Package ‘AnVILAZ’

October 21, 2025
Title R / Bioconductor Support for the AnVIL Azure Platform

Version 1.3.1

Description The AnVIL is a cloud computing resource developed in part
by the National Human Genome Research Institute. The AnVILAz
package supports end-users and developers using the AnVIL platform
in the Azure cloud. The package provides a programmatic interface
to AnVIL resources, including workspaces, notebooks, tables, and
workflows. The package also provides utilities for managing
resources, including copying files to and from Azure Blob Storage,
and creating shared access signatures (SAS) for secure access to
Azure resources.

License Artistic-2.0
Encoding UTF-8
Depends R (>=4.5.0)

Imports AnVILBase, BiocBaseUtils, curl, httr2, jsonlite, methods,
rjsoncons, tibble, utils

biocViews Software, Infrastructure, ThirdPartyClient
Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests BiocStyle, dplyr, knitr, readr, rmarkdown, tinytest

SystemRequirements az, azcopy
BugReports https://github.com/Bioconductor/AnVILAz/issues

URL https://github.com/Bioconductor/AnVILAz
VignetteBuilder knitr
Date 2025-04-28

Collate 'AnVILAz-package.R' 'authentication.R' 'azure-class.R'
'avnotebooks-methods.R' 'avtable-methods.R’
'‘avworkflow-methods.R' 'avworkspace-methods.R' 'az-utilities.R'
'az_copy-helpers.R' 'az_sas_token.R' 'azure-methods.R'
'has_avworkspace-methods.R' 'resources.R' 'utilities.R’
'workspace-dev-ops.R' 'workspace_env.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/AnVILAz
git_branch devel
git_last commit 71d98aa

https://github.com/Bioconductor/AnVILAz/issues
https://github.com/Bioconductor/AnVILAz

2 AnVILAz-package

git_last_commit_date 2025-04-28

Repository Bioconductor 3.22

Date/Publication 2025-10-21

Author Martin Morgan [aut, ctb] (ORCID:

<https://orcid.org/0000-0002-5874-8148>),
Marcel Ramos [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3242-0582>)

Maintainer Marcel Ramos <marcel . ramos@sph.cuny.edu>

Contents
AnVILAz-package e 2
avnotebooks-methods L. e 3
avtable-methods e 4
avworkflow-methods 6
avworkspace-methods L. Lo 7
az-utilities e e e e e e e e e e 8
azure-class L. L e e e e 9
azure-methods L e e 9
az_copy-helpers 11
az_Sas_tOKEN e e e e e e e e e e e e e 13
AZ_TOKEN o e e 14
has_avworkspace-methods oL 14
workspace-dev-0pso L. e e e 15
workspace-env 17

Index 18

AnVILAz-package AnVILAz: R/ Bioconductor Support for the AnVIL Azure Platform
Description

The AnVIL is a cloud computing resource developed in part by the National Human Genome Re-
search Institute. The AnVILAz package supports end-users and developers using the AnVIL plat-
form in the Azure cloud. The package provides a programmatic interface to AnVIL resources,
including workspaces, notebooks, tables, and workflows. The package also provides utilities for
managing resources, including copying files to and from Azure Blob Storage, and creating shared
access signatures (SAS) for secure access to Azure resources.

Author(s)

Maintainer: Marcel Ramos <marcel. ramos@sph.cuny.edu> (ORCID)

Authors:

* Martin Morgan <mtmorgan.bioc@gmail.com> (ORCID) [contributor]

https://orcid.org/0000-0002-5874-8148
https://orcid.org/0000-0002-3242-0582
https://orcid.org/0000-0002-3242-0582
https://orcid.org/0000-0002-5874-8148

avnotebooks-methods

See Also
Useful links:

* https://github.com/Bioconductor/AnVILAz
* Report bugs at https://github.com/Bioconductor/AnVILAz/issues

avnotebooks-methods Azure Notebook Management

Description

avnotebooks () lists the notebooks in the current workspace.

