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Abstract

The GSEA1m package contains tools for linear-model inference and diagnostics, tailored for
Gene Set Enrichment Analysis (GSEA). We demonstrate the package’s main features, using
the acute lymphoblastic leukemia (ALL) dataset, comparing the BCR/ABL and NEG phenotypes
via GSEA based on chromosome-band mapping of genes. If you want to follow the text while
running the code, please use the code from the GSEAlm.R file in the same directory where this
document is found, because there are some code excerpts which were hidden from view in the
tutorial below. A more up-to-date and academically oriented exposition of the tools coded in
this package is available at Oron et al. (2008).

1 Background and Dataset

Gene set enrichment analysis (Subramanian et al., 2005) is an important new approach to the
analysis of gene expression data, and it has already been extended and generalized in a number of
ways (Tian et al., 2005; Kim and Volsky, 2005; Jiang and Gentleman, 2007).

Expression analysis in general and GSEA in particular can be viewed as a cascade of successive
data reductions:
1. Biochemical hybridization information is reduced to a set of pixel images (one per sample);

2. Images are pre-processed to produce a G xn matrix of normalized average expression estimates
(G genes, n samples);

3. This matrix is then filtered out to remove irrelevant genes or samples (non-specific filtering);
4. Per-gene statistics are calculated;
5. Finally, these statistics are used to calculate gene-set-level statistics, which help identify dif-

ferentially expressed or otherwise interesting gene-sets.

This process is necessary, in order to bring the amount of information generated by the microrray
experiment down to a scientifically relevant and manageable level, while retaining core features.



However, given the immense extent of data reduction, it makes both theoretical and practical sense
to find ways to check the process. This is where the linear-model toolset comes in handy.

A linear model assumes that the mean of the response variable has a linear relationship with the
explanatory variable(s). In gene-expression terminology, the typical generic model could be written
as:

p
Ygi = Bgo + Y XijBj + €gis (1)
=1

where

® Y, is the gene expression value of gene g in sample i;

e p is the number of explanatory variables in the model;

Xi; is the value of the j-th variable for the i-th sample. For dichotomous variables such as
phenotype, one typically sets X to zero or one (e.g., NEG will be zero and BCR/ABL one);

Bg; is the true value of the effect of variable j upon the expression of gene g; and

€gi is a random error (“noise”), often assumed to follow a normal distribution with mean zero

and variance 2.

The data and model are used to calculate a fitted value for each observation, denoted as ;.
The residuals, eg; = y4i — Ui can be naively seen as estimates for the random errors, but they play
a far greater role as will be seen below.

Note that applying linear models to gene expression in the way outlined here, involves fitting the
same model form to all genes separately and simultaneously.

We load the GSEAIm package. Then we load the data and perform some initial filtering. The
example dataset is from a clinical trial in acute lymphoblastic leukemia (ALL). This dataset is
available from Bioconductor, under the name ALL.

> library("GSEAlm")

data(ALL)
### Some filtering;
### see explanation below code
bcellldx <- grep(""B", as.character(ALL$BT))
bcrOrNegIdx <- which(as.character(ALL$mol.biol)
%4inj c("NEG", "BCR/ABL"))
esetA <- ALL[ , intersect(bcellldx, bcrOrNegldx)]
esetA$mol.biol = factor(esetA$mol.biol) # recode factor
### Non-specific filtering
esetASub <- nsFilter(esetd,var.cutoff=0.6,var.func=sd)$eset
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The ALL dataset contains 12625 genes and 128 samples. We are interested, among other things,
in comparing the BCR/ABL and NEG phenotypes, appearing under the mol.biol variable (hereafter:
“the phenotype effect”). There are 79 samples with one of the two phenotypes; we remove all the
rest. Standard non-specific filtering of genes was also performed in order to remove most of the
unexpressed genes. The common assumption is that only about 40% of genes are expressed in
typical tissues, and therefore we remove the 60% with less-variable expression across samples, using
standard deviation as the threshold criterion. The filtered dataset contains 79 samples and 3509
unique genes.

