scGPS introduction

Quan Nguyen and Michael Thompson

2021-10-26

1. Installation instruction

# To install scGPS from github (Depending on the configuration of the local
# computer or HPC, possible custom C++ compilation may be required - see
# installation trouble-shootings below)
devtools::install_github("IMB-Computational-Genomics-Lab/scGPS")

# for C++ compilation trouble-shooting, manual download and installation can be
# done from github

git clone https://github.com/IMB-Computational-Genomics-Lab/scGPS

# then check in scGPS/src if any of the precompiled (e.g.  those with *.so and
# *.o) files exist and delete them before recompiling

# then with the scGPS as the R working directory, manually install and load
# using devtools functionality
# Install the package
devtools::install()
#load the package to the workspace 
library(scGPS)

2. A simple workflow of the scGPS:

The purpose of this workflow is to solve the following task:

2.1 Create scGPS objects

2.2 Run prediction

2.3 Summarise results

3. A complete workflow of the scGPS:

The purpose of this workflow is to solve the following task:

3.1 Identify clusters in a dataset using CORE

(skip this step if clusters are known)

3.2 Identify clusters in a dataset using SCORE (Stable Clustering at Optimal REsolution)

(skip this step if clusters are known)

(SCORE aims to get stable subpopulation results by introducing bagging aggregation and bootstrapping to the CORE algorithm)

3.3 Visualise all cluster results in all iterations

3.4 Compare clustering results with other dimensional reduction methods (e.g., tSNE)

3.5 Find gene markers and annotate clusters

4. Relationship between clusters within one sample or between two samples

The purpose of this workflow is to solve the following task:

4.1 Start the scGPS prediction to find relationship between clusters

4.2 Display summary results for the prediction

#get the number of rows for the summary matrix
row_cluster <-length(unique(colData(mixedpop2)[,1]))

#summary results LDA to to show the percent of cells classified as cells
#belonging by LDA classifier
summary_prediction_lda(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster )
#>                 V1               V2                                names
#> 1 85.0267379679144  74.331550802139 LDA for subpop 1 in target mixedpop2
#> 2               95 32.8571428571429 LDA for subpop 2 in target mixedpop2
#> 3 86.4661654135338 83.4586466165414 LDA for subpop 3 in target mixedpop2
#> 4             77.5             52.5 LDA for subpop 4 in target mixedpop2

#summary results Lasso to show the percent of cells classified as cells
#belonging by Lasso classifier
summary_prediction_lasso(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster)
#>                 V1               V2                                      names
#> 1 58.2887700534759 49.7326203208556 ElasticNet for subpop1 in target mixedpop2
#> 2 99.2857142857143 93.5714285714286 ElasticNet for subpop2 in target mixedpop2
#> 3 93.2330827067669 86.4661654135338 ElasticNet for subpop3 in target mixedpop2
#> 4               95               90 ElasticNet for subpop4 in target mixedpop2

# summary maximum deviance explained by the model during the model training
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "51.27" "49.9" 
#> 
#> $DeviMax
#>           dat_DE$Dfd          Deviance           DEgenes
#> 1                  0             51.27    genes_cluster1
#> 2                  1             51.27    genes_cluster1
#> 3                  4             51.27    genes_cluster1
#> 4                  6             51.27    genes_cluster1
#> 5                  8             51.27    genes_cluster1
#> 6                 10             51.27    genes_cluster1
#> 7                 12             51.27    genes_cluster1
#> 8                 14             51.27    genes_cluster1
#> 9                 15             51.27    genes_cluster1
#> 10                16             51.27    genes_cluster1
#> 11                17             51.27    genes_cluster1
#> 12                18             51.27    genes_cluster1
#> 13                20             51.27    genes_cluster1
#> 14                22             51.27    genes_cluster1
#> 15                27             51.27    genes_cluster1
#> 16 remaining DEgenes remaining DEgenes remaining DEgenes
#> 
#> $LassoGenesMax
#> NULL

# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 65.62500 67.41071

4.3 Plot the relationship between clusters in one sample

Here we look at one example use case to find relationship between clusters within one sample or between two sample

#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#cluster_mixedpop2 <- as.numeric(as.vector(colData(mixedpop2)[,1]))

c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$id[1:200]

LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, 
                        listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)

c_selectID <- 2
genes = DEgenes$id[1:200]

LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, 
                        listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)

c_selectID <- 3
genes = DEgenes$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, 
                        listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)

c_selectID <- 4
genes = DEgenes$id[1:200]
LSOLDA_dat4 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, 
                        listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)


