The Double Life of RNA: Uncovering Non-Coding RNAs

Erik S. Wright
April 25, 2024

Contents
od 0 1
etting Starte
2 Getting S d| 1
... 1
uilding a Non-Coding ode 2
3.1 Importing the sequences| e 2
I porting q
[3.2 Aligning the sequences| L 3
3.3 Learning sequence patterns| L 8
l g seq p
inding Non-Coding S 9
5 Session Information 12

1 Introduction

RNA leads a double life as both messenger (mRNA) and an alphabet soup of roles in the cell (e.g., rRNA, tRNA,
snRNA, tmRNA, etc.). RNAs that take on a life of their own are notoriously difficult to detect ab initio using bioinfor-
matics. This is in part because their signature characteristic, that a single strand of RNA folds into a stable structure,
can be found in many regions of the genome. This makes life difficult because there is no clear signature that a ge-
nomic region contains a non-coding RNA in the way there is for protein coding regions. The most promising approach
is to search for intergenic regions with high GC-content a folded structure that is conserved across many genomes.
But what do you do if you only have a single genome and want to find non-coding RNAs? That is exactly what this
vignette shows you how to do!

Before we can have the time of our lives finding non-coding RNAs, we must first train models on examples
of known RNAs. As a case study, this tutorial focuses on finding all known non-coding RNAs in the genome of
Chlamydia trachomatis, an intracellular bacterial pathogen known for causing chlamydia. This genome was chosen
because it is relatively small (only 1 Mbp) so the examples run quickly. Chlamydia harbors all of the standard non-
coding RNAs that date back near the origin of life (i.e., rRNAs, tRNAs, etc.). It also has one small RNA (sRNA),
named IhtA, that has only been found in Chlamydiae and is believed to play a role in regulating its life stages. We
are going to find IhtA in the genome of C. trachomatis, then we are going to use the same approach to find all of the
standard non-coding RNAs that are conserved across many forms of life.

2 Getting Started

2.1 Startup

To get started we need to load the DECIPHER package, which automatically loads a few other required packages.

> library (DECIPHER)

Searches for non-coding RNAs are performed by the function FindNonCoding. Help can be accessed via:

> ? FindNonCoding

Once DECIPHER is installed, the code in this tutorial can be obtained via:

> browseVignettes ("DECIPHER")

3 Building a Non-Coding RNA Model

Before we can find a non-coding RNA, we need to create a multiple sequence alignment of some of its sequence
representatives. This alignment will be the input to LearnNonCoding.

3.1 Importing the sequences

The first step is to set filepaths to the sequences (in FASTA format). In this case we are going to use the ThtA sequences
included with DECIPHER, but you could follow along with your own set of homologous sequences. Be sure to change
the path names to those on your system by replacing all of the text inside quotes labeled “<<path to ...>>" with the
actual path on your system.

specify the path to your genome:

>

> fas_path <- "<<path to FASTA file>>"
> # OR use the example genome:
>

fas_path <- system.file ("extdata",

> rna <- readRNAStringSet (fas_path)

> rna

"ThtA.fas",
package="DECIPHER")
> # read the sequences into memory

RNAStringSet object of length 27:

width
103
105
107
107
103
107
103
108
103
101

seq

AAGAUGAUAUUCUGCGCCAUGGA. ..
AAGAUGAUAUUCUCCGCCGUGGA. .
AAGUUGGUAUUCUAACGCCAUGG. ..
AAGUUGGUAUUCUAACGCCAUGG. .
AAGAUGAUAUUCUACGCCAUGGA. .

AAGUUGGUAUUCUAACGCCAUGG. .
AAGAUGAUAUUCUGCGCCAUGGA. ..
AAGUUGGUAUUCUAACGCCAUGG. .
AAGAUGAUAUUCUGCGCCAUGGA. .
AAGAUGAUAUUCUACGCCAUGGA. .

UGAUUGUUGUUUUCUUGGCUUU

.AACUUUAUGUUUUCUUGGCUUU

UAUCUCCGGUUCUCUUGGCUUU

.UGUCUCCAGUUCUCUUGGCUUU
. UGAUUGUUGUUUUCUUGGCUUU

.UAUCUCCGGUUCUCUUGGCUUU

UGAUUGUUGUUUUCUUGGCUUU

.UAUCUCCGGUUCUCUUGGCUUU
.UGAUUGUUGUUUUCUUGGCUUU
.AUGAUGUUGUUUUCUUGGCUUU

names

KE360988.
AE002161.
AE001273.