Next we identify gene-sets based on chromosomal location. Such an analysis is of clinical interest,
as ALL has been associated with chromosomal irregularities. We mapped the chromosomal location
of each gene in the filtered dataset, using tools and methods described in Falcon and Gentleman
(2008) and available in the Category package. The resulting gene-set structure is hierarchical, and
can be represented as a tree graph. More details follow the code excerpt.

minBandSize = 5

haveMAP = sapply(mget (featureNames (esetASub), hgu95av2MAP),
function(x) !all(is.na(x)))

workingEset = esetASublhaveMAP, ]

entrezUniv = unlist (mget (featureNames (workingEset), hgu95av2ENTREZID))

### Creating incidence matrix and keeping the graph structure

AgraphChr=makeChrBandGraph("hgu95av2.db",univ=entrezUniv)
AmatChr = makeChrBandInciMat (AgraphChr)

AmatChr3 = AmatChr[rowSums (AmatChr)>=minBandSize, ]

# Re-ordering incidence matrix columns

eglds = sapply(featureNames (workingEset), function(x) hgu95av2ENTREZID[[x]])
idx = match(eglds, colnames(AmatChr))

AmatChr3 = AmatChr3[, idx]

colnames (AmatChr3)=featureNames (workingEset)

# Updating our graph to include only the bands that actually

# appear in the matrix (doing it a bit carefully though...)

# AmatChr3 = AmatChr[!duplicated(AmatChr),]
AgraphChr3 = subGraph(c("ORGANISM:Homo sapiens",rownames (AmatChr3)),AgraphChr)
# AgraphChr3 = subGraph (rownames (AmatChr3),AgraphChr)

VVVVVVVVVVVVVVVVVVVV + V.YV

There are 661 bands containing at least 5 genes, and there are 3509 genes mapped to such
chromosome bands. To utilize our GSEAIm toolset, we need a chromosome-band incidence matrix:
a matrix with as many rows as gene-sets, and as many columns as genes. Matrix elements are 1
if the gene belongs to the gene-set, and 0 otherwise. Rather than use the convenient single-step
function MAPAmat to create this matrix, here we first create a hierarchical chromosome tree using
makeChrBandGraph, and then generate the matrix from the tree using makeChrBandInciMat (all 3
functions are found in the Category package). This way we retain the tree in our working memory,



which will prove useful down the road. Note that the tree’s trunk begins with the species-identifying
node ORGANISM:Homo sapiens, meaning that complete chromosomes are represented as the first-
level branches.

2 The t-Test as a Linear Model, and Basic Diagnostics

We arrive at step 4 of the data-reduction cascade outlined in the introduction: individual-gene
statistics, which in our case are t-tests. A point often overlooked is that ¢-tests are identical to a
linear model with a single dichotomous explanatory variable (hereafter: “factor”). This means that
even for t-tests we can make use of linear-model tools. To demonstrate that the two approaches yield
equivalent effect estimates, Fig. 1 plots the t-statistics produced by the rowttests function from
the genefilter package, vs. the analogous statistics produced by a one-factor phenotype model using
the 1mPerGene function from the GSEAIm package. The values are identical except for a sign flip:
the two functions have opposing conventions for factor level ordering (rowttests calculates "first
in alphabetical order minus second", while ImPerGene uses the opposite which is similar to the 1m
default). In our particular application, the former convention makes more sense since the absence
of mutation (i.e., "NEG") is a more natural reference. We therefore reverse factor level ordering, via
the standard relevel function.

ImPhen <- lmPerGene (workingEset, mol.biol)

##fit the t-tests model

tobsChr <- rowttests(workingEset,"mol.biol")

## fit it via the linear-model interface

ImEsts = ImPhen$tstat[2,]

plot (tobsChr$stat,lmEsts,main="The t-test as a Linear Model",
xlab="T-test t-statistic",ylab="One-Factor Linear Model t-statistic")
### Re-leveling the factor

workingEset$mol.biol<-relevel (workingEset$mol.biol,ref="NEG")
ImPhen <- lmPerGene (workingEset, mol.biol)
ImEsts = ImPhen$tstat[2,]

V VVV VYV 4+ VvV VVYV V.YV

Using the linear-model function instead of just a t-test, enables us to directly calculate residuals.
We have as many residuals as raw data points — in our case, 3509 by 79.

For the residual analysis, it is better to use normalized residuals, so that different genes will
have similar magnitude. There are several ways to achieve this, producing normalized, internally-
Studentized or externally-Studentized residuals (Cook and Weisberg, 1982). The getResidPerGene
function allows for all these options (and also the raw un-normalized residuals), with externally-
Studentized residuals being the default.