#prepare table input for sankey plot

LASSO_C1S2  <- reformat_LASSO(c_selectID=1, mp_selectID = 2,
                             LSOLDA_dat=LSOLDA_dat1,
                             nPredSubpop = length(unique(colData(mixedpop2)
                                [,1])),
                             Nodes_group ="#7570b3")

LASSO_C2S2  <- reformat_LASSO(c_selectID=2, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat2,
                             nPredSubpop = length(unique(colData(mixedpop2)
                                [,1])),
                             Nodes_group ="#1b9e77")

LASSO_C3S2  <- reformat_LASSO(c_selectID=3, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat3,
                             nPredSubpop = length(unique(colData(mixedpop2)
                                [,1])),
                             Nodes_group ="#e7298a")

LASSO_C4S2  <- reformat_LASSO(c_selectID=4, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat4,
                             nPredSubpop = length(unique(colData(mixedpop2)
                                [,1])),
                             Nodes_group ="#00FFFF")

combined <- rbind(LASSO_C1S2,LASSO_C2S2,LASSO_C3S2, LASSO_C4S2 )
combined <- combined[is.na(combined$Value) != TRUE,]

nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
                     Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])

library(networkD3)

Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))

#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target

for(i in 1:length(Node_all)){
   Source[Source==Node_all[i]] <-i-1
   Target[Target==Node_all[i]] <-i-1
}
# 
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup

#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))

suppressMessages(library(dplyr))
Color <- combined %>% count(Node, color=NodeGroup) %>% select(2)
node_df$color <- Color$color

suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
                 Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor", 
                 NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
C2_MP2 → C2_MP2
93 
C4_MP2 → C4_MP2
88 
C3_MP2 → C3_MP2
86 
C1_MP2 → C1_MP2
73 
C2_MP2 → C1_MP2
59 
C4_MP2 → C3_MP2
56 
C4_MP2 → C2_MP2
55 
C4_MP2 → C1_MP2
37 
C3_MP2 → C1_MP2
33 
C2_MP2 → C4_MP2
26 
C3_MP2 → C4_MP2
26 
C1_MP2 → C4_MP2
10 
C1_MP2 → C3_MP2
4 
C3_MP2 → C2_MP2
3 
C1_MP2 → C2_MP2
0 
C2_MP2 → C3_MP2
0 
C1_MP2
202
C1_MP2
C2_MP2
179
C2_MP2
C3_MP2
147
C3_MP2
C4_MP2
235
C4_MP2
#saveNetwork(p1, file = paste0(path,'Subpopulation_Net.html'))

4.3 Plot the relationship between clusters in two samples

Here we look at one example use case to find relationship between clusters within one sample or between two sample

#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
row_cluster <-length(unique(colData(mixedpop2)[,1]))

c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, 
                        listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)


c_selectID <- 2
genes = DEgenes$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, 
                        listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)

c_selectID <- 3
genes = DEgenes$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, 
                        listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)

#prepare table input for sankey plot

LASSO_C1S1  <- reformat_LASSO(c_selectID=1, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat1, nPredSubpop = row_cluster, 
                             Nodes_group = "#7570b3")

LASSO_C2S1  <- reformat_LASSO(c_selectID=2, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat2, nPredSubpop = row_cluster, 
                             Nodes_group = "#1b9e77")

LASSO_C3S1  <- reformat_LASSO(c_selectID=3, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat3, nPredSubpop = row_cluster, 
                             Nodes_group = "#e7298a")


combined <- rbind(LASSO_C1S1,LASSO_C2S1,LASSO_C3S1)

nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
                     Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
combined <- combined[is.na(combined$Value) != TRUE,]


library(networkD3)

Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))

#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target

for(i in 1:length(Node_all)){
   Source[Source==Node_all[i]] <-i-1
   Target[Target==Node_all[i]] <-i-1
}

combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup

#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))