Usage

S4 method for signature 'azure'
avnotebooks(local = FALSE, ..., platform = cloud_platform())

S4 method for signature 'azure'
avnotebooks_localize(

destination = "./analyses”,

dry = TRUE,

platform = cloud_platform()
)

S4 method for signature 'azure'
avnotebooks_delocalize(

source = "./",

dry = TRUE,

platform = cloud_platform()

)
Arguments

local logical (1) notebooks located on the workspace (local = FALSE, default) or
runtime / local instance (local = TRUE). When local = TRUE, the notebook path
is <workspace_data_service_url()>/analyses.

e Additional arguments passed to lower level functions (not used)

platform azure () The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "azure” class for
Azure workspaces on AnVIL.

destination character(1) or missing file path to the local file system directory for syn-
chronization. The default location is ~/<workspace_data_service_url()>/analyses.
Out-of-date local files are replaced with the workspace version.

dry logical(1) Whether to perform a dry run i.e., add the --dry-run flag to the
command.

source character(1) or missing file path to the local file system directory for syn-

chronization. The default location is the home folder. Out-of-date local files are
replaced with the workspace version.

https://github.com/Bioconductor/AnVILAz
https://github.com/Bioconductor/AnVILAz/issues

4 avtable-methods

Value

avnotebooks () returns a character vector of files located in the workspace "analyses/” folder path,
or on the local file system.

Functions

* avnotebooks(azure): List the notebooks in the current workspace

* avnotebooks_localize(azure): Sync notebooks between the Azure Blob Storage Con-
tainer and the local runtime

* avnotebooks_delocalize(azure): Sync notebooks between the local runtime and the Azure
Blob Storage Container

Examples

if (has_avworkspace(strict = TRUE, platform = azure()))
avnotebooks ()

avtable-methods AnVIL Azure table ("type") methods

Description

Methods for working with AnVIL Azure tables. These are referred to as "types" in the AnVIL
Workspace Data Service (WDS) APL

Usage

S4 method for signature 'azure'
avtable(table, ..., platform = cloud_platform())

S4 method for signature 'azure'
avtables(..., platform = cloud_platform())

S4 method for signature 'azure'
avtable_import(

.data,

table,

entity = names(.data)[[1L]1],

platform = cloud_platform()
)

S4 method for signature 'azure'
avtable_import_set(

.data,

origin,

set = names(.data)[[1]1],

member = names(.data)[[2]1],

0

avtable-methods

platform

)

cloud_platform()

S4 method for signature 'azure'
avtable_delete(table, ..., platform = cloud_platform())

S4 method for signature 'azure'

avtable_delete_values(table, values, ..., platform = cloud_platform())
Arguments
table character (1) The name of the table / type

platform

.data

entity

origin

set

member

values

Details

Additional arguments passed to lower level functions (not used)

azure () The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "azure” class for
Azure workspaces on AnVIL.

tibble() The dataset chiefly from the avtable() operation

The entity name, i.e., the name of the column in the table that provides the keys
for the data (a.k.a. primaryKey). By default, the first column in the table. The
keys cannot contain special characters or spaces.

character (1) name of the type (entity table) used to create the set e.g "sample”,
"participant”, etc.

character (1) column name of .data identifying the set(s) to be created, i.e.,
the grouping variable.

character(1) column name of .data identifying the member(s) of the set(s)
or groups. The values in this column may repeat if an ID is in more than one set.

character () vector of primaryKey values corresponding to rows to be deleted

avtable_import_set() creates new rows in a table <origin>_set. One row will be created for
each distinct value in the column identified by set. Each row entry has a corresponding column
<origin> linking to one or more rows in the <origin> table, as given in the member column. The
operation is somewhat like split(member, set).