AE002160

AE015925.

CP006674
KE356008

AP006861
CpP015840

.1 Chlamy...
.1 Chlamy...
CVNC01000001.1 Ch...
.1 Chlamy...
.1 Chlamy...

Ideally we would start with a few thousand diverse sequence representatives, yet only 27 representatives of
IhtA are known. That’s life, so we will have to make due with what we have available.

1/6443-6...
1/54676-...
1/773281...
.2/53054-...
1/52097-...

3.2 Aligning the sequences

Next we need to align the sequences with A1ignSeqgs. Note that non-coding RNA alignments are more accurate if
we provide the sequences as a RNAStringSet rather than the equivalent DNAStringSet, because AlignSeqs will use
conserved secondary structure to improve the alignment. Alignment is fast, so hold on for dear life! (Consider adding
processors=NULL if you want it to go even faster with multiple processors.)

> RNA <- AlignSeqgs(rna)
Predicting structures based on free energies:

Time difference of 0.84 secs

Determining distance matrix based on shared 7-mers:

Time difference of 0 secs

Clustering into groups by similarity:

Time difference of 0.01 secs

Aligning Sequences:

Time difference of 0.14 secs
Iteration 1 of 2:

Determining distance matrix based on alignment:

Time difference of 0.01 secs

Reclustering into groups by similarity:

Time difference of 0.01 secs

Realigning Sequences:

Time difference of 0.09 secs
Iteration 2 of 2:

Determining distance matrix based on alignment:

Time difference of 0 secs

Reclustering into groups by similarity:

Time difference of 0.01 secs

Realigning Sequences:

Time difference of 0.01 secs

> RNA
RNAStringSet object of length 27:
width seq names
[1] 113 AAGAUGAUAUUCUG-CGCCAUGG. . .GAUUGU-UGUUUUCUUGGCUUU KE360988.1/6443-6...
[2] 113 AAGAUGAUAUUCUC-CGCCGUGG. ..AACUUUAUGUUUUCUUGGCUUU AE002161.1/54676—...
[3] 113 AAGUUGGUAUUCUAACGCCAUGG. ..—--UCUCCGGUUCUCUUGGCUUU AE001273.1/773281...
[4] 113 AAGUUGGUAUUCUAACGCCAUGG. ..-—-UCUCCAGUUCUCUUGGCUUU AE002160.2/53054—-...
[5] 113 AAGAUGAUAUUCUA-CGCCAUGG. . .GAUUGU-UGUUUUCUUGGCUUU AE015925.1/52097—-...
[23] 113 AAGUUGGUAUUCUAACGCCAUGG. ..—--UCUCCGGUUCUCUUGGCUUU CP006674.1 Chlamy...
[24] 113 AAGAUGAUAUUCUG-CGCCAUGG. ..GAUUGU-UGUUUUCUUGGCUUU KE356008.1 Chlamy...
[25] 113 AAGUUGGUAUUCUAACGCCAUGG. . .—-UCUCCGGUUCUCUUGGCUUU CVNC01000001.1 Ch...
[26] 113 AAGAUGAUAUUCUG-CGCCAUGG. . .GAUUGU-UGUUUUCUUGGCUUU AP006861.1 Chlamy...
[27] 113 AAGAUGAUAUUCUA-CGCCAUGG. ..GA-UGU-UGUUUUCUUGGCUUU CP015840.1 Chlamy...

We can see from the alignment that the sequences have both conserved and variable regions. But if we really
want to bring the sequences to life we need to look at their predicted secondary structures. The IhtA is believed to form
three back-to-back hairpin loops based on its minimum free energy structure. We can use PredictDBN to predict
the secondary structures of the sequences.