suppressMessages(library(dplyr))
n <- length(unique(node_df$Node))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
Color = getPalette(n)
node_df$color <- Color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
                 Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
                 NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
C2_MP1 → C3_MP2
79 
C3_MP1 → C3_MP2
60 
C3_MP1 → C1_MP2
59 
C2_MP1 → C2_MP2
51 
C3_MP1 → C4_MP2
50 
C2_MP1 → C4_MP2
49 
C1_MP1 → C2_MP2
36 
C3_MP1 → C2_MP2
34 
C1_MP1 → C4_MP2
24 
C2_MP1 → C1_MP2
23 
C1_MP1 → C1_MP2
17 
C1_MP1 → C3_MP2
6 
C1_MP1
83
C1_MP1
C2_MP1
201
C2_MP1
C3_MP1
203
C3_MP1
C1_MP2
99
C1_MP2
C2_MP2
121
C2_MP2
C3_MP2
144
C3_MP2
C4_MP2
123
C4_MP2
#saveNetwork(p1, file = paste0(path,'Subpopulation_Net.html'))
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#>  setting  value                       
#>  version  R version 4.1.1 (2021-08-10)
#>  os       Ubuntu 20.04.3 LTS          
#>  system   x86_64, linux-gnu           
#>  ui       X11                         
#>  language (EN)                        
#>  collate  C                           
#>  ctype    en_US.UTF-8                 
#>  tz       America/New_York            
#>  date     2021-10-26                  
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────
#>  package              * version    date       lib source        
#>  annotate               1.72.0     2021-10-26 [2] Bioconductor  
#>  AnnotationDbi        * 1.56.0     2021-10-26 [2] Bioconductor  
#>  ape                    5.5        2021-04-25 [2] CRAN (R 4.1.1)
#>  aplot                  0.1.1      2021-09-22 [2] CRAN (R 4.1.1)
#>  assertthat             0.2.1      2019-03-21 [2] CRAN (R 4.1.1)
#>  backports              1.2.1      2020-12-09 [2] CRAN (R 4.1.1)
#>  Biobase              * 2.54.0     2021-10-26 [2] Bioconductor  
#>  BiocGenerics         * 0.40.0     2021-10-26 [2] Bioconductor  
#>  BiocParallel           1.28.0     2021-10-26 [2] Bioconductor  
#>  Biostrings             2.62.0     2021-10-26 [2] Bioconductor  
#>  bit                    4.0.4      2020-08-04 [2] CRAN (R 4.1.1)
#>  bit64                  4.0.5      2020-08-30 [2] CRAN (R 4.1.1)
#>  bitops                 1.0-7      2021-04-24 [2] CRAN (R 4.1.1)
#>  blob                   1.2.2      2021-07-23 [2] CRAN (R 4.1.1)
#>  bslib                  0.3.1      2021-10-06 [2] CRAN (R 4.1.1)
#>  cachem                 1.0.6      2021-08-19 [2] CRAN (R 4.1.1)
#>  callr                  3.7.0      2021-04-20 [2] CRAN (R 4.1.1)
#>  caret                * 6.0-90     2021-10-09 [2] CRAN (R 4.1.1)
#>  checkmate              2.0.0      2020-02-06 [2] CRAN (R 4.1.1)
#>  class                  7.3-19     2021-05-03 [2] CRAN (R 4.1.1)
#>  cli                    3.0.1      2021-07-17 [2] CRAN (R 4.1.1)
#>  clusterProfiler      * 4.2.0      2021-10-26 [2] Bioconductor  
#>  codetools              0.2-18     2020-11-04 [2] CRAN (R 4.1.1)
#>  colorspace             2.0-2      2021-06-24 [2] CRAN (R 4.1.1)
#>  cowplot                1.1.1      2020-12-30 [2] CRAN (R 4.1.1)
#>  crayon                 1.4.1      2021-02-08 [2] CRAN (R 4.1.1)
#>  data.table             1.14.2     2021-09-27 [2] CRAN (R 4.1.1)
#>  DBI                    1.1.1      2021-01-15 [2] CRAN (R 4.1.1)
#>  DelayedArray           0.20.0     2021-10-26 [2] Bioconductor  
#>  dendextend             1.15.1     2021-05-08 [2] CRAN (R 4.1.1)