Value

avtable: a tibble() corresponding to the data with the name as given by table

avtables: a tibble() with columns table, count, and colnames corresponding to the tables /
types available in the current workspace

avtable_import(): called for the side effect of uploading the data to the DATA tab

avtable_import_set(): a character (1) name of the imported tibble.

avtable_delete: a logical(1) indicating success or failure

avtable_delete_values(): a logical(1) vector indicating success or failure for each value in

values

6 avworkflow-methods

Functions

e avtable(azure): List the contents of a particular table / type

* avtables(azure): List the available tables / types

e avtable_import(azure): Upload a dataset to the DATA tab

* avtable_import_set(azure): Create a grouping table from an origin dataset
* avtable_delete(azure): Delete a table / type

* avtable_delete_values(azure): Delete rows from a table / type

Examples

if (interactive()) {

library(dplyr)

mtcars_tbl <-
mtcars |>
as_tibble(rownames = "model_id") |>
mutate(model_id = gsub(” ", "-", model_id))

avtable_import(
mtcars_tbl,
table = "testData”,
entity = "model_id"

)
avtable("testData")

avtable("testData") |> # new 'testData_set' table
avtable_import_set("testData”, "cyl”, "model_id")

avtable_delete("testData_set")

avtable_delete_values("testData”, "Mazda-RX4")
3

avworkflow-methods Azure Workflow methods

Description

avworkflow_jobs() reports the status of workflow executions in the current workspace.

Usage

S4 method for signature 'azure'
avworkflow_jobs(..., platform = cloud_platform())

avworkflow_jobs_inputs()

Arguments

Additional arguments passed to lower level functions (not used)

platform azure () The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.

Typically not set manually as cloud_platform() returns the "azure” class for
Azure workspaces on AnVIL.

avworkspace-methods 7

Details

The avworkflow_jobs_inputs() function returns the input parameters for the workflow jobs as a
tibble.

Value

avworkflow_jobs() returns a tibble with the status of the jobs in the current workspace.

Functions

* avworkflow_jobs(azure): List the status of workflow jobs

Examples

if (has_avworkspace(strict = TRUE, platform = azure()))
from within AnVIL
avworkflow_jobs()

avworkspace-methods AnVIL Azure Workspace methods

Description

AnVIL Azure Workspace methods

Usage

S4 method for signature 'azure'
avworkspaces(..., platform = cloud_platform())

S4 method for signature 'azure'
avworkspace_namespace(..., platform = cloud_platform())

S4 method for signature 'azure'
avworkspace_name(..., platform = cloud_platform())

S4 method for signature 'azure'
avworkspace(..., platform = cloud_platform())

S4 method for signature 'azure'
avworkspace_clone(
namespace = avworkspace_namespace(),
name = avworkspace_name(),
to_namespace = namespace,
to_name,
bucket_location = "US",

platform = cloud_platform()

8 az-utilities

Arguments
Additional arguments passed to lower level functions (not used)
platform azure() The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "azure” class for
Azure workspaces on AnVIL.
namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace ()
name character (1) AnVIL workspace name as returned by, eg., avworkspace_name ().

to_namespace character (1) workspace (billing account) in which to make the clone.

to_name character (1) name of the cloned workspace.

bucket_location
character (1) region in which bucket attached to the workspace should be cre-
ated. The default is set to a single region ("US"); multi-region is available but
more costly.

Value

avworkspaces(): a tibble table of available workspaces
avworkspace_namespace(): a character string of the workspace namespace
avworkspace_name(): a character string of the workspace name

avworkspace(): a character string of the workspace namespace and name combination

avworkspace_clone(): called for the side-effect of cloning a workspace to a new namespace and
name.

Functions

* avworkspaces(azure): List workspaces

* avworkspace_namespace(azure): List the workspace namespace

* avworkspace_name(azure): Obtain the workspace name

* avworkspace(azure): Obtain the current workspace namespace and name combination

* avworkspace_clone(azure): Clone a workspace

az-utilities az health check helpers

Description

These functions provide checks for essential workspace tools and variables. az_exists checks for
the presence of the az command line utility. az_healthcheck checks for the presence of the az
command line as well as the essential environment variables.

Usage

az_exists()

az_health_check()

azure-class 9

Value

az_exists returns a logical value indicating the presence of the az command line utility. az_healthcheck
returns a logical value indicating the presence of the az command line utility and the essential en-
vironment variables.