> p <- PredictDBN(RNA, type="structures")

Determining distance matrix based on alignment:

Time difference of 0 secs

Determining sequence weights:

Time difference of 0 secs

Computing Free Energies:

Time difference of 0.4 secs

Predicting RNA Secondary Structures:

Time difference of 0.01 secs
> BrowseSegs (RNA, patterns=p)

0gn/T/RtmpVnPI86/myXStringSet.html &

20 40 60 80 100

IGGAAUAGCUUCUCACUCUGUUGCAUUREEZUCA SAAGCCAAGATRAAGCA JUCGGCCGUARUGAUUGURUEUUUUCUUGGC 103

\UGGAAUAGCUUCUGACUCUGUUGCAZUSEETUCA SAAGCCAAGAAGAUGUA JUCGGCCGUARUAACUUUAUGUUUUCUUGGC 105
GGAAUAGCUUCUGACUCUIGUGUUU mUACACA SAAGUCAAGAUGGACU! JUUAGCCGUR CUCCGEUUCUCUUGGC! 107
IGGAAUAGCUUCUGACUCUGGUGUUUGUUGCACAGGGGGARIAGCCARGAUGGGCU JUUAGCCGU(e UCUCCAGUUCUCUUGGC! 107
IGGAAUAGCUUCUGACUCUGUUGUACURERRRUCA! SARGCCAAG] CA! ;UCGGCCGUARUGAUUG! IGUUUUCUUGGC! 103
IGGAAUAGCUUCUCACUCUGUUGUA SAAGC| Gi GCA JUCGGCCGUAGUGAUUG! IGUUUUCUUGGC! 103
IGGAAUAGCUUCUAACUCUGGUAUUAI SAAGC| GAAGAA CUUGCCGUAUUGACUUUCAUUUUUCUUGGC 107
IGGAAUAGCUUCUAACUCUGUUGUA SAAGC| AACGARGUCGGCCGU! [e7:1 IGUUUUCUUGGC! 103
GGAAUAGCUUC!GACUC UGGAGG! SAAGCH WUAABAUCAGCCGU! IGAUUGH IGUUUUCUUGGC! 102

GGAAUAGCUUCUGACUCUBGUGCGU
aucEAnUAACUUCUAACUCUGUUGCAN

HAAGUCAAGAUGGACU JUUAGCCGU!
SAAGC) GGAGAUAUA! ;UCUGCCGUI

ICUCCGGUUCUCUUGGC! 107

GGGAUAGCUUCUAACUCUGUUGCAR) B 5 GCEARGAAGGUAUAUUGUCUGCCGUARUGACUIUAUGUUUUCUUGGE 105
GGAAUAGCUUCUCACUCUGUUGUA! BnncceancAMAccCAUBGUCGECCGU: Gauucgigcwuucwccc 103
GGAAUAGCUUCUGACUCUGUUGH BA nGCCAAG] CAUBAUCCGCCGUABUGAUUGURUGUUUUCUUGGE 103
GGAAUAGCUUCUGACUCURGUGCG! B A GUCAAGAUGGACUGGHGUUAGCCGU; CUCCGGUUCUCUUGGC! 107
GGAAUAGCUUCUAACUCUGGUAUUA! B . GCBCAGAAGARGEGARUCUUGCCGUAUUGACUUUCAUUUUUCUUGGC 107
GGAAUAGCUUUUAACUCUGUUGCAR ABA A GCl cauaBaaBcucuccccuaBucacuuauuRUUUUUUUGGE 104
GGAAUAGCUUCUAACUCUGGUAUUAI B A GCEGAGAAGAAGEGARUCUUGCCGUAUUGACUUUCAUUUUUCUUGGC 107
GGAAUAGCUUCUGACUCLU’IgUGCGU BAAGUCAAGAUGGACUGEAGUUAGCCGUANM ;1 CCGEUUCUCUUGGE 107
GGAAUAGCUUCUGACUCURGUGCGC! BA A GUCAAGAUGGACUGGHGUUAGCCGUANCUCCGEUUCUCUUGGT 107
IGGAAUAGCUUCUGACUCUGUUGCAR B A GCCARGAAGAUGUAGHGUCGGCCGUARUGACUUUAUGUUUUCUUGGE 105
Gcmuascuucueacuct:lgucwu BA A GUCARGAUGGACUGGHGUUAGCCGUAM C1CCGEUUCUCUUGGT 107
GGAAUAGCUUCUGACUCURGUGUUUA A A GUCARGAUGGACUGGHGUUAGCUGUANNY CICCGEUUCUCUUGGE 107
GGAAUAGUUUCUCACUCUGUUGCAUUSEEN;C A BancciancaManceauBcuccacccuaBucavucuBugutvucuucee 103
GGAAUAGCUUCUGACUCUBGUCUUUGRUACACAGGCGCECAAGUCAAGAUGEACUCERCUUAGCCCUANII) (yCCCEUUCUCUUGGE! 108
GGAAUAGCUUCUGACUCUGUUGUAUUSEES BancccancaMccacaulcucceeccualucavucuBuGuUUUCUUGGE 103
GGAAUAGCUUCEAACUCUGGAUGUAUNSES Y ACACGGANAAGC AN ceaGBcucUceccuaRuGAUBCUBUGUUUUCUUGGT 101

