Growing phylogenetic trees with TreeLine

Erik S. Wright
April 25, 2024

Contents

1__Introduction 1
[2__Performance Considerations| 1
[3 Growing a Phylogenetic Tree| 2
[Plotting Branch Support Values| 5
S Ancestral State Reconstruction| 11
[6 Exporting the Tree| 13
7 Session Information 13

1 Introduction

This document describes how to grow phylogenetic trees using the TreeLine function in the DECIPHER package.
TreeLine takes as input a set of aligned nucleotide or amino acid sequences and returns a phylogenetic tree (i.e.,
dendrogram object) as output. This vignette focuses on building maximum likelihood (ML) and maximum parsimony
(MP) phylogenetic trees starting from sequences, but TreeLine can also be used to build additive trees from a
distance matrix.

Why is the function called TreeLine? The goal of TreeLine is to find the most likely/parsimonious tree
for a given sequence alignment. There are often many trees with nearly maximal likelihood/parsimony. Therefore,
TreeLine seeks to find a tree as close as possible to the treeline, analogous to how no trees can grow above the
treeline on a mountain.

Why use TreeLine versus other programs? The TreeLine function is designed to return an excellent phyloge-
netic tree with minimal user intervention. Many tree building programs have a large set of complex options for niche
applications. In contrast, TreeLine simply builds a great tree when relying on its defaults. This vignette is intended
to get you started and introduce additional options/functions that might be useful.

TreeLine uses multi-start optimization followed by hill-climbing to find the highest trees on the likelihood or par-
simony landscapes. Since TreeLine is a stochastic optimizer, it optimizes many trees to prevent luck from influencing
the final result. The main difference from most other approaches to tree optimization is that TreeLine heavily uses past
trees to generate new trees as it optimizes. With any luck it’ll find the treeline!

2 Performance Considerations

Finding a tree with very high likelihood/parsimony is no easy feat. TreeLine systematically optimizes hundreds to
thousands of candidate trees before returning the best one. This takes time, but there are things you can do to make it

go faster.

3

Only use the sequences you need: TreeLine scales approximately quadratically with the number of sequences.
Hence, limiting the number of sequences is a worthwhile consideration. In particular, always eliminate redun-
dant sequences, as shown below, and remove any sequences that are not necessary. This concern is shared for
all tree building programs, and TreeLine is no exception.

Choose a model: Automatic model selection is a useful feature, but frequently this time-consuming step can
be skipped. For most modestly large sets of nucleotide sequences, the "GTR+G4" model will be automatically
selected. Typical amino acid sequences will tend to pick the "LG+G4" or "WAG+G4" models, unless the
sequences are from a particular origin (e.g., mitochondria). Pre-selecting a subset of the available MODELS and
supplying this as the model argument can save considerable time.

Set a timeout: The maxTime argument specifies the (approximate) maximum number of hours you are willing
to let TreeLine run. If you are concerned about the code running too long then simply specify this argument.

Compile with OpenMP support: Significant speed-ups can be achieved with multi-threading using OpenMP.
See the “Getting Started DECIPHERing” vignette for how to do this on your computer platform. Then you only
need to set the argument processors=NULL and TreeLine will use all available processors.

Compile for SIMD support: TreeLine is configured to make use of SIMD operations, which are available on
some processors. The easiest way to enable SIMD is to add “ -O3 -march=native” to the end of PKG_CFLAGS
in the “DECIPHER/src/MAKEVARS” text file. Then, after recompiling, there may be an automatic speed-up
on systems with SIMD support. Note that enabling SIMD makes the compiled code non-portable, so the code
always needs to be compiled on the hardware being used.

