CGHnormaliter Package (Version 1.57.0)

Bart P.P. van Houte, Thomas W. Binsl, Hannes Hettling
April 17, 2024

1 Introduction

This package contains an implementation of the CGHnormaliter strategy for
normalization of two-channel array Comparative Genomic Hybridization (aCGH)
data displaying many copy number imbalances. The key idea of our method is
that temporary exclusion of aberrations from the aCGH data allows for a more
appropriate calculation of the LOWESS regression curve. As a result, after
normalization, the logs intensity ratios of the normals will generally be closer
to zero and better reflect the biological reality. We coined this normalization
strategy ‘local-LOWESS’ since only a subset of the logs ratios is considered in
the LOWESS regression.

The strategy can be summarized as follows (see Figure 1). Initially the logs
intensity ratios are segmented using DNAcopy [5]. The segmented data are then
given as input to a calling tool named CGHcall [2] to discriminate the normals
from gains and losses. These normals are subsequently used for normalization
based on LOWESS. These steps are then iterated to refine the normalization.
For more detailed information we refer to the publications of the method [4, 3].

step 1 segmentation

1

step 2 initial calling

1] I

top 3 local-LOWESS

step normalization

step 4 segmentation iteration
step 5 calling

Figure 1: Overview of the CGHnormaliter method.



2 Data format

The input should be either a data.frame or the file name of a tabseparated text
file (text files must contain a header). The first four columns should describe
the clone and its position on the genome:

1. ID : The unique identifiers of array elements.

2. Chromosome : Chromosome number of each array element.

3. Start : Chromosomal start position in bp of each array element.

4. End : Chromosomal end position in bp of each array element.

The start and end positions must be numeric.
actual data. For each sample in the experiment, there must be two adjacent
columns with the test and reference intensities, respectively. All entries must
be delimited by tabs, and missing entries must be denoted with NA or by an
empty value. Below, an example is given of a correctly formatted data file or

data.frame containing measurements on 7 clones in 2 samples.

ID
RP11-34P13
RP11-379K15
RP11-776018
RP11-45C18
RP11-242B5
RP13-586C17
RP11-4141.23

Chromosome

1
1
1
1
1
1
1

3 Example

Start
1
95421
357737
579118
606617
619355
658751

End

254479
244136
465038
696613
711982
783174
846904

Casel.test
279

1815

387

786

2955

NA

630

The next columns hold the

Casel.ref Case2.test

294
2269
349
734
4158
NA
937

NA
2793
429
900
4478
823
959

Case2.ref

NA

3996

362

735

5229

841

744

First, we load the example acute lymphoblastic leukemia dataset [1] which comes
with the CGHnormaliter package:

> library(CGHnormaliter)
> data(Leukemia)

Next, we run the CGHnormaliter routine on the first four chromosomes of the
Leukemia data:

> result <- CGHnormaliter (Leukemia, nchrom=4, cellularity=0.9)

CGHnormaliter -- Running an initial segmentation and calling
segmentation ..

Sample. 1

Sample.?2

Sample. 3

Start data
Analyzing:
Analyzing:
Analyzing:
Start data

calling ..



CGHnormaliter -- Iteration # 1

Mean normalization shift per sample:
Casel.test_Casel.ref : 0.1053031
Case2.test_Case2.ref : 0.07000189
Case3.test_Case3.ref : 0.128865

Start data segmentation ..

Analyzing: Sample.1

Analyzing: Sample.2

Analyzing: Sample.3

Start data calling ..

CGHnormaliter -- Iteration # 2

Mean normalization shift per sample:
Casel.test_Casel.ref : 0.00856964
Case2.test_Case2.ref : 0.01487608
Case3.test_Case3.ref : 0.01226434

Start data segmentation ..

Analyzing: Sample.1l

Analyzing: Sample.2

Analyzing: Sample.3

Start data calling ..

CGHnormaliter -- Iteration # 3

Mean normalization shift per sample:
Casel.test_Casel.ref : 0.001326081
Case2.test_Case2.ref : 0.001739907
Case3.test_Case3.ref : 0.002010699

CGHnormaliter -- Reached convergence. Running a final segmentation and calling...