Arranging Studentized residuals by sample helps identify individual samples that tend to exhibit
high or low expression levels. Similarly, we can look for samples with noticeably more or less
variable residuals. If a particular sample is systematically different from the rest, one may suspect



The t-test as a Linear Model
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Figure 1: T-statistics for gene-level phenotype effect, from the rowttests and 1mPerGene functions,
plotted against each other.

imperfect normalization or other technical issues. Otherwise, this may indicate some real underlying
phenomena.

Fig. 2 summarizes all Studentized residuals by sample (one box per sample), arranged by phe-
notype, using the resplot function. Several samples catch the eye, especially in the NEG phenotype
(left) where the residuals from samples 68001, 28001 and 16009 are predominantly negative. In the
BCR/ABL phenotype (right), residuals from sample 84004 appear to be systematically higher than
all the rest. Note that these features are not evident from boxplots of raw expression intensities.!

Note that 1mPerGene also allows for an intercept-only model (by omitting the formula) — so you
can examine residuals for patterns even without assuming any phenotype effect.

> lmPhenRes <- getResidPerGene(1mPhen)

> resplot (resmat=exprs(lmPhenRes),fac=workingEset$mol,cex.main=.7,cex.axis=.6,
+ horiz=TRUE,lims=c(-5,5) ,xname="",co0l=5,cex=.3)

>

3 Gene-Set Residuals

We proceed to the next GSEA step: producing summary statistics of the phenotype effect by
chromosome band. There are several ways, all roughly equivalent, to achieve this (Subramanian
et al., 2005; Jiang and Gentleman, 2007; Efron and Tibshirani, 2008). Here we chose the statistic
of Jiang and Gentleman (2007) (hereafter, “the J-G statistic”), for having the simplest theoretical
properties, and for other reasons that will become apparent shortly.

'To see this, try replacing variable ImPhenRes by workingEset in the ’resplot’ command below; you’ll also need
to remove the constraint 1ims=c(-5,5).
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Figure 2: Raw residuals from a linear model of gene expression on phenotype for all genes of the
filtered ALL dataset, grouped by sample and arranged by phenotype (NEG on left, BCR/ABL on right).



The J-G statistic can be defined as

s =) (tg —trey) /1/1S], (2)

geSs

where t, is the phenotype-effect ¢-statistic for gene g, t,.s is some estimate of the overall mean
shift (e.g., the median of all ¢-statistics in the experiment) and |S| is the size of gene set S. Since
gene-gene correlations may induce a size effect on 7g (Oron and Gentleman, forthcoming), and since
the sample size is large enough, we recommend basing inference upon phenotype-label (“column”)
permutation p-values rather than upon comparing 7g to standard Normal or ¢ distributions. Func-
tion gsealmPerm provides a reasonably fast implementation of this test for all chromosome bands
simultaneously. We skip this test for now, and focus on diagnostics instead.

Similarly to the gene-set statistics, we can create gene-set aggregate residuals by sample, using
a formula analogous to (2):

rsi =y Tgi/\/ﬁ, (3)

geSs

where rg; is the Studentized residual from sample 7 and gene g. We will refer to the rg; as “GS
residuals”. Both GS main effect statistics and GS residuals can be generated from individual-gene
information, using the GSNormalize function.

Figure 3 displays a heatmap of the rg;, with chromosome bands in rows and samples in columns.
Red indicates positive values and blue negative values. Only the lowest possible hierarchical level
in each chromosome band (subject to the constraint of at least 5 genes) was used, in order to avoid
redundancies and overlap-related distortions. Since we retained the chromosome’s tree structure,
this is easily achieved using the leaves function from the graph package. Both rows and columns
were simultaneously re-ordered to identify clusters with highly correlated residual patterns. Note
that we prefer to measure similarity via correlation, rather than Euclidean distance which is the
default for the heatmap function. This is because we are interested in finding groups of samples
(or chromosome bands) that exhibit the same qualitative behavior with respect to the dataset’s
baseline.