ARGWUGRUAUUCUV+CGCCAUGGAAUAGCUUC+VACUCURKWRBD+D~+++WHAGGGGGR-AAGYCRAGR++RDVBRDNDY YDGCCGUA++++YYKY+DDUUYUYUUGGCUUU 98
_ _/

Figure 1: Predicted secondary structure of IThtA

In this color scheme, blue regions pair to green regions and red regions are unpaired. There is clear evidence
for a hairpin loop near the 3’-end if IhtA, and weaker evidence for conserved secondary structure elsewhere in the
sequences (Fig. [T).

We can also visualize the secondary structure through a dot plot (Fig. [Z). One half of the dot plot shows the
probabilities of pairing, and the other half shows the predicted structure. This view reveals the level of ambiguity in
the secondary structure based on the (low) amount of available information.

V VVV VYV VYV VYV VYV

evidence <- PredictDBN(RNA, type="evidence", threshold=0, verbose=FALSE)

pairs <- PredictDBN(RNA, type="pairs", verbose=FALSE)

dots <- matrix (0, width (RNA) [1], width (RNA) [1])

dots[evidence[, 1:2]] <- evidencel[, 3]

dots[pairs[, 2:1]] <- 1

image (dots, xaxt="n", yaxt="n", col=gray(seq(l, 0, -0.01)))
abline (a=0, b=1)

cons <- toString(ConsensusSequence (RNA, threshold=0.2))

cons <- strsplit(cons, "")[[1]]

at <- seq(0, 1, length.out=length(cons))

axis(l, at, cons, tick=FALSE, cex.axis=0.3, gap.axis=0, line=-1)
axis (2, at, cons, tick=FALSE, cex.axis=0.3, gap.axis=0, line=-1)

TN .

<

AAG UGRUAUUCUR+CGCCAUGGAAUAGCUUCURACUCURKUGYW K-+++W AGGGGGR-AAGYCAAGA++R VYRKVGUYDGCCGUA-+++YYKY+KGUUYUCUUGGCUUU

AAG UGRUAUUCUR+CGCCAUGGAAUAGCUUCURACUCURKUGYW K-+++W AGGGGGR-AAGYCAAGA++R VYRKVGUYDGCCGUA-+++YYKY+KGUUYUCUUGGCUUU

Figure 2: Secondary Structure Dot Plot.

Two considerations are important at this stage: (i) that we have a clearly defined boundary representing the true
beginning and end of every sequence, and (i7) that the sequences are a diverse sample of what we hope to find. Here
we don’t have any partial sequences, but if we did they could be identified by counting gaps (“-”) at their ends with
TerminalChar. Any partial sequences should be removed before proceeding, for example by using:

> RNA <- unique (RNA)

> t <- TerminalChar (RNA)

> w <- which(t[, "leadingChar"] <= median(t[, "leadingChar"]) &
t[, "trailingChar"] <= median(t[, "trailingChar"]))

> RNA <- RemoveGaps (RNA[w], "common")

Rather than remove partial sequences, it would have been possible to shorten the alignment to the region shared

by all sequences using subseq.

3.3 Learning sequence patterns

Now we need to build a model capturing the essential characteristics of the non-coding RNA. The function LearnNonCoding
takes an alignment as input and outputs an object of class NonCoding that describes the sequences.

> y <- LearnNonCoding (RNA)
>y
NonCoding object with 16 motifs, 5 hairpins, and 2-mer frequencies.