Growing a Phylogenetic Tree

TreeLine takes as input a multiple sequence alignment when constructing a maximum likelihood or maximum
parsimony phylogenetic tree. Multiple sequence alignments can be constructed from a set of (unaligned) sequences
using AlignSeqgs or related functions. TreeLine will optimize trees for amino acid (i.e., AAStringSet) or
nucleotide (i.e., DNAStringSet or RNAStringSet) sequences. Here, we are going to use a set of sequences that
is included with DECIPHER. These sequences are from the internal transcribed spacer (ITS) between the 16S and
23S ribosomal RNA genes in several Streptomyces species.

library (DECIPHER)

specify the path to your sequence file:

fas <- "<<path to FASTA file>>"

OR find the example sequence file used in this tutorial:
fas <- system.file("extdata", "Streptomyces_ITS_aligned.fas",
seqgs <- readDNAStringSet (fas)
segs # the aligned sequences

DNAStringSet object of length 88:

vV V.V V V V V

width seq names
[1] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont3.l of
[2] 627 NNNNCACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont3.l of
[3] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercontl.l of
[4] 627 CGTACACACCGCCCGTCA-CGIC...GGGGTTTCCGAATGGGGAAACC supercontl.l of
[5] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercontl.l of
[84] 627 TGTACACACCGCCCGTCA-CGTIC...GGGGTTTCCGAATGGGGAAACC gi 297189896 |ref ...
[85] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...

package="DECIPHER")
use readAAStringSet for amino acid sequences

0 n n n n

[86]
[87]
[88]

627 TGTACACACCGCCCGTCA-CGTIC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...
627 TGTACACACCGCCCGTCA-CGTIC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...
627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC gi|224581108|ref]|...

Many of these sequences are redundant or from the same genome. We can de-replicate the sequences to accelerate
tree building:
segs <- unique (segs) # remove duplicated sequences
ns <- gsub ("".xStreptomyces (subsp\\. | sp\\. | | sp_) ([~]1+).x8",
names (seqgs) <- ns # name by species (or any other preferred names)
seqgs <—- seqgs|[!duplicated(ns)] # remove redundant sequences from the same species

"\\2"’

names (seqgs))

V V V V V

seqs

DNAStringSet object of length 19:

width seqg names
[1] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC albus
[2] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC clavuligerus
[3] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC ghanaensis
[4] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC griseoflavus
[5] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC lividans
[15] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGARACC cattleya
[16] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC bingchenggensis
[17] 627 TGTACACACCGCCCGTCA-CGTIC...GGGGTTTCCGAATGGGGAAACC avermitilis
[18] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC C
[19] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC Tu6071

Now, it’s time to try our luck at finding the most likely tree. Here, we will set a stringent time limit (0.01 hours)
to make this example faster, although longer time limits (e.g., 24 hours) are advised because setting very short time
limits leaves the result partly up to luck.

Note that TreeLine automatically selects a substitution model based on Akaike information criterion (by de-
fault). It is possible to specify specific model(s) (e.g., model="GTR+G4") to limit the possible selections and test
your luck with fewer models.

Also, since TreeLine is a stochastic optimizer, it is critical to always set the random number seed for repro-
ducibility. You can pick any lucky number, and if you ever wonder how much you pushed your luck, you can try
running again from a different random number seed to see how much the result came down to luck of the draw.

Note that setting a time limit, as done below with maxTime, negates the purpose of setting a seed — never set a time
limit if reproducibility is desired or you’ll have no such luck.

> set.seed(123) # set the random number seed
> tree <- Treeline (sedgs,
method="ML",
model="GTR+G4",
reconstruct=TRUE,
maxTime=0.01)
Optimizing model parameters:
GTR+G4 -1n(L) = 4368, AICc = 8832, BIC = 9017

PHASE 1 OF 3: INITIAL TREES

1/3. Optimizing initial tree #1 of 10 to 100:

-1ln(L) = 4366.5 (-0.043%), 2 Climbs
1/3. Optimizing initial tree #2 of 10 to 100:
-1ln(L) = 4365.2 (-0.029%), 7 Climbs
1/3. Optimizing initial tree #3 of 11 to 100:
-1ln(L) = 4363.8 (-0.034%), 6 Climbs