## now we are going to aggregate residuals over chromosome bands

stdrAchr=GSNormalize (exprs(1mPhenRes), AmatChr3)
#rAchr = AmatChr3 }*j, exprs(lmPhenRes)
#rdsqrSums = sqrt (rowSums (AmatChr3))

#stdrAchr = sweep(rAchr, 1, rAsqrSums, FUN="/")

vV V VvV VvV Vv Vv

# brColors <- ifelse(colnames(stdrAchr) 7inj, branchl,'"brown", "grey")

# molColors <- ifelse(workingEset$mol=="BCR/ABL","brown", "grey')

kinetColors <- ifelse(workingEset$kinet=="hyperd.","brown", "grey")
onecor=function(x) as.dist(l-cor(t(x))) # To get correlation-based heatmap
### In the heatmap we only use the lowest-level bands, or '"leaves'" of the graph

vV VvV Vv Vv Vv



ChrLeaves=leaves (AgraphChr3, "out")

### for safety

ChrLeaves=ChrLeaves[ChrLeaves /inJ, rownames (AmatChr3)]

LeafGenes=which(colSums (AmatChr3[ChrLeaves,])>0)

bandHeatmap=heatmap (stdrAchr [ChrLeaves,],scale="row",col = HMcols,
ColSideColors=kinetColors,keep.dendro=TRUE,distfun=onecor,
labRow=FALSE,xlab="Sample",ylab="Chromosome band")

+ + V. VvV VvV Vv v Vv

Fig. 3 exhibits some intriguing patterns. First, one of the samples identified above as having low
residuals — 28001 — catches the eye as a narrow predominantly-blue vertical strip, again suggesting
a technical normalization issue with this sample.

More interesting from a modeling perspective is the apparent block or checkerboard pattern
of the heatmap. This pattern indicates a potential association between certain samples and the
expression level of certain chromosomal locations, an association not explained by phenotype.

A skeptic might ask whether perhaps the block pattern is only an artifact of the heatmap’s
graphical method, which allows for grouping and reordering of both rows and columns. For this
purpose, Fig. 4 displays the heatmap of a similarly sized, randomly-generated dataset. Since from
the residual plot on Fig. 2 we know that different samples are prone to some normalization-related
offset, the data were generated by superimposing independent errors on sample-specific baselines
that (randomly) differ between columns. This error structure generates a heatmap with strong
vertical features. On the other hand, in the absence of any real correlation between gene-sets and
expression, horizontal features, if any, are mild and localized — and therefore there is no apparent
block pattern.

So it seems that there may be unaccounted-for factors associated with groups of chromosome
bands. Among the 21 descriptive variables available for each sample, we found the “kinet” variable
to be strongly correlated with the observed pattern. This variable indicates whether the samples
exhibit hyperdiploidy, i.e., having substantially more than 46 chromosomes. Clearly, this property
could be associated with increased expression of certain chromosomes — and if there are specific
hyperdiploidy patterns common in ALL, this could help explain the block pattern of Fig. 3. The
kinet variable is illustrated as a colored band at the top of the heatmap, with red indicating
hyperdiploid samples, grey diploid samples, and white samples with unknown status. Even though
hyperdiploid subjects are less than a quarter of the sample size, they form a strong majority in a
cluster of samples characterized by predominantly negative residuals over most chromosome bands,
and strongly positive residuals over the remaining bands.

We conclude that adding “kinet” to the model may be an idea worth pursuing. It should be
noted, though, that while such a model expansion might help account for most of the block pattern,
it will not be of any use for minority members — especially the 6 diploid samples in “sample cluster
1”7, and the 8 hyperdiploid samples not belonging to either cluster. Hence, some remnant (or a
milder mirror-image) of the block pattern would probably still show after model expansion.

Another factor of interest, which can be used as a benchmark because it certainly plays a role in
the expression of some genes, is sex. We conclude that adding sex, too, as a covariate in the model
may be of use (a more detailed discussion of Y-chromosome expression and sex assignment in this
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Figure 3: GS residuals from the linear model of gene expression on phenotype for each chromosome
band (row) and sample (column). Red colors indicate positive residuals, and blues indicate negative
residuals. Both rows and columns are clustered according to a correlation-based similarity measure.
The colored band above the map indicates the value of the kinet variable — grey for diploid, red
for hyperdiploid and white for unknown.
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Figure 4: Randomly generated GS residuals with a different baseline for each sample (column).
Sample baselines were generated from an exponential distribution, and individual-point noise from
a normal distribution. Otherwise, layout and details are identical to those of Fig. 3.
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dataset is found in Oron et al. (2008)).