The output object is a list containing patterns of three types: “motifs”, “hairpins”, and “kmers”. Motifs are
short regions of the sequence that can be used to identify the sequences:

> y[["motifs"]]

begin_low begin_high end_low end_high motif pwm minscore
1 0 0 96 100 AAGaTGr 0.945119.... 0, 2.553....
2 7 7 89 93 TATTCTA 0.018293.... 0, 5.941....
3 14 15 82 86 CGCCATG 0.018634.... 0, 5.972....
4 21 22 81 85 G 0.018293.... 0, Inf
5 22 23 72 76 AATAGCTTC 0.911582.... 0, 7.955....
6 31 33 59 63 rACTCTGkTGyw 0.460255.... 0, 6.710....
7 44 45 58 61 t 0.249896.... 0, Inf
8 45 50 48 52 TCAGGGGGA 0.217338.... 0, 4.426....
9 54 59 39 43 AAGCCAAGA 0.945119.... 0, 9.423....
10 64 70 31 35 rwryrd 0.585698.... 2.049928....
11 71 77 20 24 GTydGCCGTA 0.091098.... 6.872331....
12 82 86 19 20 A 0.9451109.... 0, Inf
13 84 87 18 19 y 0.018634.... 0.480886....
14 85 88 15 16 Tkt 0.018634.... 0, 0.612....
15 88 92 8 8 tGTTTTC 0.167740.... 0, 4.902....
16 95 99 0 0 TTGGCTTT 0.018293.... 0, Inf
prevalence background
1 0.035714.... 0.968923....
2 0.035714.... 0.977723....
3 0.035714.... 0.983400....
4 0.053129.... 0.550703....
5 0.053129.... 0.979864....
6 0.035714.... 0.975775....
7 0.021779.... 0.449792....

8 0.109331.... 0.961121....
9 0.063973.... 0.977654....
10 0.182890.... 0.817792....
11 0.021713.... 0.999375....
12 0.113380.... 0.581524....
13 0.063973.... 0.449792....
14 0.035714.... 0.626722....
15 0.035714.... 0.948588....
16 0.035714.... 0.990863....

Note that some of the motifs contain ambiguity codes (see TUPAC_CODE_MAP) that represent multiple nu-
cleotides. Motifs are defined by their distance from each end of the non-coding RNA, and their prevalence across
sequence representatives when allowing for a certain degree of distance.

> y[["hairpins"]]
begin_low begin_high end_low end_high width_low width_high length_low

1 -4 1 63 72 31 44 6

2 7 7 77 81 19 20 8

3 25 31 42 52 24 40 5

4 31 35 48 54 19 24 5

5 49 58 -4 0 49 61 13
length_high dG prevalence background

1 12 -Inf, -2.... 0.314506.... 0.215268....

2 8 -Inf, -3.... 0.755376.... 0.009975....

3 8 -Inf, -5.... 0.236555.... 0.087367....

4 9 -Inf, -9.... 0.227679.... 0.004830....

5 26 -Inf, -2.... 0.136334.... 0.000105....

Hairpins are defined similarly, but allow for ambiguity in the form of varying free energy (dG). As we saw in
the predicted structures, the ThtA sequences end in a prominent hairpin that is both long and has a low free energy.

> head(y[["kmers"]])
[1] 186 109 182 163 78 83
> tail(y[["kmers"]])
[1] 236 221 216 218 155 341

Finally, the sequences are identifiable by their k-mer frequencies. In general, non-coding RNAs have higher
GC-content than protein coding regions of genomes. Note that the value of “k” is set automatically depending on the
amount of information in the input sequence alignment.

4 Finding Non-Coding RNAs

Now that we have captured the life force of the sequences, our next goal is to find homologous non-coding RNAs in a
genome. You can either use your own genome or follow along with the example C. trachomatis genome.

> # specify the path to your genome:

> genome_path <- "<<path to genome FASTA file>>"

> # OR use the example genome:

> genome_path <- system.file("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

> # read the sequences into memory
> genome <- readDNAStringSet (genome_path)
> genome
DNAStringSet object of length 1:
width seq names

[1] 1042519 GCGGCCGCCCGGGAAATTGCTA...GTTGGCTGGCCCTGACGGGGTA NC_000117.1 Chlam...