PHASE 2 OF 3: REGROW GENERATION 1 OF 10 TO 20

2/3. Optimizing regrown tree #1 of 10 to 100:
-1ln(L) = 4366.5 (+0.062%), 1 Climb
2/3. Optimizing regrown tree #2 of 10 to 100:
-In(L) = 4377.0 (+0.303%), 3 Climbs
2/3. Optimizing regrown tree #3 of 10 to 100:
-1In(L) = 4366.5 (+0.063%), 2 Climbs
2/3. Optimizing regrown tree #4 of 10 to 100:
-In(L) = 4367.5 (+0.085%), 2 Climbs
2/3. Optimizing regrown tree #5 of 10 to 100:
-1ln(L) = 4363.8 (~0.000%), 2 Climbs
2/3. Optimizing regrown tree #6 of 10 to 100:
-ln(L) = 4363.8 (~0.000%), 2 Climbs
2/3. Optimizing regrown tree #7 of 10 to 100:
-In(L) = 4366.5 (+0.062%), 2 Climbs
2/3. Optimizing regrown tree #8 of 10 to 100:

-1ln(L) = 4364.4 (+0.015%), 3 Climbs
2/3. Optimizing regrown tree #9 of 10 to 100:
-1ln(L) = 4365.2 (+0.034%), 4 Climbs
2/3. Optimizing regrown tree #10 of 10 to 100:
-1ln(L) = 4377.4 (+0.313%), 5 Climbs

PHASE 3 OF 3: SHAKEN TREES

Grafting 1 tree to the best tree:
-In(L) = 4363.8 (0.000%), O Grafts of O

3/3. Optimizing shaken tree #1 of 3 to 1000:

-1ln(L) = 4364.1 (+0.009%), 5 Climbs
3/3. Optimizing shaken tree #2 of 3 to 1000:
-In(L) = 4366.5 (+0.062%), 5 Climbs
3/3. Optimizing shaken tree #3 of 3 to 1000:
-ln(L) = 4364.5 (+0.017%), 3 Climbs

4

Grafting 3 trees to the best tree:
-ln(L) = 4363.8 (0.000%), O Grafts of 2

Model parameters:
Frequency (A) = 0.175

4 Plotting Branch Support Values

Maybe it was just beginner’s luck, but we already have a reasonable looking starting tree! TreeLine automatically
returns a variety of information about the tree that can be accessed with the attributes and attr functions:

> #attributes (tree) # view all attributes
> attr(tree, "members") # number of leaves below this (root) node

[1] 19

> attr(tree, "height") # height of the node (in this case, the midpoint root)

[1] 2.24726

> attr(tree, "state") # ancestral state reconstruction (if reconstruct=TRUE)

(1] "—————- CACCGCCCGTCA-CGTCACGAAAGTCGGTAACACCCGAAGCCGGTGGCCCAACCCCTTG-GGGAGGGAGCTGTCGAA

> attr(tree, "siteLnLs") # LnL for every alignment column (site)

