraph representation LCC

Examples

gl <- make_star(10, mode="undirected”) %du% make_ring(7) %du% make_ring(5)
lce<-findLCC(g1)
summary (lcc)

fitDegree Fit Power Law to degree distribution.

Description

Fit a Powerlaw distribution to graph’s degree distribution using the R “PoweRlaw” package (version
0.50.0) (Gillespie, 2015)

fitSigmoid

fitDegree(
DEG,
Nsim = 100,
plot = FALSE,
DATAleg = "Fit power-law”,
threads = 4,
WIDTH = 480,
HEIGHT = 480,

legpos = "bottomleft"”,
showErr = TRUE

33

logical, do you want plot to be drawn

number of parallel computational threads

position of the legend @seealso 1legend()
logical, do you want error on the plot legend

Arguments
DEG degree distribution
Nsim number of bootstrap iterations
plot
DATAleg legend string for degree data
threads
WIDTH width of the plot in ptx
HEIGHT heigth of the plot in ptx
legpos
showErr

Value

an object of class law-class with results of fitting

Examples

##No: of bootstrap iterations use nsim > 100 for reliable result

nsim <- 10

#itLegend Titles

Legend <- "Presynaptic PPI”

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")

pFit <- fitDegree(as.vector(igraph::degree(graph=gg)),

DATAleg=Legend, threads=1, Nsim=nsim)

fitSigmoid

Fit Fold-enrichment distribution to sigmoid function

Description

This function calculates fit of the Fold-Enrichment distribution to the sigmoid function with the lev-
els of noise specidied in SDV for all clustering algorithms, which have non-zero SUM3$~Psig&0Rsig"
in the enrichment table summary results. The function returns the list in which each element con-
tains result for one of the noise level.

34 flatfile.go.BP.csv

Usage

fitSigmoid(stat, SDv = c(@, 0.05, 0.1, 0.5))

Arguments
stat enrichment results obtained from summaryStats
SDv vector of noise SD values

Details

Results are repersented as a list with five elements:

* gridplot that allow comparison of fitting for different clustering algorithms;

* plots the list of individual plots from gridplot;

fitInfo the data.frame that contains results of fitting, such as message, number of iterations and
exit code;

* parlnfo values and standard deviations for all sigmoid parameters;

ks table of Kolmogorov-Smirnov test p-values.

Grid plot is designed in a way to be viewed in the device at least 12 inches in width and 12 inches
in height.

Value

list of fitted functions tables and plots

See Also

summaryStats()

flatfile.go.BP.csv Annotation from Gene Ontology Biological Process (GO_BP)

Description

Annotation, downloaded from Gene Ontology for Biological Proceess domain. The table has
columns: the first containing gene gene functional group ID terms, the second gene functional
group description terms, the third - Human gene Entrez IDs; in csv format

See Also

annotateGoBP

flatfile.go.CC.csv 35

flatfile.go.CC.csv Annotation from Gene Ontology Cellular Compartment (GO_CC)

Description

Annotation, downloaded from Gene Ontology for Cellular Compartment domain. The table has
columns: the first containing gene gene functional group ID terms, the second gene functional
group description terms, the third - Human gene Entrez IDs; in csv format

See Also

annotateGoCC

flatfile.go.MF.csv Annotation from Gene Ontology Molecular Function (GO_MF)

Description

Annotation, downloaded from Gene Ontology for Molecular Function domain. The table has
columns: the first containing gene gene functional group ID terms, the second gene functional
group description terms, the third - Human gene Entrez IDs; in csv format

See Also

annotateGoMF

flatfile_human_gene2HDO.csv
Human Gene Disease Associations (GDA)

Description

Annotation derived from Human Disease Ontology database (HDO). The table contains three columns;
the first containing gene Entrez IDs, the second gene Human Disease Ontology (HDO) ID terms,
the third gene HDO description terms; in csv format

See Also

annotateTopOntoOVG

36 getAnnotation VertexList

getAnnotationList Extract unique values from annotations.

Description

It is not uncommon to find both duplicated vertex annotation terms, and vertices annotated with
multiple terms, in a given annotation list. This function creates a vector of unique annotation terms
for each vertex given an input annotation list.

Usage
getAnnotationList(
annVec,
col = COLLAPSE,
sort = c("none”, "string"”, "frequency")
)
Arguments
annVec vector of annotation strings
col list separator character
sort how to sort the result list
Value

vector of unique annotation terms

See Also

getAnnotation VertexList

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")

annVec<-V(gg) $TopOnto0VG

al<-getAnnotationList(annVec)

al

getAnnotationVertexList
Return vertex list for each term in annotation attribute

Description
For different purposes annotation of graph vertices could be represented in three forms:

Pairs dataframe with vertex ID and annotation terms
Vertex Annotation list named with vertex ID and containing terms annotating each vertex

Annotation Vertices list named with term and containing vertex IDs

getBridgeness 37

Usage

getAnnotationVertexList(g, name, vid = "name”, col = COLLAPSE)

Arguments
g graph to get annotation from
name annotation attribute name
vid attribute to be used as a vertex ID
col list separation character in attribute, by default is ;
Details
This function takes Vertex Annotation from vertex attribute and convert it to Annotation Vertices
form.
Value

named list with annotation in Annotation Vertices form

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
avl<-getAnnotationVertexList(gg, 'TopOntoOVGHDOID')

head(avl)

getBridgeness Calculate bridginess from consensus matrix

Description

Bridginess takes into account a vertices shared community membership together with its local
neighbourhood. It was proposed in Nepusz et al., 2008 doi:10.1103/PhysRevE.77.016107.

Usage

getBridgeness(gg, alg, conmat)

Arguments

gg igraph object

alg clustering algorithm

conmat consensus matrix calculated with that algorithm
Details

Function assumes clustering already been performed by the clustering algorithm, and its member-
ship values stored in vertex attributes. If clustering algorithm vertex alg attribute is not found an
error will be issued.

doi:10.1103/PhysRevE.77.016107

38 getCentralityMatrix

Value

data.frame with first column contains vertex ID, if GeneName attribute assigned to the vertices its
value will be stored as a second column, the last column contains bridginess values for the

Examples

library(BioNAR)

karate <- make_graph("Zachary")

We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]

gg <- calcClustering(karate, 'louvain')

cnmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
br<-getBridgeness(gg, alg = 'louvain', cnmat)

getCentralityMatrix Calculate centrality measures for graph nodes.

