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Introduction

Feature selection is a key step in the analysis of single-cell RNASeq data. Feature
selection aims to identify and remove genes whose expression is dominated by
technical noise, thus reducing the e�ect of batch-e�ects and other technical
counfounders while also reducing the curse of dimensionality.

A common way to select features is to identify genes that follow a di�erent
expression distribution than a set of control genes. These control genes may
be spike-ins but more commonly one assumes that the majority of genes don't
di�er from control genes and use all genes to approximate the expression pattern
of expression of controls.

Often the variance relative to the mean expression is used to characterize the
expression distribution of a gene, and feature selection proceeds by identifying
highly variable genes. In contrast, this package provides two methods which
characterize the expression distribution of a gene using the dropout-rate and
mean expression. This takes advantage of the fact than at least 50% of entries
in a single-cell RNASeq expression matrix are dropouts, and that dropout rate
is less sensitive to sampling errors than variance.

M3Drop

Single-cell RNA sequencing is able to quantify the whole transcriptome from the
small amount of RNA present in individual cells. However, a consequence of
reverse-transcribing and amplifying small quantities of RNA is a large number
of dropouts, genes with zero expression in particular cells. The frequency of
dropout events is strongly non-linearly related to the measured expression levels
of the respective genes. M3Drop posits that these dropouts are due to failures of
reverse transcription, a simple enzyme reaction, thus should be modelled using
the Michaelis-Menten equation as follows:

Pi = 1− Si

Si +K

Where Pi is the proportion of cells where gene i dropouts out, Si is the mean
expression of gene i and K is the Michaelis constant. This model �ts observed
single-cell RNASeq data which have been sequenced to near saturation (i.e.
>100,000 reads per cell).
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Note: This model works well for Smartseq2 and other single-cell datasets
that do not use unique molecular identi�ers (UMIs). For 10X Chromium data
or other UMI tagged data see the NBumi model below.

We'll be using a portion of the Deng et al. (2014) dataset in this example.
You can download the R-package containing this data (M3DExampleData) from
Bioconductor using biocLite().

> library(M3Drop)

> library(M3DExampleData)

Prepare Data

The �rst step is to perform quality control on cells. Any existing tools can be
used for this. Here we will simply remove cells with fewer than 2000 detected
genes.

> counts <- Mmus_example_list$data

> labels <- Mmus_example_list$labels

> total_features <- colSums(counts >= 0)

> counts <- counts[,total_features >= 2000]

> labels <- labels[total_features >= 2000]

The second is to extract and correctly format data for M3Drop. To support
quality control tools in various other single-cell R packages, we have provided a
function to extract appropriate data from objects used by scater, monocle, and
Seurat. This function also removes undetected genes, and if necessary applies a
counts-per-million normalization to raw count data.

> norm <- M3DropConvertData(counts, is.counts=TRUE)

[1] "Removing 18 undetected genes."

M3Drop requires a normalized but not log-transformed expression matrix,
thus the above function can optionally de-log a log2-normalized expression ma-
trix from any normalization method.

> norm <- M3DropConvertData(log2(norm+1), is.log=TRUE, pseudocount=1)

[1] "Removing 0 undetected genes."

Any normalization method which preserves dropouts (i.e zeros) is compatible
with M3Drop.

Feature Selection

Since the Michaelis-Menten equation is convex, averaging across a mixed pop-
ulation forces di�erentially expressed genes to be shifted to the right of the
Michaelis-Menten curve (Figure 1).

> K <- 49

> S_sim <- 10^seq(from=-3, to=4, by=0.05)

> MM <- 1-S_sim/(K+S_sim)

> plot(S_sim, MM, type="l", lwd=3, xlab="Expression", ylab="Dropout Rate",
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+ xlim=c(1,1000))

> S1 <- 10; P1 <- 1-S1/(K+S1);

> S2 <- 750; P2 <- 1-S2/(K+S2);

> points(c(S1,S2), c(P1,P2), pch=16, col="grey85", cex=3)

> lines(c(S1, S2), c(P1,P2), lwd=2.5, lty=2, col="grey35")

> mix <- 0.5;

> points(S1*mix+S2*(1-mix), P1*mix+P2*(1-mix), pch=16, col="grey35", cex=3)
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Figure 1: Michaelis-Menten is convex which leads to DE genes being outliers
to the right/above the curve.

Feature selection for DE genes are identi�ed by comparing the local K cal-
culated for a speci�c gene to the global K �tted across all genes using a Z-test
followed by multiple-testing correction. Here we �nd 1,248 DE genes at 1%
FDR.