[1] -2.032764 -1.575973 -2.032764 -2.356720 -1.949814 -2.356720

[7] -2.093367 -2.507668 -2.093367 -2.093367 -1.707977 -2.093367
[13] -2.093367 -2.093367 -1.707977 -2.180270 -2.093367 -2.507668
[19] 0.000000 -2.093367 -1.707977 -2.180270 -2.093367 -2.507668
[25] -4.588630 -1.707977 -2.507668 -2.507668 -2.507668 -1.707977
[31] -2.180270 -2.093367 -1.707977 -=1.707977 -2.180270 -2.507668
[37] -5.896149 -4.588630 -5.896149 -2.093367 -2.093367 -2.093367
[43] -1.707977 -2.507668 -2.507668 -1.707977 -2.093367 -2.093367
[49] -5.072818 -4.451366 -2.180270 -1.707977 -1.707977 -2.093367
[55] -2.093367 -2.093367 -2.507668 -2.507668 -2.093367 -2.093367
[61] -2.093367 -12.830845 -8.042482 -16.165681 —-13.554422 -6.702884
[67] -1.707977 -1.707977 -1.707977 -2.507668 -1.707977 -1.707977
[73] -1.707977 -2.507668 -1.707977 -8.438611 -11.715708 -1.707977
[79] -2.180270 -2.093367 -1.707977 -2.507668 -2.507668 -1.707977
[85] -1.707977 -2.180270 -1.707977 -=1.707977 -1.707977 -2.507668
[91] -2.093367 -13.681408 -12.549894 -1.707977 -2.093367 -1.707977
[97] -2.507668 -2.180270 -2.180270 -1.707977 -=1.707977 -=1.707977
[103] -2.507668 -2.093367 -1.707977 -2.507668 -2.507668 -1.707977
[109] -2.180270 -2.093367 -1.707977 -2.180270 -2.507668 -2.507668
[115] -2.093367 -2.507668 -2.507668 -1.707977 -1.707977 -2.180270
[121] -2.507668 -1.707977 -2.093367 -2.093367 -1.707977 -2.180270
[127] -2.507668 -2.093367 -2.093367 -1.707977 -1.707977 -2.507668
[133] -2.507668 -1.707977 -1.707977 -2.180270 -1.707977 -2.093367
[139] -1.707977 -1.707977 -2.093367 -2.180270 -1.707977 -1.707977
[145] -2.507668 -2.180270 -2.093367 -2.507668 -2.093367 -2.093367
[151] -2.180270 -2.093367 -2.093367 -2.180270 -2.180270 -2.180270
[157] -2.093367 -2.180270 -2.507668 -2.507668 -1.707977 -=1.707977
[163] -2.507668 -1.707977 -2.093367 -2.507668 -14.367073 -19.521379
[169] -5.560379 -12.145905 -12.350502 -13.471003 -17.207677 -13.711659
[175] -11.241465 -17.541286 -7.625300 -9.041922 -8.363745 -15.844685
[181] -22.474908 -19.872629 -7.612833 -12.223259 -11.490907 -10.707143
[187] -8.805690 -12.913811 -9.786175 —-11.416556 -14.211128 -11.096251
[193] -6.830006 -=7.274107 -6.051166 -10.120789 -9.357439 -8.549835
[199] -14.291896 -11.040292 -13.904419 -11.948841 -8.848408 -2.075651
[205] —=7.777453 -6.320082 -17.565072 -15.623646 -16.439435 -9.298684
[211] -15.568964 -10.233744 -13.848452 -14.583496 -6.493554 -2.093367
[217] -15.379594 -10.520892 -13.369443 -16.847630 -1.707977 —-15.404783