Description

Calculate centrality measures for graph nodes.

Usage
getCentralityMatrix(gg, weights = NULL)

Arguments
gg igraph object
weights Possibly a numeric vector giving edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute).
Details

The edge attribute weights treated differently by different functions calculating centrality mea-
sures. For example, betweenness use weights as an edge length, while in page_rank "an edge
with a larger weight is more likely to be selected by the surfer”, which infer the opposite meaning.
Taking into account that all methods in getClustering treat edge weights in the same way as
page_rank, we calculate the distance=1/weights as edge weights for BET, dBET, mnSP, and sdSP
values. So we treat weights in the package consistently as the strength and closiness of vertices,
rather the distance between them.

Value
data.frame with following columns:

e ID - vertex ID

* DEG - degree

* iDEG - in-degree (directed graph only)

* 0DEG - out-degree (directed graph only)

* BET - betweenness for undirected graph

getClustering 39

dBET - betweenness when directionality is taken into account (directed graph only)
CC - clustering coefficient

SL - semilocal centrality

mnSP - mean shortest path

PR - page rank for undirected graph

dPR - page rank when directionality is taken into account (directed graph only)

sdSP - standard deviation of the shortest path

Examples

file <- system.file("extdata”, "PPI_Presynaptic.csv”, package = "BioNAR")
tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)

m<-getCentralityMatrix(gg)

getClustering Get clustering results for the graph.

Description

Wrapper function for calculation of clustering for predefined set of ten algorithms:

Usage

lec — leading eigenvector community (version of cluster_leading_eigen), directed graph
will be converted to undirected by as_undirected with mode collapse;

wt — walktrap community cluster_walktrap;

fc — fastgreedy community cluster_fast_greedy, directed graph will be converted to undi-
rected by as_undirected with mode collapse;

infomap — infomap community cluster_infomap;

louvain — cluster_louvain cluster_louvain, directed graph will be converted to undirected
by as_undirected with mode collapse;

sgG1 — spin-glass model and simulated annealing clustering (version of cluster_spinglass
with spins=500 and gamma=1);

sgG2 — spin-glass model and simulated annealing clustering (version of cluster_spinglass
with spins=500 and gamma=2);

sgG5 — spin-glass model and simulated annealing clustering (version of cluster_spinglass
with spins=500 and gamma=7);

spectral — spectral modularity clustering spectral_igraph_communities;

getClustering(
£g,

alg = c("lec”, "wt”, "fc", "infomap”, "louvain"”, "sgG1", "sgG2", "sgG5", "spectral”),

weights = NULL

)

40 getClusterSubgraphByID

Arguments
gg igraph object to cluster
alg clustering algorithm name
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.
Details

graph suppose to be undirected. If algorithm failed warning will be issued and function returned
NULL.

Algorithm names are verified with match.arg.

Value

communities object or NULL if algorithm failed.

Examples

data(karate,package="igraphdata')
c<-getClustering(karate, 'lec')
c$modularity

getClusterSubgraphByID
Return induced subgraph for cluster

Description

Function reads in a graph gg, vertex cluster membership vector mem, and returns an induced sub-
graph given a cluster membership number ’clID’.

Usage
getClusterSubgraphByID(clID, gg, mem)

Arguments
clIiD cluster ID to extracte
gg graph to analyze
mem membership vector
Value

induced subgraph as igraph object

getCommunityGraph

Examples

data(karate,package="igraphdata')

alg<-'louvain'

c<-getClustering(karate,alg = alg)
gc3<-getClusterSubgraphByID(3,karate,membership(c))
#plot(gc3,vertex.label=V(gc3)$name)

getCommunityGraph Create new graph with communities as a nodes.

Description

The idea based upon this StackOverflow answer

Usage

getCommunityGraph(gg, membership)

Arguments

gg graph to convert

membership participation list for new graph
Value

community graph

Examples

data(karate,package="'igraphdata')
alg<-'louvain'
mem<-calcMembership(karate,alg = alg)
cg<-getCommunityGraph(karate,mem$membership)

getDiseases Get HDO disease IDs

Description

Return vector of HDO disease IDs for synaptic PPI analysis.

Usage

getDiseases()

Value

vector of disease IDs of interest

https://shorturl.at/flv35

42 getDYNAMO

See Also
getDType

Examples

getDiseases()

getDType Get DiseaseTypes

Description

Return vector of disease abbreviations for synaptic PPI analysis.

Usage

getDType()

Value

vector of disease abbreviations for synaptic PPI analysis.

See Also

getDiseases

Examples

getDType()

getDYNAMO Calculate DYNAMO sensitivity matrix.

Description

This function calculates sensitivity matrix that represents perturbation patterns defined by topology
and edge weights of the network. If weights are signed value sensitivity matrix is able to reproduce
not only activation but inhibition relationships in the network.

Usage
getDYNAMO(g, attr = NULL, vid = "name", alpha = 0.9)

Arguments
g igraph object
attr NULL or the name of edge attribute containing numerical weight values
vid name of the vertex attribute to be used as row and column names
alpha parameter characterizing the propagation strength, default value 0.9 taken from

Santolini paper.

getEntropy 43

Details

Algorithm proposed in:

Santolini,M. and Barabasi,A.-L. (2018) Predicting perturbation patterns from the topology of bio-
logical networks. Proc Natl Acad Sci USA, 169, 201720589.

Value

sparce sensitivity matrix defined by the network topology and edge values

Examples

data(karate, package='igraphdata')
upgrade_graph(karate)
d<-getDYNAMO(karate,attr="weight')
df<-metlMatrix(d)

head(df)

getEntropy Calculates vertex perturbation graph entropy.