#>  desc                   1.4.0      2021-09-28 [2] CRAN (R 4.1.1)
#>  DESeq2                 1.34.0     2021-10-26 [2] Bioconductor  
#>  devtools               2.4.2      2021-06-07 [2] CRAN (R 4.1.1)
#>  digest                 0.6.28     2021-09-23 [2] CRAN (R 4.1.1)
#>  DO.db                  2.9        2021-08-23 [2] Bioconductor  
#>  DOSE                 * 3.20.0     2021-10-26 [2] Bioconductor  
#>  downloader             0.4        2015-07-09 [2] CRAN (R 4.1.1)
#>  dplyr                * 1.0.7      2021-06-18 [2] CRAN (R 4.1.1)
#>  dynamicTreeCut       * 1.63-1     2016-03-11 [2] CRAN (R 4.1.1)
#>  e1071                  1.7-9      2021-09-16 [2] CRAN (R 4.1.1)
#>  ellipsis               0.3.2      2021-04-29 [2] CRAN (R 4.1.1)
#>  enrichplot             1.14.0     2021-10-26 [2] Bioconductor  
#>  evaluate               0.14       2019-05-28 [2] CRAN (R 4.1.1)
#>  fansi                  0.5.0      2021-05-25 [2] CRAN (R 4.1.1)
#>  farver                 2.1.0      2021-02-28 [2] CRAN (R 4.1.1)
#>  fastcluster            1.2.3      2021-05-24 [2] CRAN (R 4.1.1)
#>  fastmap                1.1.0      2021-01-25 [2] CRAN (R 4.1.1)
#>  fastmatch              1.1-3      2021-07-23 [2] CRAN (R 4.1.1)
#>  fgsea                  1.20.0     2021-10-26 [2] Bioconductor  
#>  foreach                1.5.1      2020-10-15 [2] CRAN (R 4.1.1)
#>  fs                     1.5.0      2020-07-31 [2] CRAN (R 4.1.1)
#>  future                 1.22.1     2021-08-25 [2] CRAN (R 4.1.1)
#>  future.apply           1.8.1      2021-08-10 [2] CRAN (R 4.1.1)
#>  genefilter             1.76.0     2021-10-26 [2] Bioconductor  
#>  geneplotter            1.72.0     2021-10-26 [2] Bioconductor  
#>  generics               0.1.1      2021-10-25 [2] CRAN (R 4.1.1)
#>  GenomeInfoDb         * 1.30.0     2021-10-26 [2] Bioconductor  
#>  GenomeInfoDbData       1.2.7      2021-09-23 [2] Bioconductor  
#>  GenomicRanges        * 1.46.0     2021-10-26 [2] Bioconductor  
#>  ggforce                0.3.3      2021-03-05 [2] CRAN (R 4.1.1)
#>  ggfun                  0.0.4      2021-09-17 [2] CRAN (R 4.1.1)
#>  ggplot2              * 3.3.5      2021-06-25 [2] CRAN (R 4.1.1)
#>  ggplotify              0.1.0      2021-09-02 [2] CRAN (R 4.1.1)
#>  ggraph                 2.0.5      2021-02-23 [2] CRAN (R 4.1.1)
#>  ggrepel                0.9.1      2021-01-15 [2] CRAN (R 4.1.1)
#>  ggtree                 3.2.0      2021-10-26 [2] Bioconductor  
#>  glmnet                 4.1-2      2021-06-24 [2] CRAN (R 4.1.1)
#>  globals                0.14.0     2020-11-22 [2] CRAN (R 4.1.1)
#>  glue                   1.4.2      2020-08-27 [2] CRAN (R 4.1.1)
#>  GO.db                  3.14.0     2021-09-23 [2] Bioconductor  
#>  GOSemSim               2.20.0     2021-10-26 [2] Bioconductor  
#>  gower                  0.2.2      2020-06-23 [2] CRAN (R 4.1.1)
#>  graph                  1.72.0     2021-10-26 [2] Bioconductor  
#>  graphite               1.40.0     2021-10-26 [2] Bioconductor  
#>  graphlayouts           0.7.1      2020-10-26 [2] CRAN (R 4.1.1)
#>  gridExtra              2.3        2017-09-09 [2] CRAN (R 4.1.1)
#>  gridGraphics           0.5-1      2020-12-13 [2] CRAN (R 4.1.1)
#>  gtable                 0.3.0      2019-03-25 [2] CRAN (R 4.1.1)
#>  highr                  0.9        2021-04-16 [2] CRAN (R 4.1.1)
#>  htmltools              0.5.2      2021-08-25 [2] CRAN (R 4.1.1)