4 GSEA and Diagnostics, Using a 3-Variable Model

The previous section’s findings suggest a 3-variable model with phenotype, hyperdiploidy and sex;
we’d like to implement it using 1lmPerGene. There are 4 samples with missing data for this model;
we can either give them up and use the remaining 75, or impute the data by artificially filling the
missing values, and thus retain all 79 samples. Here we choose the former, mostly because it is
very unclear whether to assign sample 25006 as diploid or hyperdiploid. However, if one chooses
to impute, the following code excerpts creates a mirror expressionSet object named imputeEset;
substitute for workingEset in all subsequent code to see the difference (there should be some
difference in residual patterns, but very little in bottom-line inference).

sampleIDs=rownames (pData(workingEset))

imputeEset=workingEset

imputeEset$sex[is.na(workingEset$sex)] <- 'M'
imputeEset$kinet[is.na(workingEset$kinet)] <- 'dyploid’

### This is the questionable sample; try once as diploid

### (by skipping the following line), and once as hyperdiploid
imputeEset$kinet [which(sampleIDs=="25006")]<-"'hyperd."'

V V. VvV V. Vv Vv Vv

We continue with the original (un-imputed) dataset; 1lmPerGene as a default removes samples
with missing observations, just like Im. We also generate residuals, GS 7 statistics and GS residuals.

ImExpand <- lmPerGene (workingEset, mol.biol+sex+kinet)
ImExpandRes <- getResidPerGene (lmExpand,type="extStudent")
ImExpandTees <- t(ImExpand$tstat[2:4,])
ImExpandBandTees<-GSNormalize (1mExpandTees, AmatChr3)
GSresidExpand=GSNormalize (exprs (ImExpandRes) ,AmatChr3)

vV VvV Vv Vv Vv

The GS residual heatmap is shown on Fig. 5. The patterns are more predominantly vertical than
in Fig. 3, but not as exclusively vertical as in Fig. 4. Most of the remnant patterns resembling Fig.
3’s blocks seems to be related to minority members, as explained earlier. Hyperdiploidy (depicted
on the top bar) does not appear to be associated with any sample cluster anymore.?

> kinetColors2 <- ifelse(lmExpandRes$kinet=="hyperd.","brown", '"grey")

> bandHeatmapExp=heatmap (GSresidExpand[ChrLeaves,], scale="row",col = HMcols,
+ ColSideColors=kinetColors2,keep.dendro=TRUE,distfun=onecor,

+ labRow=FALSE,xlab="Sample",ylab="Chromosome band")

“Note that we have to be a bit careful in setting up the heatmap, since we have 4 columns less than in the
single-factor one; we take advantage of the fact that residuals are an expressionSet type object to redefine the color
vector on the top bar.
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Figure 5: GS residuals from the 3-factor linear model. Layout and details are similar to those of

Fig. 3.
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We proceed to inference. As mentioned above, due to within-sample correlations the safe ap-
proach to inference is via label permutation tests. For a multiple regression model, we can infer
about one factor of interest only by permuting its labels within each subgroup defined by a
level combination of the adjusting factors. For example, the phenotype effect will be evaluated
by separately and simultaneously permuting the phenotype labels of hyperdiploid females, hyper-
diploid males, diploid females and diploid males, without mixing labels between the four groups.
Using this approach the adjusting factors must be categorical (the factor of interest itself can be
continuous). Function gsealmPerm performs such a permutation analysis. The factors are given as
the RHS of a standard R model formula, with the first factor being the one of interest. If inference
is needed for other factors, the same function can be called with a different factor ordering in the
formula. In this document, we run only 125 permutations to save compilation time.

Below is a list of flagged chromosome bands, at the 0.01 level on either side, for the phenotype
effect. Theoretically we approach the p-value as an alert flag, rather than an exact probability
value (which it is not, due to both the hierarchical structure and multiple testing). In any case, to
make the list less redundant we look only at the chromosome-tree “leaves” as before. The first list
is of bands down-expressed on the BCR/ABL phenotype, followed by a list of those up-expressed on
BCR/ABL. Note that we have set removeShift=TRUE (this is not an argument of gsealmPerm itself,
but rather passed on to GSNormalize) — meaning that differential expression is estimated vs. the
baseline gene-level expression gap between the phenotypes (calculated by default as the median of
gene-level t-statistics).