Examples

if (interactive()) {
az_exists()
az_healthcheck()

azure-class Azure platform class

Description

This class represents the Azure platform.

Usage

azure()

Examples

az <- azure()
az
showClass(class(az))

azure-methods A number of methods compatible with the Azure platform class.

Description

A number of methods compatible with the Azure platform class.

Usage

S4 method for signature 'azure'
avcopy(source, destination, dry = TRUE, ..., platform = cloud_platform())

S4 method for signature 'azure'
avlist(..., platform = cloud_platform())

S4 method for signature 'azure'
avremove(source, recursive = FALSE, ..., platform = cloud_platform())

S4 method for signature 'azure'
avbackup(
source,

10 azure-methods

destination,
recursive = TRUE,

platform = cloud_platform()
)

S4 method for signature 'azure'
avrestore(

source,

destination,

recursive = TRUE,

platform = cloud_platform()

)
S4 method for signature 'azure'
avstorage(..., platform = cloud_platform())
Arguments
source character (1) Arelative file path corresponding to either the remote (az_copy_from_storage)

or local (az_copy_to_storage) file location. Remote locations should be rela-
tive to the base directory in the Azure Storage Container e.g., analyses/jupyter.log.

destination character (1) Arelative file path corresponding to either the remote (az_copy_to_storage)
or local (az_copy_from_storage) file location. Remote locations should be rel-
ative to the base directory in the Azure Storage Container. When not specified,
it will default to the base directory of the remote location. The to path can be
a folder path but must end in a forward slash (/). If the to path points to a
non-existent directory, it will be created.

dry logical(1) Whether to perform a dry run i.e., add the --dry-run flag to the
command.

Additional arguments passed to lower level functions (not used)

platform azure() The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "azure” class for
Azure workspaces on AnVIL.

recursive logical(1) Whether to recursively move or remove files in a directory. Only
applies to avremove, avbackup, and avrestore. Default is TRUE for backup
and restore operations and FALSE for avremove.

Details

The recursive argument for avbackup and avrestore is set to TRUE by default and FALSE for
avremove. Note that wildcards are not supported for local or remote paths.

Value

e avlist - atibble of files and metadata

* avcopy - called for the side effect of copying a file to or from the Azure Storage Container
depending on the source and destination inputs

* avremove - called for the side effect of removing a file or folder

* avbackup - called for the side effect of copying a directory to the Azure Storage Container

az_copy-helpers 11

* avrestore - called for the side effect of copying a directory from the Azure Storage Container
* avstorage - a URL string of the Azure Storage Container location

* avworkspaces - a tibble of workspaces on AnVIL

* avtable_import - a response list indicating successful upload

e avtable_delete_values - when successful, a NULL value

Functions
* avcopy(azure): a generalized interface for either az_copy_from_storage or az_copy_to_storage;
deduced from the source and destination inputs
e avlist(azure): list all the files in the Azure Storage Container
* avremove(azure): remove a file or directory from the Azure Storage

* avbackup(azure): copy a directory from the workspace environment to the Azure Storage
Container

* avrestore(azure): copy a file or directory from the Azure Storage Container to the workspace
environment

* avstorage(azure): The base URI string used to move data to and from the Azure Storage
Container

Examples
if (interactive()) {
avlist()
local -> remote
using general interface avcopy

avcopy("jupyter.log”, "analyses/jupyter.log")

upload a directory
avbackup(”./test/", "analyses/test/")

using general interface az_copy
avcopy("analyses/jupyter.log"”, "./jupyter.log")

download a directory
avrestore("analyses/test/", "./test/")

avremove("”analyses/jupyter.log")

az_copy-helpers Azure Copy command line utility helpers

Description

These functions invoke the azcopy command line utility. The utilities make use of a managed
SAS token to mainly transfer files from the Azure workspace to the Azure Storage container. See
az_sas_token for credential details. The results of azcopy copy commands are returned as an
azcopyStatus object which has S3 methods to print and convert to logical.