.483819 -15.631559 -16.599544 -14.711668 -18.243885 -12.005012
777375 =-9.692514 -1.707977 -4.873445 -2.180270 -15.550874
.426490 -4.451366 -2.093367 -5.748567 -2.093367 -6.093714
.410647 -1.707977 -5.072818 -4.451366 —-4.732445 -1.707977
.072818 -4.795675 -4.795675 -4.588630 -1.707977 -2.180270
.180270 -1.707977 -6.093714 -16.839045 -5.121046 -4.795675
779709 -4.732445 -7.535339 -4.873445 -1.707977 -7.132231
.121890 -15.297997 -18.846885 -19.616929 -13.354832 -21.669123
.353888 -22.004579 -24.656106 -23.372423 -20.963712 -18.861277
.895856 —-25.045341 -23.464786 -26.983363 -20.860484 -23.947126
.827201 -11.577203 -18.320183 -12.906152 -18.850334 -21.728886
.795675 -1.707977 -2.180270 -5.896149 -5.765911 -2.180270
.998524 -5.162073 -11.379001 -13.619443 -13.829721 -6.232887
.362810 -7.250735 -10.644021 -10.503949 -8.242438 -1.707977
.602805 -6.892924 -9.728638 -1.707977 -10.635730 -9.234879
.990857 -25.511400 -17.238950 -15.545015 -1.410746 -1.452262
.452262 -7.385522 -21.401475 -24.083503 -22.172397 -22.173370
.561666 -24.039128 -23.263644 -21.756078 -23.152328 -20.020659
.647556 -3.747955 -19.056771 -23.682666 —-23.970821 -18.339273
.982809 -23.168351 -17.541364 -12.854535 -17.462450 -9.146776
.916378 -5.162073 -8.830206 -1.707977 -1.707977 -5.765911
.453544 -2.093367 -7.944282 -12.498180 —-4.732445 -1.707977
.748567 -5.121046 -1.707977 -1.410746 -1.707977 -=1.707977
.748567 -13.552286 -12.109769 -2.093367 -2.180270 -1.707977
.795675 -10.563691 -1.707977 -1.707977 -23.988771 -12.778582
.305050 -1.707977 -8.998280 -17.336955 -4.463027 -16.642707
.851399 -4.504062 -1.678386 —-1.452262 -21.749354 -21.178944
.033443 -8.418358 -20.138963 -12.733074 -22.864803 -14.564883
.507854 -16.274203 -15.185030 -17.117237 -11.143287 -17.458938
.059734 -16.154167 -1.938177 -1.410746 -1.452262 -1.452262
.942793 -19.544643 -12.469499 -9.337496 -4.588630 -5.162073
.707977 -12.638978 -10.524040 -2.093367 -6.784770 -4.588630
.083042 -8.785957 -7.717436 -17.123321 -33.384638 -2.507668
.000000 -9.446735 -9.164492 -13.957892 -21.434650 -29.084628
.421239 -20.005131 -22.026654 -17.361296 -18.230091 -18.052038
.420034 -30.259792 -14.884946 -24.799359 -23.296423 -24.253300
.795162 -14.337522 -19.284270 -16.291081 -1.707977 -7.894649
.622297 -15.888112 -18.948617 -4.873445 -1.707977 -1.707977
.894649 -1.707977 -5.635654 -16.037483 -6.643286 -1.575973
.575973 -2.032764 -4.588630 -1.707977 -5.121046 -2.180270
.707977 -12.147370 -2.180270 -2.180270 -1.707977 -2.507668
.707977 -2.507668 -2.507668 -2.093367 -9.253764 -10.884957
.588630 -2.507668 -12.042784 -2.507668 -1.707977 -2.180270
.707977 -1.707977 -2.507668 -4.588630 -1.707977 -2.093367
.658988 -2.507668 -1.707977 -2.093367 -2.507668 -2.180270
.093367 -2.180270 -1.452262 -1.452262 -1.707977 -2.180270
.707977 -1.707977 -4.588630 -2.093367 -2.507668 -2.507668
.707977 -2.180270 -2.180270 -5.121046 -2.180270 -2.180270
.507668 -2.507668 -1.707977 -1.707977 -1.707977 -2.093367
.451366 -2.093367 -2.507668 -4.588630 -1.707977 -=1.707977
.180270 -1.707977 -1.707977 -2.507668 -2.180270 -1.707977

] -4.588630 -2.093367 -2.180270 -2.180270 -1.707977 -1.707977
] -10.838946 -5.896149 -4.588630 -2.093367 -2.507668 -1.707977
] =1.707977 -2.507668 -4.795675 -2.093367 -2.093367 -1.707977
] -2.507668 -2.180270 -1.707977 -2.507668 -2.507668 -1.707977
] -1.707977 -2.507668 -2.093367 -1.707977 -2.180270 -1.707977
] -6.493554 -1.707977 -2.507668 -1.707977 -1.707977 -2.093367
] -4.588630 -10.308886 -2.093367 -1.707977 -2.507668 -2.180270
571] -2.507668 -4.873445 -17.960848 -2.093367 -2.093367 -4.588630
] -2.093367 -1.707977 -1.707977 -1.707977 -1.707977 -2.507668
] -1.707977 -17.720916 -10.928175 -1.707977 -7.019384 -2.093367
] -2.507668 -2.507668 -2.093367 -6.770807 -10.308886 -11.366141
] =-1.707977 -2.093367 -2.180270 -11.347053 -2.180270 -1.707977
] -2.507668 -2.180270 -2.093367 -2.093367 -1.707977 -4.451366
] =1.707977 -=1.707977 -4.451366 -2.180270 -18.353619 -2.180270
] -2.093367 -2.093367 -1.707977 -2.507668 -2.507668 -2.180270
] -1.707977 -1.707977 -1.707977 -1.707977 -2.507668 -2.507668
625] -2.507668 -2.093367 -2.093367