Description

According to Teschendorf et al., 2010, network entropy measure quantifies the degree of random-
ness in the local pattern information flux around single genes. For instance, in metastatic cancer
this measure was found significantly higher than in non-metastatic and helped to identify genes and
entire pathways involved on metastasis. However, for the assessment of scale-free structure we do
not actually require gene expression data as it based solely on the network topology.

Usage

getEntropy(gg, maxSr = NULL, exVal = NULL)

Arguments
gg igraph object
maxSr the maximum entropy rate max SR, if NULL getEntropyRate will be called.
exVal expression values boundaries. Two columns are expected: xx and lambda. If
NULL default values c(2,14) and c(-14,14) will be used for xx and lambda
respectively.
Details

In this function, following procedure described in (Teschendorff et al., 2015), all vertexes are artifi-
cially assigned a uniform weight then sequentially perturbed with the global entropy rate (SR) after
each protein’s perturbation being calculated and plotted against the log of the protein’s degree. In
case of scale-free or approximate scale-free topologies, we see a clear bi-modal response between
over-weighted vertices and their degree and an opposing bi-phasic response in under-weighted ver-
tices and their degrees.

44 getEntropyRate

Value
matrix containing for each Gene:
e Entrez ID,

e Name,

* Degree,

UP — Graph Entropy values when gene is expressed up,

* DOWN - Graph Entropy values when gene is expressed down.

Note

Entropy is calculated with respect to GeneName property, if there is no such vertex attribute in the
graph vertex name will be copied to the GeneName attribute. If any NA is found in GeneNames
error will be thrown.

See Also

Other Entropy Functions: calcEntropy(), getEntropyRate(), plotEntropy()

Examples

file <- system.file("extdata”, "PPI_Presynaptic.csv”, package = "BioNAR")

tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)

gg<-annotateGeneNames(gg)

any(is.na(V(gg)$GeneName))

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(gg)$name == '80273"')

paste(V(gg)$GeneName[idx], 'GRPEL1')

e<- getEntropy(gg)

getEntropyRate Calculate the maximum entropy rate and initial entropy rate .

Description

This function calculates the maximum entropy rate max.S R (maxSr) and initial entropy rate SRy
(SRo) given a connected network.

Usage

getEntropyRate(gg)

Arguments

gg igroph object

getGNP 45

Details
The maximum entropy rate being calculated from the network’s adjacency matrix:

Aij l/j
)\Vi

maxSR = Z Dij =
(2]
where v and A are the leading eigenvector and eigenvalue of the network adjacency matrix A re-
spectively.

The initial configuration occurs when the entropy for each node is maximal. This can be calculated
by setting the expression value for each gene/node in the network to be the same, and thus the
maximal node entropy is dependent only on the node’s degree k:

1
SRo = = Z]: kjlog k;
where N here is the number of nodes and k the average node degree found in the network.

Value

list with values of maxSr and SRo

See Also
Other Entropy Functions: calcEntropy(), getEntropy(), plotEntropy()

Examples

karate <- make_graph("Zachary")

We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]

ent <- getEntropyRate(karate)

getGNP Generate random graph from reference

Description
Function generates random G(n,p) Erdos-Renyi graph (sample_gnp) with the same number of ver-
tices and edges as in in the reference graph gg.

Usage

getGNP(gg, ...)

Arguments
gg reference graph
additional arguments to be passed to sample_gnp
Value

new instance of the random graph.

46 getGraphCentralityECDF

Examples

data(karate,package="igraphdata')
vcount(karate)

ecount(karate)

rg<- getGNP(karate)

veount(rg)

ecount(rg)

getGraphCentralityECDF
Convert centrality matrix into ECDF

Description

Convert centrality matrix into ECDF

Usage

getGraphCentralityECDF (m)

Arguments

m centrality matrix from getCentralityMatrix invocation.

Value

list of several ecdf objects, corresponding to values in centrality matrix from getCentralityMatrix
invocation.

See Also

getCentralityMatrix

Examples

file <- system.file("extdata"”, "PPI_Presynaptic.csv”, package = "BioNAR")
tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)

m<-getCentralityMatrix(gg)

ecdflL<-getGraphCentralityECDF(m)

getIDs 47

getIDs Utility function to get vertex ids from vertex attributes The function ob-
tain attribute values and check duplicates in it. It fails if any duplicate
found.
Description

Utility function to get vertex ids from vertex attributes The function obtain attribute values and
check duplicates in it. It fails if any duplicate found.

Usage

getIDs(gg, idatt)

Arguments

gg graph

idatt attribute name
Value

idatt attribute values

getPA Generate random graph from reference

Description

The function generates random Barabasi-Albert graph (sample_pa) with the same vertex number
as in the reference graph gg and the power specified by parameter pwr. If pwr is missing, we are
trying to estimate pwr from the reference graph gg.

Usage
getPA(gg, pwr, ...)
Arguments
gg reference graph
pwr the power parameter for the sample_pa
additional parameters to be passed to the sample_pa
Value

new instance of the random graph.

48 getRandomGraphCentrality

Examples

data(karate,package="igraphdata')
vcount(karate)

ecount(karate)

rg<- getPA(karate,pwr=1.25)
veount(rg)

ecount(rg)

getRandomGraphCentrality
Centrality measures for random graphs induced by input one

Description

Generate a random graph that mimics the properties of the input graph and calls getCentralityMatrix
to calculate all available vertex centrality measures. There are four different types of random graph
to generate

Usage
getRandomGraphCentrality(
gg,
type = C("gnp", llpaﬁl, "anp“, IIrWH)’
power = NULL,

weights = NULL,

Arguments

gg template graph to mimic
type type of random graph to generate:

 gnp — G(n,p) Erdos-Renyi model (sample_gnp)

* pa— Barabasi-Albert model (sample_pa)

 cgnp —new random graph from a given graph by randomly a dding/removing
edges (sample_correlated_gnp)

* rw — new random graph from a given graph by rewiring 25% of edges
preserving the degree distribution sample_gnp, sample_correlated_gnp,
and sample_pa

power optional argument of the power of the preferential attachment to be passed to
sample_pa. If power is NULL the power of the preferential attachment will be
estimated from fitDegree function.

weights Possibly a numeric vector giving edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute).

other parameters passed to random graph generation functions

Value

matrix of random graph vertices centrality measure.

getRobustness 49

See Also

getCentralityMatrix() for explanation of the use of weights.