#>  htmlwidgets            1.5.4      2021-09-08 [2] CRAN (R 4.1.1)
#>  httr                   1.4.2      2020-07-20 [2] CRAN (R 4.1.1)
#>  igraph                 1.2.7      2021-10-15 [2] CRAN (R 4.1.1)
#>  ipred                  0.9-12     2021-09-15 [2] CRAN (R 4.1.1)
#>  IRanges              * 2.28.0     2021-10-26 [2] Bioconductor  
#>  iterators              1.0.13     2020-10-15 [2] CRAN (R 4.1.1)
#>  jquerylib              0.1.4      2021-04-26 [2] CRAN (R 4.1.1)
#>  jsonlite               1.7.2      2020-12-09 [2] CRAN (R 4.1.1)
#>  KEGGREST               1.34.0     2021-10-26 [2] Bioconductor  
#>  knitr                  1.36       2021-09-29 [2] CRAN (R 4.1.1)
#>  labeling               0.4.2      2020-10-20 [2] CRAN (R 4.1.1)
#>  lattice              * 0.20-45    2021-09-22 [2] CRAN (R 4.1.1)
#>  lava                   1.6.10     2021-09-02 [2] CRAN (R 4.1.1)
#>  lazyeval               0.2.2      2019-03-15 [2] CRAN (R 4.1.1)
#>  lifecycle              1.0.1      2021-09-24 [2] CRAN (R 4.1.1)
#>  listenv                0.8.0      2019-12-05 [2] CRAN (R 4.1.1)
#>  locfit               * 1.5-9.4    2020-03-25 [2] CRAN (R 4.1.1)
#>  lubridate              1.8.0      2021-10-07 [2] CRAN (R 4.1.1)
#>  magrittr               2.0.1      2020-11-17 [2] CRAN (R 4.1.1)
#>  MASS                   7.3-54     2021-05-03 [2] CRAN (R 4.1.1)
#>  Matrix                 1.3-4      2021-06-01 [2] CRAN (R 4.1.1)
#>  MatrixGenerics       * 1.6.0      2021-10-26 [2] Bioconductor  
#>  matrixStats          * 0.61.0     2021-09-17 [2] CRAN (R 4.1.1)
#>  memoise                2.0.0      2021-01-26 [2] CRAN (R 4.1.1)
#>  ModelMetrics           1.2.2.2    2020-03-17 [2] CRAN (R 4.1.1)
#>  munsell                0.5.0      2018-06-12 [2] CRAN (R 4.1.1)
#>  networkD3            * 0.4        2017-03-18 [2] CRAN (R 4.1.1)
#>  nlme                   3.1-153    2021-09-07 [2] CRAN (R 4.1.1)
#>  nnet                   7.3-16     2021-05-03 [2] CRAN (R 4.1.1)
#>  org.Hs.eg.db         * 3.14.0     2021-09-23 [2] Bioconductor  
#>  parallelly             1.28.1     2021-09-09 [2] CRAN (R 4.1.1)
#>  patchwork              1.1.1      2020-12-17 [2] CRAN (R 4.1.1)
#>  pillar                 1.6.4      2021-10-18 [2] CRAN (R 4.1.1)
#>  pkgbuild               1.2.0      2020-12-15 [2] CRAN (R 4.1.1)
#>  pkgconfig              2.0.3      2019-09-22 [2] CRAN (R 4.1.1)
#>  pkgload                1.2.3      2021-10-13 [2] CRAN (R 4.1.1)
#>  plyr                   1.8.6      2020-03-03 [2] CRAN (R 4.1.1)
#>  png                    0.1-7      2013-12-03 [2] CRAN (R 4.1.1)
#>  polyclip               1.10-0     2019-03-14 [2] CRAN (R 4.1.1)
#>  prettyunits            1.1.1      2020-01-24 [2] CRAN (R 4.1.1)
#>  pROC                   1.18.0     2021-09-03 [2] CRAN (R 4.1.1)
#>  processx               3.5.2      2021-04-30 [2] CRAN (R 4.1.1)
#>  prodlim                2019.11.13 2019-11-17 [2] CRAN (R 4.1.1)
#>  proxy                  0.4-26     2021-06-07 [2] CRAN (R 4.1.1)
#>  ps                     1.6.0      2021-02-28 [2] CRAN (R 4.1.1)
#>  purrr                  0.3.4      2020-04-17 [2] CRAN (R 4.1.1)
#>  qvalue                 2.26.0     2021-10-26 [2] Bioconductor  
#>  R6                     2.5.1      2021-08-19 [2] CRAN (R 4.1.1)
#>  rappdirs               0.3.3      2021-01-31 [2] CRAN (R 4.1.1)
#>  RColorBrewer           1.1-2      2014-12-07 [2] CRAN (R 4.1.1)
#>  Rcpp                   1.0.7      2021-07-07 [2] CRAN (R 4.1.1)