attr (tree, "score") # best score (in this case, the -LnL)
[1] 4363.752
> attr(tree, "model") # either the specified or automatically select transition model
[1] "GTR+G4"
> attr (tree, "parameters") # the free model parameters (or NA if unoptimized)

FregA FreqgC FregG FreqT Freql A/G C/T A/C
0.1748244 0.2436608 0.3471494 NA NA 3.0921698 2.9448983 0.7107601
A/T C/G Indels alpha
1.1107077 0.5897411 NA 0.1936143
> attr (tree, "midpoint") # center of the edge (for plotting)
[1] 9.61499

The tree is (virtually) rooted at its midpoint by default. For maximum likelihood trees, all internal nodes include
aBayes branch support values [1]]. These are given as probabilities that can be used in plotting on top of each edge.
We can also italicize the leaf labels (species names).

> plot (dendrapply (tree,

function (x) {
s <- attr(x, "probability") # choose "probability" (aBayes) or "support

if (!is.null(s) && !is.na(s)) {
s <- formatC (as.numeric(s),
attr(x, "edgetext") <- paste(s, "\n")

digits=2, format="f")

}
attr(x, "edgePar")

if (is.leaf (x))

<- list (p.col=NA, p.lwd=le-5, t.col="#CC55AA", t.cex

"nodePar") <- list(lab.font=3, pch=NA)

attr (x,
X
1)y
horiz=TRUE,
yaxt="'n")
> # add a scale bar (placed manually)

> arrows (0, 0, 0.4, 0, code=3, angle=90, 1len=0.05, xpd=TRUE)
> text (0.2, 0, "0.4 subs./site", pos=3, xpd=TRUE)

ghanaen
scabiei

u6071
' SPB78
SPB74
SirexAA-E

— bingchenggensis
— clavuligerus
pristinaespiralis

catleya) 4 <ibs /site
—

Figure 2: Tree with (aBayes) support probabilities at each internal node.

We lucked out because maximum likelihood and maximum parsimony trees both provide branch supports in the
form of the fraction of optimized trees that contained a given partition (branch). These are accessible from the “sup-
port” attribute. As luck would have it, support values and (aBayes) probabilities are correlated, but support tends to be
more conservative.

> getSupports <- function(x) {

if (is.leaf(x)) {

NULL
} else if (is.null (attr(x, "support"))) {

rbind (getSupports (x[[1]1]), getSupports(x[[2]]))
} else {

rbind (cbind(attr(x, "support"),
attr (x, "probability"),
attr(x, "members")),
getSupports (x[[1]]), getSupports(x[[2]1]))

}
> support <- getSupports (tree)
> plot (support[, 11,
support [, 2],
cex=10gl0 (support[, 31),
xlab="Support", ylab="aBayes probability", asp=1)
> abline (a=0, b=1, 1lty=2) # line of identity (y=x)

Si — o (o) ° ,,»'
/, °
2 o | O °
®) o ’
® .’
) L7
o —] p
|- Vg
o L’
U) /,
S S - - o
® .’
(af] e
© — ,
o] 7’
o -
N e
o L

Support

Figure 3: Comparison of aBayes probabilities and branch support values.
10

5 Ancestral State Reconstruction

We’re in luck —one of the advantages of maximum likelihood and maximum parsimony tree building methods is that
they automatically predict states at each internal node on the tree [2]. This feature is enabled when reconstruct is set
to TRUE. These character states can be used by the function MapCharacters to determine state transitions along
each edge of the tree. This information enables us to plot the total number of substitutions occurring along each edge.
The state transitions can be accessed along each edge by querying a new “change” attribute.