Examples

data(karate,package="igraphdata')

m<-getRandomGraphCentrality(karate, 'pa’', threads=1)

to avoid repetitive costy computation of PowerLaw fit

power parameter could be send explicitly:

pFit <- fitDegree(as.vector(igraph::degree(graph=karate)),

Nsim=10, plot=FALSE,threads=1)

pwr <- slot(pFit, 'alpha')

m<-getRandomGraphCentrality(karate, 'pa’', power=pwr)

lpa<-lapply(1:5,getRandomGraphCentrality, gg=karate, type='pa',
power=pwr,weights = NULL)

getRobustness Calculate cluster robustness from consensus matrix

Description

This function takes as argument a network (gg), the name of a clustering algorithm (alg) which can
be found in the network, and a consensus matrix (conmat) generated from the clustering network.
The function uses the consensus matrix to generate a measure of cluster robustness C,..; (Crob)
for each cluster (C) using the R function clrob. Briefly, this is done by summing elements of the
consensus matrix that are found in the same cluster, and dividing this by the total number of entries
in the matrix: 5

Crob = reN(GA)] Z conmat; ;

ij€lg
i<j

where I — indices of vertices of the cluster C, C,, is the number of nodes found inside the cluster

C.

Usage

getRobustness(gg, alg, conmat)

Arguments
gg igroph object
alg clustering algorithm
conmat consensus matrix
Value

data.frame that for each cluster C shows

« its size C,, (Cn),
* robustness C.,, (Crob) and

* robustness scaled to range between 0 and 1 (CrobScaled).

50 law-class

See Also

Other Robustness Functions: makeConsensusMatrix()

Examples

karate <- make_graph("Zachary")

We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]

alg<-'louvain'

gg<-calcClustering(karate, alg = alg)

conmat<-makeConsensusMatrix(gg, N=100, mask = 10, alg = alg, type = 2)
clrob<-getRobustness(gg, alg = alg, conmat)

clrob

gofs Goodnes of fit KS test

Description

This is internal function and do not suppose to be called by user.

Usage
gofs(x, rate, model, sigma2 = NULL, countDATA = TRUE)

Arguments
X steps along the Fe
rate parameters of the sigmoid
model fitted model
sigma2 noise strength
countDATA should points to be counted
Value

list of ks. test values for each value in rate

law-class Result of PawerLaw fit

Description

Result of PawerLaw fit

Slots

fit displ-class result of power law fit.
p numeric.

alpha numeric degree of power-law.
SDxmin numeric bootstrap sd of Xmin.
SDalpha numeric bootstrap sd of alpha.

layoutByCluster

51

layoutByCluster Calculate layout based upon membership

Description

Function to split graph into clusters and layout each cluster independently..

Usage
layoutByCluster(gg, mem, layout = layout_with_kk)

Arguments
gg graph to layout
mem membership data.frame from calcMembership
layout algorithm to use for layout

Value

Layout in a form of 2D matrix.

See Also

igraph::layout_

Examples

data(karate,package="igraphdata')
alg<-'louvain'
mem<-calcMembership(karate,alg = alg)
lay<-layoutByCluster(karate,mem)
#plot(karate, layout=lay)

layoutByRecluster Calculate two-level layout from recluster matrix

Description

Takes results of recluster and apply layoutByCluster to each

Usage
layoutByRecluster(gg, remem, layout = layout_with_kk)

Arguments
gg graph to layout
remem recluster result obtained by calcReclusterMatrix invocation

layout one of the layout algorithms from layout_

52 makeConsensusMatrix

Value

Layout in a form of 2D matrx.

Examples

data(karate,package="igraphdata')
alg<-'louvain'

mem<-calcMembership(karate,alg = alg)
remem<-calcReclusterMatrix(karate,mem,alg,10)
lay<-layoutByRecluster(karate, remem)
#plot(karate, layout=lay)

makeConsensusMatrix Function to make random resampling consensus matrix in memory

Description

Function to make random resampling consensus matrix in memory

Usage

makeConsensusMatrix(
£g,
N = 500,
mask = 20,
alg,
type,
weights = NULL,
reclust = FALSE,

Cnmax = 10
)
Arguments

gg graph to perturb

N number of perturbation steps

mask percentage of elements to perturbe

alg clustering alg.

type edges (1) or nodes (2) to mask

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.

reclust logical to decide wether to invoke reclustering via recluster

Cnmax maximum size of the cluster in mem that will not be processed if reclustering is

invoked

makeMembership 53

Details

Function to assess the robustness of network clustering. A randomisation study is performed apply
the same clustering algorithm to N perturbed networks, and which returns the consensus matrix
where each vertex pair is assigned the probability of belong to the same cluster. The inputted net-
work is perturbed by randomly removing a mask percentage of edges (type=1) or vertices (type=2)
from the network before clustering.

Value

consensus matrix of Nvert X Nvert

See Also

Other Robustness Functions: getRobustness()

Examples

karate <- make_graph("Zachary")

We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]

alg<-'louvain'

gg<-calcClustering(karate, alg = alg)

conmat<-makeConsensusMatrix(gg, N=100, mask = 10, alg = alg, type = 2)
dim(conmat)

makeMembership Create membership data. frame from graph for arbitrary annotation

Description

Create membership data.frame from graph vertex attribute or vector of cluster names, IDs or
indices. This function is simular to calcMembership but do not linked to clustering algorithm.

Usage

makeMembership(gg, membership)

Arguments

gg igraph object to assign membership

membership either name of the vertex attribute or vector of membership
Details

Any annotation coercible to factor could be converted to the membership data.frame. This
function is useful, for example, to make layout with layoutByCluster.