> M3Drop_genes <- M3DropFeatureSelection(norm, mt_method="fdr", mt_threshold=0.01)
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Figure 2: Di�erentially expressed genes at 1% FDR (purple).

NBumi

The Michaelis-Menten equation �ts full-transcript single-cell RNASeq data well,
but often struggles to �t data tagged with unique molecular identi�ers (UMIs).
This is a result of UMI datasets typically not being sequenced to saturation,
thus many dropouts are a result of low sequencing coverage rather than a failure
of reverse transcription.

To account for zeros resulting from insu�cient sequencing depth, the M3Drop
packaged includes a depth-adjusted negative binomial model (DANB). DANB
models each observation as a negative binomial distribution with mean propor-
tional to the mean expression of the respective gene and the relative sequencing
depth of the respective cell. The dispersion parameter of the negative bino-
mial is �t to the variance of each gene. The equations for calculating these
parameters are:

Observation speci�c means:

µij =

∑
i

tij ∗
∑
j

tij∑
ij

tij

Gene speci�c dispersion (solved for ri):∑
j

(tij − µij)
2 =

∑
j

(µij + riµ
2
ij)
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Where µij is the observation speci�c mean for the negative binomial for the
observed molecule counts, tij of the ith gene in the jth of cell and ri is the
dispersion parameter (the "size" paramter of R's nbinom functions) for gene i.

Functions relating to the DANB model are tagged with the "NBumi" pre�x.
We will continue using the example data despite it not using UMIs for demon-
stration purposes. Similar to M3Drop we have provided a function to extract
the relevant expression matrix from objects used by popular single-cell RNASeq
analysis packages : scater, monocle, and Seurat. This is a separate function
because DANB requires raw counts as opposed to the normalized expression
matrix used by M3Drop.

> count_mat <- NBumiConvertData(Mmus_example_list$data, is.counts=TRUE)

[1] "Removing 18 undetected genes."

This function can also de-log and de-normalize a provided expression matrix,
but raw counts are preferable if they are available.

Next we �t the DANB model to this count matrix, and check it �ts the data:

> DANB_fit <- NBumiFitModel(count_mat)

> # Smoothed gene-specific variances

> par(mfrow=c(1,2))

> stats <- NBumiCheckFitFS(count_mat, DANB_fit)

> print(c(stats$gene_error,stats$cell_error))

[1] 16981269 1313367011
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Figure 3: Fits of the depth-adjusted negative binomial.
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Since this is a full-transcript dataset that we have converted from normalized
values the model doesn't �t well as can be seen above. We will continue with
this data for demonstration purposes only.

We use a binomial test to evaluable the signi�cance of features under the
DANB model:

> NBDropFS <- NBumiFeatureSelectionCombinedDrop(DANB_fit, method="fdr", qval.thres=0.01, suppress.plot=FALSE)
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Figure 4:
Dropout-based feature selection using DANB

Pearson Residuals

Pearson residuals have recently been proposed as an alternative normalization
approach for UMI tagged single-cell RNAseq data. (https://genomebiology.biomedcentral.com/articles/10.1186/s13059-
021-02451-7)

We have added two option for calculating Pearson residuals using the DANB
model presented here:

> pearson1 <- NBumiPearsonResiduals(count_mat, DANB_fit)

> pearson2 <- NBumiPearsonResidualsApprox(count_mat, DANB_fit)

If you have not �t the DANB model to the data, you can run each of these
functions directly on the count matrix alone, and the required model �tting will
be performed as part of the function. In this case the NBumiPearsonResid-
ualsApprox function will be much quicker since it does not �t the dispersion
parameter of the DANB model, only the mean, and approximates the Pearson
residuals as if the data was Poisson distributed:
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papprox =
xij −muij√

muij

Where xij is the observed umi counts.
Whereas the NBumiPearsonResiduals function calculates the Pearson resid-

uals using the full DANB model as:

pexact =
xij −muij√
muij +

mu2
ij

ri

We do not perform any trimming or clipping of the residuals. To perform√
n clipping as per Hafemeister and Satija, simple run the following additional

steps:

> pearson1[pearson1 > sqrt(ncol(count_mat))] <- sqrt(ncol(count_mat))

> pearson1[pearson1 < -sqrt(ncol(count_mat))] <- -1*sqrt(ncol(count_mat))

Other Feature Selection Methods

For comparison purposes we have provided functions for other feature selection
methods, including: BrenneckeGetVariableGenes from Brennecke et al. (2013)
modi�ed to optionally use all genes to �t the function between CV2 and mean
expression. giniFS based on GiniClust (REF) pcaFS based on monocle (REF)
using irlba and sparse-matricies. corFS which uses gene-gene correlations. and
ConsensusFS which uses all the available feature selection methods and takes
the average rank of genes across all methods.