The function FindNonCoding finds matches to NonCoding models in a genome. Let’s search for the ThtA
model in the Chlamydia genome:

> FindNonCoding (y, genome)

Time difference of 5.83 secs
Genes object of size 1 specifying:
1 non-coding RNA of 107 nucleotides.

Index Strand Begin End TotalScore Gene
1 1 0 773281 773387 99.91 -1

And there it is! The output tells us that the ThtA gene is found on the forward strand of the first sequence
("Index") in the genome. This match had a high score to first (and only) model in y (i.e., "Gene" is —1). Values
in the "Gene" column are negative to signify that these are non-coding RNAs and not protein coding genes.

Life’s too short to build models for every non-coding RNA, so we can load a set of pre-built models for our
bacterial genome. Replace “Bacteria” with “Archaea” or “Eukarya” for genomes from organisms belonging to other
domains of life.

> data (NonCodingRNA_Bacteria)
> x <- NonCodingRNA_Bacteria
> names (x)

1] "tRNA-Ala"
"tRNA-Arg"
"tRNA-Asn"
"tRNA-Asp"
"tRNA-Cys"
"tRNA-G1n"
"tRNA-G1lu"
"tRNA-Gly"
"tRNA-His"
"tRNA-I1le"
"tRNA-Leu"
"tRNA-Lys"
"tRNA-Met"
"tRNA-Phe"
"tRNA-Pro"
"tRNA-Ser"
"tRNA-Thr"
"tRNA-Trp"
"tRNA-Tyr"
"tRNA-Val"
"tRNA-Sec"
"rRNA_5S-RF0O000L1"

N PO WOo Joy U d WNE O WOow-Jo Und Wi

10

"rRNA_16S-REFQ0177"
"rRNA_23S-RF02541"

"tmRNA-RF0O0023"
"tmRNA_Alpha-RF01849"
"RNase_P_class_A-RF00010"
"RNase_P_class_B-RFO0011"
"SsrS—-RFO0013"
"Intron_Gp_I-RF00028"
"Intron_Gp_II-RF00029"
"SmallSRP-RF00169"
"Cyclic-di-GMP_Riboswitch-RF01051"
"Cyclic-di-AMP_Riboswitch-RF00379"
"T-box_Leader—-RF00230"
"Ribosomal_Protein_L10_Leader—-RF00557"
"Cobalamin_Riboswitch-RF00174"
"TPP_Riboswitch-RF00059"

"SAM Riboswitch-RF00162"
"Fluoride_Riboswitch-RF01734"
"FMN_Riboswitch-RF0O0050"
"Glycine_Riboswitch-RF00504"
"HEARO-RF02033"

"Flavo_1-RF01705"
"Acido_Lenti_1-RF01687"
"5'_ureB-RF02514"

SO D D DD WWW W W W W W WwNDNDNDDNDDNDDNDDND
O Ul W N O WOowJoUd WNE O WOow-JOo Udbd Ww

What a life saver! Our new dataset (x) is a list of models, including tRNAs (by amino acid), transfer-messenger
RNA, RNase P, SsrS (6S RNA), group I and II introns, the signal recognition particle, and three rRNAs (5S, 16S, and
235). Let’s add the model we built of ThtA into the list:

> x[[length(x) + 1]] <- vy
> names (x) [length(x)] <= "IhtA"

Now we can search for them all at once with FindNonCoding:

> rnas <- FindNonCoding(x, genome)

Time difference of 75.57 secs
> rnas

Genes object of size 47 specifying:
47 non-coding RNAs from 72 to 2,938 nucleotides.

Index Strand Begin End TotalScore Gene
1 1 1 20663 21082 88.31 -25
2 1 1 42727 42801 69.82 -3
3 1 1 68920 68995 78.58 -15
4 1 0 158662 158736 55.72 -17
5 1 0 158744 158827 52.24 -19
6 1 1 202339 202414 68.58 -10

with 41 more rows.