Value

data.frame with two columns names and membership

54 markBowTie
Examples
karate <- make_graph("Zachary")
We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]
m<-makeMembership(karate,rep(c(1,2),length.out=vcount(karate)))
head(m)
markBowTie Calculates bow-tie decomposition and marks vertices with one of the
following in the BowT1ie attribute:
e SCC — maximal strong connected component;
o IN —vertices not in SCC, but SCC is reachable from them;
e OUT - vertices not in SCC, but reachable from SCC;
e TU — vertices not in all three above, but reachable from IN and
OUT is reachable from them (TUBES);
* IDR — vertices not in SCC, but they are reachable from IN and
OUT is NOT reachable from them (INTENDRILS);
* ODR — vertices not is SCC, but they are NOT reachable from IN
and OUT is reachable from them (OUTTENDRILS);
e OTR - all other vertices.
Description
Algorithm proposed in:
Usage
markBowTie(g)
Arguments
g graph to analyse
Details

"Bow-tie Decomposition in Directed Graphs" - Yang et al. IEEE (2011)

Value

graph with BowTie vertex attribute

metIMatrix 55

metlMatrix Convert sparce matrix into triplet data. frame.

Description

For very large graphs handling adjacency-like matrices is difficult due to its sparse nature. This
function convert sparse matrix into triplet data.frame with row and column indices and names,
and cell value.

Usage

metlMatrix(sparceM)
Arguments

sparceM sparce matrix to convert into triplet data. frame
Value

data. frame with three colums:

¢ i—row index;

* j—column index;

e x —cell value;

¢ Rname — i-th row name;

* Cname — j-th column name.

Examples

data(karate, package='igraphdata')

upgrade_graph(karate)

Ws <- as_adjacency_matrix(karate,type="both',attr="'weight',sparse = TRUE)
mdf<-metlMatrix(Ws)

head (mdf)

normModularity Calculates the normalised network modularity value.

Description

Function to compare network Modularity of input network with networks of different size and
connectivity.

Usage

normModularity(
g8,
alg = c("lec”, "wt", "fc”, "infomap”, "louvain”, "sgG1", "sgG2", "sgG5"),
Nint = 1000,
weights = NULL
)

56 normModularity

Arguments
gg graph object to analyze
alg clustering algorithm
Nint number of iterations
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.
Details

Used the normalised network modularity value Qm based on the previous studies by Parter et al.,
2007, Takemoto, 2012, Takemoto, 2013, Takemoto and Borjigin, 2011, which was defined as:

_ Qreal - Qrand

Q =
" Qmaa: - Qrand

Where Q¢4 is the network modularity of a real-world signalling network and, Q4,4 is the average
network modularity value obtained from 10,000 randomised networks constructed from its real-
world network. @Q,,q, was estimated as: 1 - 1/M, where M is the number of modules in the real
network.

Randomised networks were generated from a real-world network using the edge-rewiring algorithm
(Maslov and Sneppen, 2002).

Value

normalized modularity value

References

Takemoto, K. & Kihara, K. Modular organization of cancer signaling networks is associated with
patient survivability. Biosystems 113, 149-154 (2013).

Examples
file <- system.file("extdata"”, "PPI_Presynaptic.csv”, package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)

nm<-normModularity(gg, alg='louvain',Nint=10)

permute 57

permute Randomly shuffle annotations

Description

This function is a convinience wrapper to sample with replace= FALSE

Usage

permute(GNS, N)

Arguments
GNS annotation list to take data from
N size of the sample

Value

random list of GNS values

Examples

permute(LETTERS, 15)

plotBridgeness Plot Bridgeness values

Description

Semi-local centrality measure (Chen et al., 2011) lies between 0 and 1 indicating whether protein
is important globally or locally. By plotting Bridgeness against semi-local centrality we can cate-
gorises the influence each protein found in our network has on the overall network structure:

* Region 1, proteins having a ’global’ rather than ’local’ influence in the network (also been
called bottle-neck bridges, connector or kinless hubs (0<S1<0.5; 0.5<Br<1).
* Region 2, proteins having ’global’ and ’local’ influence (0.5<SI<1, 0.5<Br<1).

* Region 3, proteins centred within the community they belong to, but also communicating with
a few other specific communities (0<S1<0.5; 0.1<Br<0.5).

* Region 4, proteins with ’local’ impact , primarily within one or two communities (local or
party hubs, 0.5<SI<1, 0<Br<0.5).

58 plotBridgeness
Usage
plotBridgeness(
g8,
alg,
VIPs,
Xatt = "SL",
Xlab = "Semilocal Centrality (SL)",
Ylab = "Bridgeness (B)",
bsize = 3,
spsize = 7,
MainDivSize = 0.8,
xmin = 0,
xmax = 1,
ymin = 0,
ymax = 1,
baseColor = "royalblue2",
SPColor = "royalblue2"
)
Arguments
gg igraph object with bridgenes values stored as attributes, after call to calcBridgeness
alg clustering algorithm that was used to calculate bridgeness values
VIPs list of ’specical’ genes to be marked on the plot
Xatt name of the attribute that stores values to be used as X-axis values. By default
SL for semi-local centrality
Xlab label for the X-axis
Ylab label for the Y-axis
bsize point size for genes
spsize point size for ’specical’ genes
MainDivSize size of the line for the region separation lines
xmin low limit for X-axis
xmax upper limit for X-axis
ymin low limit for Y-axis
ymax upper limit for Y-axis
baseColor basic color for genes
SPColor colour highlighting any ’specical’ genes
Value

ggplot object with plot

Examples

karate <- make_graph("Zachary")

We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]
set.seed(100)

gg <- calcClustering(karate, 'louvain')

plotEntropy 59

gg <- calcCentrality(gg)

cnmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
gg<-calcBridgeness(gg, alg = 'louvain', cnmat)

plotBridgeness(gg,alg = 'louvain',VIPs=c("Mr Hi","John A"))

plotEntropy Plot graph entropy values versus vertex degree for each perturbed ver-
tex value.

Description

Following procedure described in (Teschendorff et al., 2015), all vertexes are artificially assigned
a uniform weight then sequentially perturbed with the global entropy rate (SRprime) after each
protein’s perturbation being calculated by getEntropy function.