Only the Brennecke highly variable gene method also provides a signi�cance
test and runs in linear time, thus is the only one we will demostrate here.

> HVG <- BrenneckeGetVariableGenes(norm)
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Figure 5:
Brennecke highly variable genes.

Examining Features and Identifying Subpopula-

tions of Cells

To check that the identi�ed genes are truly di�erentially expressed we can plot
the normalised expression of the genes across cells.

> heat_out <- M3DropExpressionHeatmap(M3Drop_genes$Gene, norm,

+ cell_labels = labels)
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Figure 6: Heatmap of expression of M3Drop features.

The heatmap (Figure 6) shows that the genes identi�ed by M3Drop are
di�erentially expressed across timepoints. Furthermore, it shows that the blas-
tocysts cluster into two di�erent groups based on the expression of these genes.
We can extract these groups and identify marker genes for them as follows:

> cell_populations <- M3DropGetHeatmapClusters(heat_out, k=4, type="cell")

> library("ROCR")

> marker_genes <- M3DropGetMarkers(norm, cell_populations)

The �rst function cuts the dendrogram from the heatmap to produce k clus-
ters of cells. These labels are stored in cell_populations. The second function
tests all genes as marker genes for the provided clusters.

Marker genes are ranked by the area-under the ROC curve (AUC) for pre-
dicting the population with the highest expression of the gene from the other
groups. Signi�cance is calculated using a Wilcox-rank-sum test. Now we can
examine the marker genes of the two clusters of blastocyst cells more closely.

> head(marker_genes[marker_genes$Group==4,],20)

AUC Group pval

1600015I10Rik 1 4 1.322348e-26

4933411G11Rik 1 4 3.387992e-25

5033411D12Rik 1 4 7.122560e-26

A530032D15Rik 1 4 1.448636e-13

AA415398 1 4 3.972292e-20

AU015228 1 4 1.276920e-15
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Abca13 1 4 1.001830e-15

Bex6 1 4 6.309915e-23

Card6 1 4 3.483869e-21

Dcdc2c 1 4 3.703031e-14

Dnajb9 1 4 1.055742e-13

Dub1a 1 4 1.400339e-21

Fbxo33 1 4 1.261562e-13

Fiz1 1 4 1.122001e-13

Gm10696 1 4 3.108289e-19

Gm10697|Tdpoz5 1 4 7.122560e-26

Gm11544 1 4 5.752433e-19

Gm13040|Gm13043|Gm13057 1 4 5.547325e-24

Gm13040|Gm13057 1 4 5.547325e-24

Gm13078 1 4 1.440336e-13

> marker_genes[rownames(marker_genes)=="Cdx2",]

AUC Group pval

Cdx2 0.8859793 1 1.286591e-12

This shows that the inner cell mass (ICM) marker Sox2 is one of the top
20 markers for group 4 and that the trophectoderm (TE) marker Cdx2 is a
marker for group 3, suggesting these two clusters coorespond to ICM and TE
cells within each blastocyst.

Comparing to Other Methods

The DANB features look similar to M3Drop though identi�es more genes due
to the simpli�ed noise model it uses, which is appropriate for UMI-tagged data
but too permissive for data with high amplifcation noise.

> heat_out <- M3DropExpressionHeatmap(NBDropFS$Gene, norm,

+ cell_labels = labels)
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Figure 7: Heatmap of expression of DANB features.

The HVG method is more sensitive to lowly expressed genes. In addition,
the quadratic model it uses frequenly over estimates the expected variability of
highly expressed genes. This is in contrast with M3Drop which recognizes the
low information available for lowly expressed genes.

This di�erence can be seen by comparing the heatmaps for the respective
genes. The highly variable genes contains many more genes exhibiting just noisy
expression, whereas nearly all genes detected by M3Drop are clearly di�eren-
tially expressed across the di�erent cell populations.

> heat_out <- M3DropExpressionHeatmap(HVG, norm,

+ cell_labels = labels)
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Figure 8: Heatmap of expression of highly variable genes across cells.
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