12 az_copy-helpers

Usage

az_copy_from_storage(from, to = "./", recursive = FALSE, dry = TRUE)

az_copy_to_storage(from, to, recursive = FALSE, dry = TRUE)
S3 method for class 'azcopyStatus'
as.logical(x, ...)

S3 method for class 'azcopyStatus'
print(x, ..., verbose = FALSE)

S3 method for class 'azcopyStatus

summary (object, ...)
Arguments
from character (1) Arelative file path corresponding to either the remote (az_copy_from_storage)

or local (az_copy_to_storage) file location. Remote locations should be rela-
tive to the base directory in the Azure Storage Container e.g., analyses/jupyter.log.

to character (1) Arelative file path corresponding to either the remote (az_copy_to_storage)
or local (az_copy_from_storage) file location. Remote locations should be rel-
ative to the base directory in the Azure Storage Container. When not specified,
it will default to the base directory of the remote location. The to path can be
a folder path but must end in a forward slash (/). If the to path points to a
non-existent directory, it will be created.

recursive logical (1) Whether to recursively move or remove files in a directory. Only
applies to avremove, avbackup, and avrestore. Default is TRUE for backup
and restore operations and FALSE for avremove.

dry logical(1) Whether to perform a dry run i.e., add the --dry-run flag to the
command.
X azcopyStatus object to be checked; usually the output of avcopy operations

Additional arguments (not used).

verbose logical (1) Print the INFO lines from the azcopy output
object azcopyStatus object to be summarized; usually the output of avcopy opera-
tions
Details

* az_copy_from_storage - copy a file from the Azure Storage Container to the workspace
environment

* az_copy_to_storage - copy a file from the workspace environment to the Azure Storage
Container

Value

* az_copy_from_storage - called for the side effect of copying a file from the Azure Storage
Container

* az_copy_to_storage - called for the side effect of copying a file to the Azure Storage Con-
tainer

az_sas_token 13

Functions

* as.logical(azcopyStatus): Convert results of azcopy operations to logical values
* print(azcopyStatus): Print the results of azcopy operations

e summary (azcopyStatus): Get a summary of the results of azcopy operations

Examples

if (interactive()) {

local -> remote
az_copy_to_storage("”jupyter.log”, "analyses/jupyter.log")
az_copy_to_storage(”jupyter.log”, "analyses/test/")

placed in the base storage UUID directory
az_copy_to_storage("jupyter.log")

remote -> local
az_copy_from_storage("analyses/jupyter.log”, "jupyter.log")
download to the current directory
az_copy_from_storage("analyses/jupyter.log")

az_sas_token Obtain the Shared Access Signature (SAS) for the Azure Storage

Description

The function provides a user delegation SAS token for management of resources. Mainly used in
other functions to move files to and from the Azure Storage Container

Usage

az_sas_token(sasExpirationDuration = 28800)

Arguments

sasExpirationDuration
numeric (1) The number of seconds until the SAS token expires (default: 28,800
seconds)

Value

A list of two elements named token and url

Examples

if (interactive()) {
sas <- az_sas_token()
sas[["token"]]
sas[["url"]]

3

14 has_avworkspace-methods

az_token Generate an Azure authentication token with the az command line util-

ity

Description

This function generates an Azure authentication token with the az command line utility. The token
is used to authenticate with the Azure services. This function is called internally by the az_x
functions. It is not meant to be called directly.

Usage

az_token()

Value

A character string containing the authentication token with a "Bearer" prefix.

has_avworkspace-methods
Helper to check if the current environment is within an Azure

workspace

Description

has_avworkspace () checks that the AnVIL environment is set up to work with Azure. If strict
= TRUE, it also checks that the workspace name is set.

Usage
S4 method for signature 'azure'
has_avworkspace(strict = FALSE, ..., platform = cloud_platform())
Arguments
strict logical (1) Whether to include a check for an existing avworkspace_name ()

setting. Default FALSE.
Arguments passed to the methods.

platform A Platform derived class indicating the AnVIL environment, currently, azure
and gcp classes are compatible.