Usage

plotEntropy(SRprime, subTIT = "Entropy”, SRo = NULL, maxSr = NULL)

Arguments

SRprime results of getEntropy invocation

subTIT entropy axis label

SRo initial entropy rate S Ry, results of getEntropyRate invocation

maxSr the maximum entropy rate maxS R, results of getEntropyRate invocation
Details

This function plot SRprime against the log of the protein’s degree. In case of scale-free or approx-
imate scale-free topologies, we see a clear bi-modal response between over-weighted vertices and
their degree and an opposing bi-phasic response in under-weighted vertices and their degrees.

If maxSr or SRo is set to their default value NULL getEntropyRate will be called and returned
values will be used in the following calculations. As maxSr is required for SRprime calculation by
getEntropy using explicit values could save some time in the case of large network.

Value

ggplot2 object with diagram

See Also

getEntropy()

Other Entropy Functions: calcEntropy(), getEntropy(), getEntropyRate()

60 plotRatio

Examples

file <- system.file("extdata"”, "PPI_Presynaptic.csv"”, package = "BioNAR")

tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)

gg<-annotateGeneNames(gg)

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(gg)$name == '80273')

paste(V(gg)$GeneName[idx], 'GRPEL1')

ent <- getEntropyRate(gg)

SRprime <- getEntropy(gg, maxSr = NULL)

plotEntropy(SRprime, subTIT = "Entropy”, SRo = ent$SRo, maxSr = ent$maxSr)

plotRatio Plot fraction of enriched communities

Description

Plot fraction of enriched communities

Usage
plotRatio(
X y
desc = "",
anno = "",
LEGtextSize = 1.5,
LEGlineSize = 4,
type = NULL
)
Arguments
X enrichment statistics
desc plot subtitle
anno name of annotation used
LEGtextSize size of the text

LEGlineSize width of the line

type type of the plot

Value

ggplot object

plotSigmoid 61

plotSigmoid Plot results of the sigmoid fit

Description

Plot results of the sigmoid fit

Usage

plotSigmoid(x, rates, model, alg = "", pv = 0)
Arguments

X steps along the Fe

rates parameters of the sigmoid

model fitted model

alg name of the clustering algorithm

pv Kolmogorov-Smirnov test’s p-value
Value

ggplot object with sigmoid fit plot

PPI_Presynaptic.csv Table of protein protein interactions for presynaptic compartment

Description

Protein-protein interactions (PPIS) for presynaptic compartment, extracted from Synaptome.db, in
a csv form. Columns A and B correspond to Entrez IDs for interacting proteins A and B (node
names); column We contains the edge weights, if available.

See Also

buildNetwork

PPI_Presynaptic.gml PPI graph for presynaptic compartment

Description

Protein-protein interactions (PPIS) for presynaptic compartment, extracted from Synaptome.db, and
saved in a graph format. Graph contains node attributes, such as names (Entrez IDs), Gene Names,
disease association (TopOntoOVG, TopOntoOVGHDOID), annotation with schizophrenia-related
genes (Schanno (v/c), function annotation from GO (GOBPID, GOBP, GOMFID, GOMF, GOC-
CID, GOCC), centrality measures (DEG - degree, BET - betweenness, CC - clustering coefficient,
SL - semilocal centrality, mnSP - mean shortest path, PR - page rank, sdSP - standard deviation
of the shortest path), and clustering memberships for 8 clustering algorithms (lec, wt, fc, infomap,
louvain, sgG1, sgG2, sgG5)

62 PresynAn.csv

prepareGDA Function to return vertex annotation from a graph in the Vertex Anno-
tation form and format it for further analysis.

Description

Function to return vertex annotation from a graph in the Vertex Annotation form and format it for
further analysis.

Usage

prepareGDA(gg, name)

Arguments
gg igraph object to take annotation from
name name of the vertex attribute that contains annotation. If graph has no such vertex
attribute an error is thrown..
Value

escaped annotation in Vertex Annotation form

See Also

getAnnotationVertexList

escapeAnnotation

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")

gg <- igraph::read_graph(file, format="gml")

agg<-annotateGeneNames(gg)

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273")

paste(V(agg)$GeneName[idx], 'GRPEL1')

gda<-prepareGDA(agg, 'TopOntoOVGHDOID')

gda<-prepareGDA(agg, 'TopOntoOVGHDOID')

head(gda)

PresynAn.csv Presynaptic genes specific functional annotation

Description

Presynaptic genes functional annotation derived from Boyken at al. (2013) doi:10.1016/j.neuron.
2013.02.027. The table has columns: the first containing functional group ID terms, the second -
gene functional group description terms, third - gene Human Entrez Ids; in csv format

See Also

annotatePresynaptic

doi:10.1016/j.neuron.2013.02.027
doi:10.1016/j.neuron.2013.02.027

recluster 63

recluster Hierarchical graph clustering

Description

Function reads in a graph GG with cluster membership stored in vertex attribute ALGN, and reapplies
the clustering algorithm ALGN to all clusters larger than CnMAX

Usage

recluster (GG, ALGN, CnMAX, weights = NULL)

Arguments
GG graph to cluster
ALGN algorithm to apply
CnMAX maximum size of the cluster in mem that will not be processed
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.
Value

remembership matrix, that contains vertex ID membership and result of reclustering

Examples

data(karate,package="igraphdata')
alg<-'louvain'

mem<-calcMembership(karate,alg = alg)
remem<-calcReclusterMatrix(karate,mem,alg,10)

removeVertexTerm Remove vertex property.

Description

Remove vertex property.

Usage

removeVertexTerm(GG, NAME)

64 runPermDisease

Arguments

GG igraph object

NAME name of the vertex property to remove
Value

igraph object with attribute removed

Examples

data(karate, package='igraphdata')
upgrade_graph(karate)
vertex_attr_names(karate)
m<-removeVertexTerm(karate, 'color')
vertex_attr_names(m)

runPermDisease Calculate disease-disease pair overlaps on permuted network to esti-
mate its statistical significance

Description

Function to calculate the disease-pair overlap characteristics of an inputted network, before ap-
plying Nperm permutations on the disease annotations of #’ type "random" or "binned" permute.
From the permuted networks the function estimates the significance of disease overlap: p-value,
Bonferoni-adjusted p-value, and g-value in the Disease_overlap_sig. The function also com-
pares the average disease separation between inputted and permuted networks, and calculates its
significance using the Wilcox test and store. Significance of disease-pair overlap and disease sepa-
ration results are stored in the matrix Disease_location_sig.