Start data segmentation ..

Analyzing: Sample.1

Analyzing: Sample.2

Analyzing: Sample.3

Start data calling ..

Writing MA-plots to file: MAplot.pdf

CGHnormaliter -- FINISHED

To enable a visual assessment of the bias reduction, MA-plots are (by default)
automatically generated before and after normalization of each sample. These
plots are stored into a PDF, usually named MAplot.pdf (the exact file name is
supplied at the end of each CGHnormaliter run). See Figure 2 for such MA-plots
of the second Leukemia sample.

Now, several fields of the result object can be acccessed, for example:

> normalized.data <- copynumber (result) # log2 ratios
> segmented.data <- segmented(result)
> called.data <- calls(result)



Case2.test_Case2.ref — Before normalization

< |
-
v
o
o _|
s o
S
-
|
T T T T
6 8 10 12
A
o ;
S ¢ gain
* normal
0 _| ¢ loss
o
e
s o
Q
‘T'_

A

Figure 2: MA-plot for the second leukemia sample before and after normaliza-
tion. Note that the normalization is based on the normals only, represented by
the black dots.

Plotting the normalized logs ratios in a density plot provides another means (be-
sides MA plots) to inspect whether or not the centralization has been successful.
Figure 3 shows such a density plot for sample 2:

> plot(density(normalized.datal[, 2]), col=1, xlab='"log2 ratio",
+ main="Density plot")

> abline(v=0, 1lty=2)

>

The results, including segments and calls, can be visualized using the plot
function. In Figure 4 the results of sample 2 are plotted in full resolution:

> plot(result[,2], ylimit=c(-2,2), dotres=1)

Plotting sample Case2.test_Case2.ref



Density plot

1.2
|

1.0

Density
0.6 0.8
|

0.2

0.0

-1.0 -0.5 0.0 0.5 1.0

log2 ratio

Figure 3: Density plot after CGHnormaliter normalization for the second
leukemia sample. The data are adequately centralized around peak at the left,
which corresponds to the normals. The peak at the right corresponds to the
gains.

Case2.test_Case2.ref
5k x 175 kbp

probability
log, ratio

Figure 4: Results of the CGHnorm#IP¥s4Rstmalization for the second leukemia
sample.



Finally, the package provides the function CGHnormaliter.write.table to save
the normalized data into a tabdelimited plain text file:

> CGHnormaliter.write.table(result)
Saving normalized log2 ratios to file: normalized.txt

The segmented and called data from the result object can be saved to file as
well using this function:

> CGHnormaliter.write.table(result, data.type='"segmented")
Saving segmented log2 ratios to file: segmented.txt
> CGHnormaliter.write.table(result, data.type="called")

Saving calls to file: called.txt

References

[1] K. Paulsson, M. Heidenblad, H. Morse, A. Borg, T. Fioretos, and B. Johans-
son. Identification of cryptic aberrations and characterization of translo-
cation breakpoints using array CGH in high hyperdiploid childhood acute
lymphoblastic leukemia. Leukemia, 20:2002-2007, 2006.

[2] M.A. van de Wiel, K.I. Kim, S.J. Vosse, W.N. van Wieringen, S.M. Wilting,
and B. Ylstra. CGHcall: calling aberrations for array CGH tumor profiles.
Bioinformatics, 23:892-894, 2007.

[3] B.P.P. van Houte, T.W. Binsl, H. Hettling, and J. Heringa. CGHnormaliter:
a bioconductor package for normalization of array CGH data with many
CNAs. Bioinformatics, 26(10):1366-1367, 2010.

[4] B.P.P. van Houte, T.W. Binsl, H. Hettling, W. Pirovano, and J. Heringa.
CGHnormaliter: an iterative strategy to enhance normalization of array
CGH data with imbalanced aberrations. BMC Genomics, 10:401, 2009.

[5] E.S. Venkatraman and A.B. Olshen. A faster circular binary segmentation
algorithm for the analysis of array CGH data. Bioinformatics, 23(6):657—
663, 2007.