Value

logical(1) TRUE if the AnVIL environment is set up properly to interact with Azure, otherwise
FALSE.

Functions

* has_avworkspace(azure): Check if the AnVIL environment is set up

workspace-dev-ops 15

Examples

has_avworkspace(platform = azure())

workspace-dev-ops Functions to work with workspace data for developers

Description

These group of functions will allow you to manipulate tables in the "DATA" tab. Example opera-
tions include moving a flat Tab-Separated Values (TSV) file into the workspace, deleting records,
deleting tables, adding a single row, retrieving a single row, and retrieving the data table. Note that
the API used refers to tables as types.

Usage

upload_tsv(
tsv_file,
type = tools::file_path_sans_ext(basename(tsv_file)),
primaryKey = NULL

)

download_tsv(type)
delete_type_id(type, id)
add_type_id(row, type, id = row[[1L]])
get_type_id(type, id)

delete_type(type)

Arguments

tsv_file character (1) A path to a tab-separated values file

type character (1) A nickname for the uploaded dataset important for retreival. By
default, the file name will be used.

primaryKey character (1) The optional column name to uniquely identify a record. By
default, the first column is used as the primary key and all values in the column
must be unique.

id character (1) The value in the primaryKey column that indicates the row to
be removed.

row tibble() or data.frame() A single row to add to an existing table. The row

must have the same column names as the table. The primaryKey column must
be unique.

16 workspace-dev-ops

Details

These functions use the Workspace Data Services (WDS) API. Current operations that affect the
"DATA" tab include:
* upload_tsv - a POST request using a TSV file that populates the data

* download_tsv - a GET request with the data name (type argument) in upload_tsv to represent
the data locally as a tibble

* delete_type_id - a DELETE request to remove a record or row from type
* add_type_id - a PUT request to add a single row to an existing table (type)
* get_type_id - a GET request to retrieve a single row from an existing table (type)

* delete_type - a DELETE request to remove then entire data set (type)

Value

* upload_tsv - A response list indicating successful upload
* download_tsv - A tibble corresponding to the data labeled with type
e delete_type_id; delete_type - When successful, a NULL value

Examples

if (interactive()) {
library(dplyr)
type <- "model”
mtcars_tbl <-

mtcars |>
as_tibble(rownames = "model_id") |>
mutate(model_id = gsub(” ", "-", model_id))

tsv_file <- tempfile()
readr::write_tsv(mtcars_tbl, tsv_file)
upload_tsv(

tsv_file = tsv_file,

type = "testData”,

primaryKey = "model_id"”

)

download_tsv("testData”)

create an example single row tibble for add_type_id
datsun <- filter(mtcars_tbl, model_id == "Datsun-710")
change the model_id to be unique
datsun[["model_id"]] <- "Datsun-512"

add_type_id(row = datsun, type = "testData")
get_type_id("testData"”, "Datsun-512")

delete_type_id("testData”, "Datsun-512")

delete_type("testData")

workspace-env 17

workspace-env Access Terra on Azure workspace session variables

Description

A group of functions that return environment variables in the Terra Azure workspace. The Workspace
Data Service URL sends out an API GET request to obtain the data services URL for uploading data
to the workspace "DATA" tab.

Usage

workspace_id()
workspace_storage_cont_id()
workspace_storage_cont_url()
wds_api_version()
workspace_data_service_url()

cbas_url()

Value

* workspace_id - A UUID string referring to "workspaceld" or "workspaceid" in API calls

* workspace_storage_cont_id - A UUID string identifiying the resource storage container
owned by the user account, a.k.a. "resourceld”

* workspace_storage_cont_url - The base URI string used to move data to and from the
Azure Storage Container

* wds_api_version - The version of the Workspace Data Service API, defaults to "v0.2"

» workspace_data_service_url - The base URI string used to move data to to and from the
workspace "DATA" tab

* cbas_url - The base URI string used to query the workflow submission history

Examples

workspace_id()

workspace_storage_cont_id()

workspace_storage_cont_url()

if (interactive()) {
workspace_data_service_url()
cbas_url()