Usage
runPermDisease(
gg,
name,
diseases = NULL,
Nperm = 100,
permute = c("random”, "binned"),
alpha = c(0.05, 0.01, 0.001)
)
Arguments
gg interactome network as igraph object
name name of the attribute that stores disease annotation
diseases list of diseases to match
Nperm number of permutations to apply
permute type of permutations. random — annotation is randomly shuffled, binned — an-
notation is shuffled in a way to preserve node degree-annotation relationship by
degreeBinnedGDAs.

alpha statistical significance levels

sampleDegBinnedGDA 65

Details

Run with care, as large number of permutations could require a lot of memory and be timeconsum-
ing.

Value

list of two matrices: Disease_overlap_sig gives s tatistics for each pair of disease, and Disease_location_sig
gives intra-disease statistics

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")

agg<-annotateGeneNames(gg)

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273")

paste(V(agg)$GeneName[idx], 'GRPEL1")

r <- runPermDisease(

agg,

name = "TopOntoOVGHDOID",

diseases = c("DOID:10652", "DOID:3312", "DOID:12849", "DOID:1826"),

Nperm = 10,

alpha = c(0.05, 0.01, 0.001))

r$Disease_location_sig

sampleDegBinnedGDA Function to randomly shuffle vertex annotation terms, whilst preserv-
ing the vertex degree originally found with that annotation term..

Description
Function to randomly shuffle vertex annotation terms, whilst preserving the vertex degree originally
found with that annotation term..

Usage

sampleDegBinnedGDA(org.map, term)

Arguments
org.map degree-annotation mapping returned by degreeBinnedGDAs
term annotation term to shuffle

Value

vertex IDs to assign term in shuffled annotation

See Also
degreeBinnedGDAs

66 sampleGraphClust

Examples

file <- system.file("extdata”, "PPI_Presynaptic.gml”, package = "BioNAR")

gg <- igraph::read_graph(file, format="gml")

agg<-annotateGeneNames(gg)

due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273")

paste(V(agg)$GeneName[idx], 'GRPEL1')

gda<-prepareGDA(agg, 'TopOntoOVGHDOID')

diseases<-getAnnotationList(gda)

m<-degreeBinnedGDAs(agg, gda, diseases)

sampleDegBinnedGDA(m, diseases[1])

sampleGraphClust Perturbe graph and calculate its clustering

Description

Function will mask mask a percentage of edges (type=1) or vertices (type=2) from the network,
find the largest connected component of the masked network and cluster it. The clustering results
are stored in a three column matrix: the first column contains the vertex IDs of input network; the
second column the vertex IDs of the subsampled network, or -1 if the vertex has been masked; the
third column the cluster membership of subsampled network, or -1 if vertex has been masked.

Usage
sampleGraphClust(
£g,
mask = 20,
alg,
type,

weights = NULL,
reclust = FALSE,

Cnmax = 10
)
Arguments

gg graph

mask percentage of elements to perturbe

alg clustering alg.

type edges=>1 or nodes=>2 to mask

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but
you don’t want to use it for community detection. A larger edge weight means
a stronger connection for this function. The weights value is ignored for the
spectral clustering.

reclust logical to decide whether to invoke reclustering via recluster

Cnmax maximum size of the cluster in mem that will not be processed if reclustering is

invoked

SCH_fiatfile.csv 67

Details

This is internal function and not supposed to be calle by end user.

Value

list of Nx3 matrices

Examples

data(karate,package="igraphdata')

alg<-'louvain'

mem<-calcMembership(karate,alg = alg)

smpl<-BioNAR: : :sampleGraphClust(karate,mask=10,alg, type=2)

SCH_flatfile.csv Schizopherina related synaptic gene functional annotation.

Description

Annotation, manually curated from an external file: Lips et al., (2012) doi:10.1038/mp.2011.117.The
table has columns: the first containing gene Human Entrez IDs, the second gene functional group
ID terms, the third gene functional group description terms; in csv format

See Also

annotateSCHanno

summaryStats Calculate summary statistics from enrichment table

Description

Calculate summary statistics from enrichment table

Usage
summaryStats(RES, ALPHA, usePadj = FALSE, FeMAX = @, FcMAX = @)

Arguments
RES enrichment results data. frame
ALPHA p-value cut-off
usePadj logical, wether to use plain or adjusted p-value
FeMAX max of the FE
FcMAX max of the FC
Value

list of data. frame

68 zeroNA

unescapeAnnotation Unescape annotation strings

Description

Function to remove all escape characters from annotation strings (opposite to escapeAnnotation).

Usage

unescapeAnnotation(annVec, col = COLLAPSE, esc = ESC)

Arguments
annVec vector of annotation strings
col list separator character within annotation string
esc escape character

Details

NOTE: spaces are treated as regular characters, no trimming is applied before or after escaping.

Value

vector of annotation strings with removed escape characters

See Also

escapeAnnotation

Examples

annVec<-apply(matrix(letters, ncol=13), 2, paste, collapse=';"')

escVec<-escapeAnnotation(annVec, ';', '|")
cbind(annVec, escVec, unescapeAnnotation(escVec, ';', '|"))
zeroNA Auxiliary function to replace NAs with zeros.
Description

Auxiliary function to replace NAs with zeros.

Usage

zeroNA(x)

Arguments

X matrix or vector to process

zeroNA

Value

matrix or vector with NAs replaced by zero.