> class (rnas)

11

[1] "Genes"

Wow! That has to be one of life’s simplest pleasures. FindNonCoding returned an object of class Genes.
By convention, the starting position of non-coding RNAs on the forward (0) St rand is at Begin, while those on the
reverse (1) Strand start at End. We can take a look at which RNAs were found:

> annotations <- attr(rnas,
"Gene"] ,

> m <- match (rnas][,

"annotations")
annotations)

> sort (table (names (annotations) [m]))
IhtA RNase_P_class_A-RF00010

1 1
tRNA-Asn tRNA-Asp
1 1
tRNA-Gln tRNA-Glu
1 1
tRNA-Ile tRNA-Lys
1 1
tRNA-Trp tRNA-Tyr

1
rRNA_16S—-RF00177

1
rRNA_23S-RF02541

2 2
tRNA-Ala tRNA-Gly
2 2
tRNA-Val tRNA-Arg
2 3
tRNA-Thr tRNA-Ser
3 4

SmallSRP-RF00169
1

tRNA-Cys

1

tRNA-His

1

tRNA-Phe

1

tmRNA-RF00023

1
rRNA_5S-RF00001
2

tRNA-Pro

2

tRNA-Met

3

tRNA-Leu

5

We see that the C. trachomatis genome has multiple tRNA genes, two copies of each ribosomal RNA gene, and
the RNaseP and tmRNA genes. Finally, it is possible to extract the non-coding RNAs from the genome:

> ExtractGenes (rnas, genome,

RNAStringSet object of length 47:

width seq

[1] 420
(2] 75
[3] 76
[4] 75
[5] 84
[43] 72
[44] 74
[45] 75
[46] 88
[47] 85

GGGGGUGUAAAGGUUUCGACUUAGAAAUGAAGC. .
UCCGGAGUAGCUCAGCGGUAGAGCAGUGGACUG. .
CGGAGUAUAGCGCAGCCUGGUUAGCGCGGUUGC. .
GCUGGAGUAGCUCAAUUGGCAGAGCAUUCGAUU. .
GGGGGUGUCGCAUAGCGGUCAAUUGCAUCGGAC. .

GGUGGCAUCGCCAAGCGGUAAGGCCGAGGCCUG. .
UGGGGUGUGGCCAAGCGGUAAGGCAGCGGUUUU. .
GGGGUAUUAGCUCAGUUGGUUAGAGCGUCACGU. .
GGAAGAAUGGCAGAGCGGUUUAAUGCACCUGUC. .
GCCCAGGUGGUGAAAUUGGUAGACACGCUGGAU. .

type="RNAStringSet")

.AGGACGAGAGUUCGACUCUCUCCACCUCCAUAG
.UGGUCGUUGGUUCGAACCCAUCCUCCGGAGUCU
.AUAGGUCGGGGGUUCGAAUCCCUCUACUCCGAU
.ACGGUUGAGGGUUCAAUUCCUUUCUCCAGCAUC
. CGGAUACGUUGGUUCAAAUCCAGCCACCCCCAG

.CUCUAUCCCCGGUUCGAUUCCGGGUGCCACCUU
.CGCAUCGGAGGUUCGAAUCCUUCCACCCCAGAG
. GAAGGUCAGCUGUUCAAGUCAGCUAUAUCCCAA
.GGUCCGGGGGUUCGAAUCCCUCUUCUUCCGCAU
. GGCAUGUAGGUUCAAGUCCUAUCCUGGGCAUAG

You’ll be the life of the party now that you know how to build models for non-coding RNAs and find them in a

genome.

5 Session Information

All of the output in this vignette was produced under the following conditions:

12

R version 4.4.0 beta (2024-04-15 r86425 ucrt), x86_64-w64-mingw32
Running under: Windows Server 2022 x64 (build 20348)
Matrix products: default

Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

Other packages: BiocGenerics 0.49.1, Biostrings 2.71.6, DECIPHER 2.99.2, GenomelnfoDb 1.39.14,
IRanges 2.37.1, S4Vectors 0.41.7, XVector 0.43.1, pwalign 0.99.2

Loaded via a namespace (and not attached): DBI 1.2.2, GenomelnfoDbData 1.2.12, KernSmooth 2.23-22,
R6 2.5.1, UCSC.utils 0.99.7, compiler 4.4.0, crayon 1.5.2, httr 1.4.7, jsonlite 1.8.8, tools 4.4.0, zlibbioc 1.49.3

13

	Introduction
	Getting Started
	Startup

	Building a Non-Coding RNA Model
	Importing the sequences
	Aligning the sequences
	Learning sequence patterns

	Finding Non-Coding RNAs
	Session Information