3

Index

* internal
AnVILAz-package, 2
az_copy-helpers, 11
az_token, 14
workspace-dev-ops, 15

.azure (azure-class), 9

add_type_id (workspace-dev-ops), 15
AnVILAz (AnVILAz-package), 2
AnVILAz-package, 2
AnVILBase: :cloud_platform, 3, 5, 6, 8, 10
as.logical.azcopyStatus
(az_copy-helpers), 11
avbackup, azure-method (azure-methods), 9
avcopy,azure-method (azure-methods), 9
avlist,azure-method (azure-methods), 9
avnotebooks (avnotebooks-methods), 3
avnotebooks, azure-method
(avnotebooks-methods), 3
avnotebooks-methods, 3
avnotebooks_delocalize
(avnotebooks-methods), 3
avnotebooks_delocalize,azure-method
(avnotebooks-methods), 3
avnotebooks_localize
(avnotebooks-methods), 3
avnotebooks_localize,azure-method
(avnotebooks-methods), 3
avremove,azure-method (azure-methods), 9
avrestore,azure-method (azure-methods),
9
avstorage,azure-method (azure-methods),
9
avtable (avtable-methods), 4
avtable,azure-method (avtable-methods),
4
avtable-methods, 4
avtable_delete (avtable-methods), 4
avtable_delete,azure-method
(avtable-methods), 4
avtable_delete_values
(avtable-methods), 4
avtable_delete_values, azure-method
(avtable-methods), 4

18

avtable_import (avtable-methods), 4

avtable_import,azure-method
(avtable-methods), 4

avtable_import_set (avtable-methods), 4

avtable_import_set,azure-method
(avtable-methods), 4

avtables (avtable-methods), 4

avtables,azure-method
(avtable-methods), 4

avworkflow-methods, 6

avworkflow_jobs (avworkflow-methods), 6

avworkflow_jobs, azure-method
(avworkflow-methods), 6

avworkflow_jobs_inputs
(avworkflow-methods), 6

avworkspace, azure-method
(avworkspace-methods), 7

avworkspace-methods, 7

avworkspace_clone,azure-method
(avworkspace-methods), 7

avworkspace_name, azure-method
(avworkspace-methods), 7

avworkspace_namespace, azure-method
(avworkspace-methods), 7

avworkspaces, azure-method
(avworkspace-methods), 7

az-utilities, 8

az_copy-helpers, 11

az_copy_from_storage (az_copy-helpers),
11

az_copy_to_storage (az_copy-helpers), 11

az_exists (az-utilities), 8

az_health_check (az-utilities), 8

az_sas_token, 13

az_token, 14

azure (azure-class), 9

azure-class, 9

azure-methods, 9

cbas_url (workspace-env), 17
delete_type (workspace-dev-ops), 15

delete_type_id (workspace-dev-ops), 15
download_tsv (workspace-dev-ops), 15

INDEX

get_type_id (workspace-dev-ops), 15

has_avworkspace, azure-method
(has_avworkspace-methods), 14
has_avworkspace-methods, 14

print.azcopyStatus (az_copy-helpers), 11

summary.azcopyStatus (az_copy-helpers),
11

upload_tsv (workspace-dev-ops), 15

wds_api_version (workspace-env), 17
workspace-dev-ops, 15
workspace-env, 17
workspace_data_service_url
(workspace-env), 17
workspace_id (workspace-env), 17
workspace_storage_cont_id
(workspace-env), 17
workspace_storage_cont_url
(workspace-env), 17
workspace_storage_container_id
(workspace-env), 17
workspace_storage_container_url
(workspace-env), 17

19

	AnVILAz-package
	avnotebooks-methods
	avtable-methods
	avworkflow-methods
	avworkspace-methods
	az-utilities
	azure-class
	azure-methods
	az_copy-helpers
	az_sas_token
	az_token
	has_avworkspace-methods
	workspace-dev-ops
	workspace-env
	Index