Examples

x<-matrix(NA,nrow = 3,ncol = 3)
zeroNA(x)

69

Index

* Entropy Functions
calcEntropy, 22
getEntropy, 43
getEntropyRate, 44
plotEntropy, 59

+* Robustness Functions
getRobustness, 49
makeConsensusMatrix, 52

x diseasome
diseasome, 30

x file
flatfile.go.BP.csv, 34
flatfile.go.CC.csv, 35
flatfile.go.MF.csv, 35
flatfile_human_gene2HDO.csv, 35
PPI_Presynaptic.csv, 61
PPI_Presynaptic.gml, 61
PresynAn.csv, 62
SCH_flatfile.csv, 67

* graphs
diseasome, 30

* internal
buildConsensusMatrix, 14

addEdgeAtts, 4
annotateGeneNames, 4
annotateGoBP, 5, 34
annotateGoCC, 6, 35
annotateGoMF, 7, 35
annotateGOont, 7
annotatelnterpro, 8
annotatePresynaptic, 9, 62
annotateSCHanno, 10, 67
annotateTopOntoOVG, 11, 35
annotateVertex, 12, 13
applpMatrixToGraph, 13, 17
as_undirected, 39

betweenness, 38

BioNAR, 13

BioNAR-package (BioNAR), 13
buildConsensusMatrix, 14
buildNetwork, 15, 61

70

calcAllClustering, 15
calcBridgeness, 16, 58
calcCentrality, 17
calcCentralityExternalDistances, 18
calcCentralityInternalDistances, 19
calcClustering, 15,20
calcDiseasePairs, 21
calcEntropy, 22, 44, 45, 59
calcMembership, 23, 51, 53
calcReclusterMatrix, 24, 51
calcSparsness, 25

clrob, 49
cluster_fast_greedy, 39
cluster_infomap, 39
cluster_leading_eigen, 39
cluster_louvain, 39
cluster_spinglass, 39
cluster_walktrap, 39
clusteringSummary, 25
clusterORA, 26
communities, 40
compMembership, 28

degreeBinnedGDAs, 21, 29, 64, 65
diseasome, 30
dist, 19

escapeAnnotation, 30
evalCentralitySignificance, 31

findLCC, 32

fitDegree, 32, 48

fitSigmoid, 33
flatfile.go.BP.csv, 34
flatfile.go.CC.csv, 35
flatfile.go.MF.csv, 35
flatfile_human_gene2HDO.csv, 35

getAnnotationList, 36
getAnnotationVertexList, 36
getBridgeness, 16, 37
getCentralityMatrix, 17, 18, 38, 46, 48
getCentralityMatrix(), 17, 49
getClustering, 20, 23, 28, 38, 39

INDEX

getClusterSubgraphByID, 40 sample, 57
getCommunityGraph, 41 sample_correlated_gnp, 48
getDiseases, 41 sample_gnp, 45, 48
getDType, 42 sample_pa, 47, 48
getDYNAMO, 42 sampleDegBinnedGDA, 65
getEntropy, 22, 43, 45, 59 sampleGraphClust, 14, 66
getEntropy(), 22, 59 SCH_flatfile.csv, 67
getEntropyRate, 22, 44, 44, 59 spectral_igraph_communities, 39
getGNP, 45 summaryStats, 34, 67
getGraphCentralityECDF, 46 summaryStats(), 34
getlIDs, 47

getPA, 47 unescapeAnnotation, 68
getRandomGraphCentrality, I8, 19, 48

getRobustness, 49, 53 veount, 25

25?1?;658’61 zeroNA, 68

graph, 30

graph_from_data_frame, 15

keys, 5, 8

keytypes, 5, 8

ks.test, 50

law-class, 50
layout_, 51
layoutByCluster, 51, 53
layoutByRecluster, 51
legend(), 33

makeConsensusMatrix, 50, 52
makeMembership, 53
markBowTie, 54
match.arg, 20, 40
metlMatrix, 55
modularity, 25

normModularity, 55
org.Hs.eg.db, 4, 8

page_rank, 38

permute, 57
plotBridgeness, 57
plotEntropy, 22, 44, 45, 59
plotRatio, 60
plotSigmoid, 61
PPI_Presynaptic.csv, 61
PPI_Presynaptic.gml, 61
prepareGDA, 29, 62
PresynAn.csv, 62

recluster, 52, 63, 66
removeVertexTerm, 63
runPermDisease, 64

	addEdgeAtts
	annotateGeneNames
	annotateGoBP
	annotateGoCC
	annotateGoMF
	annotateGOont
	annotateInterpro
	annotatePresynaptic
	annotateSCHanno
	annotateTopOntoOVG
	annotateVertex
	applpMatrixToGraph
	BioNAR
	buildConsensusMatrix
	buildNetwork
	calcAllClustering
	calcBridgeness
	calcCentrality
	calcCentralityExternalDistances
	calcCentralityInternalDistances
	calcClustering
	calcDiseasePairs
	calcEntropy
	calcMembership
	calcReclusterMatrix
	calcSparsness
	clusteringSummary
	clusterORA
	compMembership
	degreeBinnedGDAs
	diseasome
	escapeAnnotation
	evalCentralitySignificance
	findLCC
	fitDegree
	fitSigmoid
	flatfile.go.BP.csv
	flatfile.go.CC.csv
	flatfile.go.MF.csv
	flatfile_human_gene2HDO.csv
	getAnnotationList
	getAnnotationVertexList
	getBridgeness
	getCentralityMatrix
	getClustering
	getClusterSubgraphByID
	getCommunityGraph
	getDiseases
	getDType
	getDYNAMO
	getEntropy
	getEntropyRate
	getGNP
	getGraphCentralityECDF
	getIDs
	getPA
	getRandomGraphCentrality
	getRobustness
	gofs
	law-class
	layoutByCluster
	layoutByRecluster
	makeConsensusMatrix
	makeMembership
	markBowTie
	metlMatrix
	normModularity
	permute
	plotBridgeness
	plotEntropy
	plotRatio
	plotSigmoid
	PPI_Presynaptic.csv
	PPI_Presynaptic.gml
	prepareGDA
	PresynAn.csv
	recluster
	removeVertexTerm
	runPermDisease
	sampleDegBinnedGDA
	sampleGraphClust
	SCH_flatfile.csv
	summaryStats
	unescapeAnnotation
	zeroNA
	Index