> pvalsExpand=gsealmPerm(workingEset[LeafGenes,], mol.biol+sex+kinet,AmatChr3[ChrLeaves,LeafGene
> pvalsExpand[pvalsExpand[,1]<flagp,1]

13933 18912 9p24 12q13.3  12924.33 18g21.1
0.007936508 0.007936508 0.007936508 0.007936508 0.007936508 0.007936508
20q13.33  22q11.23 22q12.1 22q13.2  22q13.31 7p13
0.007936508 0.007936508 0.007936508 0.007936508 0.007936508 0.007936508
7p15.2 7p22.3 7q22.1
0.007936508 0.007936508 0.007936508

> pvalsExpand[pvalsExpand[,2]<flagp,2]

5q23 6q24 12922 14922.2  16p13.13  18p11.22

0.007936508 0.007936508 0.007936508 0.007936508 0.007936508 0.007936508
1p21.3 1p36.23 1q21.2 2p14 2q11.2 2g31.2

0.007936508 0.007936508 0.007936508 0.007936508 0.007936508 0.007936508
2933.1 3g25.1 4pl4 4q13.3 5p13.1 6921

0.007936508 0.007936508 0.007936508 0.007936508 0.007936508 0.007936508
6q23.3 9g21.13 9933.2 Xq26.3

0.007936508 0.007936508 0.007936508 0.007936508

These lists are not very different from the ones obtained via a 1-factor model (not shown here;
you can try and compare by running gsealmPerm on the phenotype-only model). So adjusting with
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two of the most obvious factors in the dataset does not substantially change inference about the
phenotype effect.

The sex effect permutation test is omitted here for brevity. In any case, there are little surprises
there - the only locations flagged as differentially expressed at the 0.01 level sit on the Y chromosome.

Finally, when getting to the hyperdiploidy effect our hard work in expanding the model bears
fruit. Given the nature of the hyperdiploidy phenomenon, here we focus on complete chromosomes.
It turns out — perhaps not so surprisingly — that quite a few chromosomes are flagged as overex-
pressed among the hyperdiploid samples. Here we leave removeShift in its default FALSE value,
because we'd like to directly gauge the absolute chromosome-level expression differences between
the hyperdiploid and diploid groups.

\

chrNames=c(as.character(1:22),"X")

vV Vv

pvalsHyper[pvalsHyper[,2]<flagp,2] ### over-expressed list for hyperdiploids

19 22 X
.007936508 0.007936508 0.007936508

(@}

# browser()

# oldflags=c(table(pvals[,1]<flagp)[2],table(pvals([,2]<flagp)[2])
# newflags=c(table(pvals.Exp[,1]<flagp)[2],table(pvals.Exp[,2]<flagp)[2])

#downtable=table(pvals[,1]<flagp,pvals.Exp[,1]<flagp)
#uptable=table(pvals[,2]<flagp,pvals.Exp[,2]<flagp)

V VvV V.V Vv Vv VvV

If we relax the alert level to 0.1, the over-expressed list expands to nearly ten chromosomes. In-
specting chromosome-level hyperdiploidy patterns among hyperdiploid subjects more closely (Fig.
6), it can be seen that chromosome X expression levels are closely correlated with chromosomes
6, 14 and 21, while chromosomes 19 and 22 follow a different pattern and are closely correlated
with each other. Chromosome X in particular seems to dichotomize samples into two groups with
strongly higher-than-average and lower-than-average responses. These observations may have bio-
logical significance.

> GSChromeResid=GSresidExpand[chrNames, ]
> hyperHmap=heatmap (GSChromeResid[pvalsHyper[,2]<0.1,1mExpandRes$kinet=="hyperd."],

pvalsHyper=gsealmPerm(workingEset, "kinet+mol.biol+sex,AmatChr3[chrNames,],nperm=nperm)

+ scale="row",col = HMcols,keep.dendro=TRUE,distfun=onecor,xlab="Sample ID",ylab="Chromosome")

4.0.1 Influence Analysis

Recall that some samples (notably 28001) were visually flagged as potentially problematic outliers.
What should we do about them? If there is still access to earlier-stage data (physical samples or raw

14



Chromosome

Figure 6: Complete-chromosome GS residuals from the 3-factor linear model, for chromosomes
flagged as over-expressed under hyperdiploidy (p < 0.1), and for the hyperdiploid subjects only.

images), it is always a good idea to inspect questionable samples directly. In the absence of such
access, one needs to answer the practical question: how strongly does a single outlying observation
affect model inference?

