K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 724 278 757 826 605 384 918 732 299 605 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  724  847  609  205  578  254  652  449  963   871
##  [2,]  278  174  672  359 1000  409  927  924   74    84
##  [3,]  757  425  952   19  951  826  456  983  251   337
##  [4,]  826  766   90  660  757  886  785  423  829   952
##  [5,]  605  744  892  180  868  973  472  689  699   609
##  [6,]  384  461  773  301  907  914  874  910  624   877
##  [7,]  918  144  309  732  790   96  619  194  872   624
##  [8,]  732  301  790  828  488  533  918    7   96   297
##  [9,]  299  326  605  237  636  783   43  151  123    36
## [10,]  605  254  382  909  656  783    9  322  428   299
## [11,]  430  341  972   84  885   98  672  814   88   296
## [12,]  968  871  963  836  382  494  583  537  178   449
## [13,]  256  518  915  126  505  816  616  757  571   526
## [14,]  517  534  686  318  525   55  247  851  122   980
## [15,]  841  572  491  482  702   42  569  759   99   868
## [16,]  300  850  514  730  129   47  647  572  848    21
## [17,]  768  524  643  502  703  797  889  877   34    67
## [18,]  996  820  784  330   56  179  347  535  864   646
## [19,]  425  337    3  251  456  664  539  102  938   633
## [20,]  829  952  337  275  905  456  660  513   86   221
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 2.45 3.87 3.31 3.51 3.16 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 2.454328 2.592222 2.644167 2.663104 2.714878 2.799801 2.825407 2.852405
##  [2,] 3.874265 4.109645 4.280278 4.351091 4.435342 4.444715 4.557055 4.564580
##  [3,] 3.312534 3.435652 3.616347 3.624553 3.627424 3.637013 3.711650 3.730789
##  [4,] 3.511983 3.600126 3.710470 3.807232 3.881188 3.887025 3.903024 4.108874
##  [5,] 3.156068 3.318731 3.392997 3.397660 3.439641 3.450455 3.484488 3.538548
##  [6,] 3.563357 3.839062 3.875981 3.927310 4.017907 4.169586 4.174466 4.197146
##  [7,] 2.660734 3.222712 3.330355 3.410273 3.489173 3.543849 3.544633 3.668412
##  [8,] 4.027801 4.070074 4.092915 4.093203 4.130104 4.164760 4.273963 4.471929
##  [9,] 2.396558 3.259011 3.304500 3.324790 3.369705 3.479397 3.554798 3.678302
## [10,] 3.341014 3.380446 3.427433 3.578891 3.722028 3.734385 3.757769 3.770940
## [11,] 3.576761 3.686981 4.013864 4.028906 4.109036 4.117041 4.163028 4.165814
## [12,] 2.852806 2.889047 2.959003 3.231673 3.231683 3.382220 3.450353 3.455540
## [13,] 4.797162 5.096301 5.203686 5.481237 5.551291 5.561407 5.577394 5.689126
## [14,] 4.631537 5.346780 5.584621 5.600063 5.657185 5.698041 5.802450 5.970378
## [15,] 3.095493 3.549029 3.611467 3.636777 3.735117 3.776606 3.786670 3.822604
## [16,] 2.921099 2.936044 2.995608 3.135549 3.331935 3.386441 3.396874 3.419248
## [17,] 3.849132 3.890322 4.123144 4.640677 4.665406 5.025780 5.071413 5.109841
## [18,] 3.714277 4.095550 5.021013 5.138767 5.183568 5.311071 5.433805 5.522612
## [19,] 3.374849 3.593361 3.624553 3.729749 3.776295 3.967070 4.100474 4.178218
## [20,] 3.832430 4.081626 4.109364 4.145820 4.241192 4.241636 4.273084 4.306341
##           [,9]    [,10]
##  [1,] 2.879802 2.886320
##  [2,] 4.573815 4.626615
##  [3,] 3.748499 3.809925
##  [4,] 4.160522 4.176827
##  [5,] 3.553685 3.605198
##  [6,] 4.403295 4.415708
##  [7,] 3.710827 3.729044
##  [8,] 4.595689 4.625179
##  [9,] 3.714439 3.747621
## [10,] 3.816174 3.869995
## [11,] 4.205308 4.227726
## [12,] 3.467135 3.469263
## [13,] 5.701672 5.773673
## [14,] 6.207261 6.314105
## [15,] 3.864378 3.878217
## [16,] 3.460739 3.487585
## [17,] 5.343919 5.390074
## [18,] 5.575583 5.666185
## [19,] 4.290559 4.305770
## [20,] 4.312616 4.326114

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       0.990                      0.983                  0.999
##  2                       0.990                      0.983                  0.999
##  3                       0.990                      1                      1    
##  4                       0.999                      1                      1    
##  5                       0.990                      1.00                   0.999
##  6                       0.990                      0.983                  1    
##  7                       0.990                      1.00                   0.999
##  8                       0.990                      0.983                  0.999
##  9                       0.990                      1.00                   0.999
## 10                       0.990                      1                      0.999
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1         0.548         0.632           1.62                     0.647 
##  2        -0.210        -0.236           0.862                   -0.753 
##  3         0.0596        0.185          -0.218                    0.0135
##  4        -0.273        -0.534          -0.0498                   0.203 
##  5         0.823         1.28            0.729                   -0.0541
##  6         0.819         0.372           0.575                    0.906 
##  7         0.256        -0.104           1.02                    -0.537 
##  8        -0.0637        0.823           0.552                   -0.372 
##  9         0.367         0.421           1.35                    -0.847 
## 10        -0.135        -0.00296         0.420                    0.791 
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.331 0.212 0.243 0.229 0.27 ...