11

> new_tree <- MapCharacters(tree, labelEdges=TRUE)

> plot (new_tree, edgePar=list (p.col=NA, p.lwd=le-5, t.col="#55CC99", t.cex=0.7))

> attr (new_tree[[1l]], "change") # state changes on first branch left of (virtual) root
[1] "G1l68A"™ "G171T" "Gl76C" "G182C" "G184T" "G185T" "G199A"™ "G208C" "G214A"

[10] "G224T" "G225C" "G227C" "G229C" "G272T" "G276T" "G277T" "G279T" "G280T"

[19] "G283T" "G287C" "G288T" "G302C" "G303T" "G304C" "G314C"™ "G316T" "G321T"

[28] "G324T" "G325C" "G326C" "G327T" "G328T" "G330A" "G333C" "G338T" "G371A"

[37] "G379A" "G385T" "G387C" "G389C" "G391C" "G394A" "G396A" "G397T" "G419A"

[46] "GA435A" "G447T" "G584cC"

o _
3N
v _|
—
S
- q} &
g WD o=t |
N Q} o=
) —
=2 T 90 |
‘U.=3w<§%>m LT
w4 °2gw S a3 0
o N oD € o € = = 0
Q= 0o O G O E 3
C S5 O = T &= EQ
,E>U>CD'SO =
= © ¢ o0 = O w — 6
L 5 o © 2 I 5 — s
S
o S o } © :g 0
= X =) © 2
= 5 o a8 g
o © D
<
= ()} <

Figure 4: Edges labeled with the number of state transitions.

12

6 Exporting the Tree

We’ve had a run of good luck with this tree, so we’d better save it before our luck runs out! The functions ReadDendrogram
and WriteDendrogram will import and export trees in Newick file format. If we leave the file argument blank then
it will print the output to the console for our viewing:

> WriteDendrogram(tree, file="")
(("cattleya":0.2156051, ("pristinaespiralis":0.07112583, ("clavuligerus":0.09506737, ("bing

To keep up our lucky streak, we should probably include any model parameters in the output along with the tree.
Luckily, Newick format supports square brackets (i.e., “[]”") for comments, which we can append to the end of the file
for good luck:

> params <- attr(tree, "parameters")
> cat ("[", paste(names (params), params, sep="=", collapse=","), "]", sep="", append=TRUE

[FreqA=0.174824373876447,FreqC=0.243660806026823,FreqG=0.347149403352744,FreqT=NA,Freql=l

7 Session Information
All of the output in this vignette was produced under the following conditions:

¢ R version 4.4.0 beta (2024-04-15 r86425 ucrt), x86_64-w64-mingw32

* Running under: Windows Server 2022 x64 (build 20348)

* Matrix products: default

* Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

 Other packages: BiocGenerics 0.49.1, Biostrings 2.71.6, DECIPHER 2.99.2, GenomeInfoDb 1.39.14,
IRanges 2.37.1, S4Vectors 0.41.7, XVector 0.43.1, pwalign 0.99.2

* Loaded via a namespace (and not attached): DBI 1.2.2, GenomelnfoDbData 1.2.12, KernSmooth 2.23-22,
R6 2.5.1, UCSC.utils 0.99.7, compiler 4.4.0, crayon 1.5.2, httr 1.4.7, jsonlite 1.8.8, tools 4.4.0, zlibbioc 1.49.3

References

[1] Anisimova, M., Gil, M., Dufayard, J., Dessimoz, C., & Gascuel, O. Survey of branch support methods demon-
strates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol., 60(5), 685-699.

[2] Joy, J., Liang, R., McCloskey, R., Nguyen, T., & Poon, A. Ancestral Reconstruction. PLoS Comp. Biol., 12(7),
e1004763.

13

	Introduction
	Performance Considerations
	Growing a Phylogenetic Tree
	Plotting Branch Support Values
	Ancestral State Reconstruction
	Exporting the Tree
	Session Information