Since our model includes only dichotomous factors, fitting it boils down to calculating group
averages — for 2 groups in the 1-factor case and for 8 groups in the 3-factor case. The smaller the
group, the more leverage each sample in the group exerts (sample leverage values are obtained via
the Leverage function). A measure known as Cook’s D (Cook and Weisberg, 1982) incorporates a
sample’s leverage together with the magnitude of its residual, to calculate the square distance by
which a single observation “moves” the model’s parameter estimates.?> The CooksDPerGene function
performs this calculation for all samples and genes simultaneously.

In the GSEA framework, we would probably like to aggregate individual-gene D values within
each chromosome band, in an analogous manner to 7g; and rg;. However, normalizing by square-
root makes little sense since Cook’s D is positive, not pivotal around zero. Instead, we suggest

using
DSi = ZDQZ/‘S‘7 (4)
ges

which is simply the root-mean D value over the gene-set. This, too, can be accomplished via the
GSNormalize function.

Dg; provides a measure of the typical amount by which the sample in question affects t-statistics
for genes in the band. We are looking for samples whose overall Dg; values, across different gene-sets,
are substantially larger than the overall baseline.

Since the 1-factor model splits the dataset into two roughly equal-sized groups, the leverage of all
samples is roughly the same, and we expect this model’s Dg; values to convey a similar message to

3The distance is measured in p-dimensional parameter space and normalized by the standard error.
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Fig. 3. For that model, even the strongest outlier samples do not appear to be substantially away
from the pack (Fig. 7, top). The story is different for the 3-factor model (Fig. 7, bottom). There
is at least one highly influential sample (relative to the baseline): sample 28024. This sample has
become influential for the expanded model, because it belongs to a female subject with hyperdiploidy
— one of the smallest among the 8 groups (by contrast, sample 28001 belongs to the largest group,
and hence its diminished influence on the 3-factor model). Additionally, 28024’s expression levels
were quite variable to begin with: its Studentized residuals have the second-highest IQR (see Fig.
2). Again, if there is access to raw data in some form, it is a good idea to inspect them and see why
this sample is so highly variable. Otherwise, a sensitivity analysis (repeating the regression without
28024 and comparing the results) may be in order — although in our particular case, the sample’s
overall influence does not appear to warrant taking this step.

cookiel=CooksDPerGene (1mPhen)

cookie3=CooksDPerGene (1mExpand)

BandCooks1=GSNormalize (cookiel,AmatChr3,fun2=identity)

BandCooks3=GSNormalize (cookie3, AmatChr3, fun2=identity)

BandCooks1Base=BandCooks1[ChrLeaves,]

BandCooks3Base=BandCooks3[ChrLeaves, ]

layout(1:2)

boxplot (sqrt (BandCooks1Base) ~col (BandCooks1Base) ,names=sampleIDs,pch="+",
cex=.2,las=3,cex.axis=.4,
main="Influence by sample and Chromosome Band: 1-Factor Model",
xlab="Sample ID",ylab="Cook's D (Band Root-Mean)",boxwex=.5,
cex.main=0.8,cex.lab=0.7,co0l=5)

boxplot (sqrt (BandCooks3Base) ~col (BandCooks3Base),
names=samplelDs[!is.na(workingEset$kinet)],pch="+",
cex=.2,las=3,cex.axis=.4,
main="Influence by Sample and Chromosome Band: 3-Factor Model",
xlab="Sample ID",ylab="Cook's D (Band Root-Mean)",boxwex=.5,
cex.main=0.8,cex.lab=0.7,co0l=5,ylim=c(0,0.4))

+ + + + + VvV + + + + V V V V.V V VYV

The Dg; measure can also be used to check whether there are any problem gene-sets, i.e., chro-
mosome bands influenced by an unduly large number of outlying samples. In our case, there are no
such bands.?

The GSEAIm package also offers two other commonly encountered diagnostics: dffitsPerGene
and dfbetasPerGene, each using a different measure of how individual samples affect estimation.
According to recent theory (LaMotte, 1999; Jensen, 2001), all three influence diagnostics convey
probabilistically equivalent information from the strict perspective of outlier identification. However,
these functions are still useful for visual problem identification.

4Graph not shown here; it can be easily produced by constructing a boxplot by rows rather than columns in the
code above — you’ll also need to set names=rownames (AmatChr3[ChrLeaves,]).
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Figure 7: Chromosome-band root-mean Cook’s D values, summarized by sample, for the 1-factor
(top) and 3-factor (bottom) models.
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