#>  RcppArmadillo          0.10.7.0.0 2021-09-30 [2] CRAN (R 4.1.1)
#>  RcppParallel           5.1.4      2021-05-04 [2] CRAN (R 4.1.1)
#>  RCurl                  1.98-1.5   2021-09-17 [2] CRAN (R 4.1.1)
#>  reactome.db            1.77.0     2021-10-07 [2] Bioconductor  
#>  ReactomePA           * 1.38.0     2021-10-26 [2] Bioconductor  
#>  recipes                0.1.17     2021-09-27 [2] CRAN (R 4.1.1)
#>  remotes                2.4.1      2021-09-29 [2] CRAN (R 4.1.1)
#>  reshape2               1.4.4      2020-04-09 [2] CRAN (R 4.1.1)
#>  rlang                  0.4.12     2021-10-18 [2] CRAN (R 4.1.1)
#>  rmarkdown              2.11       2021-09-14 [2] CRAN (R 4.1.1)
#>  rpart                  4.1-15     2019-04-12 [2] CRAN (R 4.1.1)
#>  rprojroot              2.0.2      2020-11-15 [2] CRAN (R 4.1.1)
#>  RSQLite                2.2.8      2021-08-21 [2] CRAN (R 4.1.1)
#>  Rtsne                  0.15       2018-11-10 [2] CRAN (R 4.1.1)
#>  S4Vectors            * 0.32.0     2021-10-26 [2] Bioconductor  
#>  sass                   0.4.0      2021-05-12 [2] CRAN (R 4.1.1)
#>  scales                 1.1.1      2020-05-11 [2] CRAN (R 4.1.1)
#>  scatterpie             0.1.7      2021-08-20 [2] CRAN (R 4.1.1)
#>  scGPS                * 1.8.0      2021-10-26 [1] Bioconductor  
#>  sessioninfo            1.1.1      2018-11-05 [2] CRAN (R 4.1.1)
#>  shadowtext             0.0.9      2021-09-19 [2] CRAN (R 4.1.1)
#>  shape                  1.4.6      2021-05-19 [2] CRAN (R 4.1.1)
#>  SingleCellExperiment * 1.16.0     2021-10-26 [2] Bioconductor  
#>  stringi                1.7.5      2021-10-04 [2] CRAN (R 4.1.1)
#>  stringr                1.4.0      2019-02-10 [2] CRAN (R 4.1.1)
#>  SummarizedExperiment * 1.24.0     2021-10-26 [2] Bioconductor  
#>  survival               3.2-13     2021-08-24 [2] CRAN (R 4.1.1)
#>  testthat               3.1.0      2021-10-04 [2] CRAN (R 4.1.1)
#>  tibble                 3.1.5      2021-09-30 [2] CRAN (R 4.1.1)
#>  tidygraph              1.2.0      2020-05-12 [2] CRAN (R 4.1.1)
#>  tidyr                  1.1.4      2021-09-27 [2] CRAN (R 4.1.1)
#>  tidyselect             1.1.1      2021-04-30 [2] CRAN (R 4.1.1)
#>  tidytree               0.3.5      2021-09-08 [2] CRAN (R 4.1.1)
#>  timeDate               3043.102   2018-02-21 [2] CRAN (R 4.1.1)
#>  treeio                 1.18.0     2021-10-26 [2] Bioconductor  
#>  tweenr                 1.0.2      2021-03-23 [2] CRAN (R 4.1.1)
#>  usethis                2.1.2      2021-10-25 [2] CRAN (R 4.1.1)
#>  utf8                   1.2.2      2021-07-24 [2] CRAN (R 4.1.1)
#>  vctrs                  0.3.8      2021-04-29 [2] CRAN (R 4.1.1)
#>  viridis                0.6.2      2021-10-13 [2] CRAN (R 4.1.1)
#>  viridisLite            0.4.0      2021-04-13 [2] CRAN (R 4.1.1)
#>  withr                  2.4.2      2021-04-18 [2] CRAN (R 4.1.1)
#>  xfun                   0.27       2021-10-18 [2] CRAN (R 4.1.1)
#>  XML                    3.99-0.8   2021-09-17 [2] CRAN (R 4.1.1)
#>  xtable                 1.8-4      2019-04-21 [2] CRAN (R 4.1.1)
#>  XVector                0.34.0     2021-10-26 [2] Bioconductor  
#>  yaml                   2.2.1      2020-02-01 [2] CRAN (R 4.1.1)
#>  yulab.utils            0.0.4      2021-10-09 [2] CRAN (R 4.1.1)
#>  zlibbioc               1.40.0     2021-10-26 [2] Bioconductor  
#> 
#> [1] /tmp/RtmpAskcKd/Rinst1e6eab3779946f
#> [2] /home/biocbuild/bbs-3.14-bioc/R/library