
Inferring mutual information networks using the

minet package

Patrick E. Meyer, Frédéric Lafitte, Gianluca Bontempi

April 22, 2010

1 Introduction

The minet package provides a set of functions to infer mutual information net-
works from a dataset [10]. If fed with microarray data, the package returns
a network where nodes denote genes and edges model statistical dependencies
between genes. The weight of an edge provides evidence about the existence of
a specific (e.g transcriptional) gene to gene interaction.

The inference proceeds in two steps. First, the Mutual Information Matrix
(MIM) is computed, a square matrix whose MIMij term is the mutual infor-
mation between gene Xi and Xj . Secondly, an inference algorithm takes the
MIM matrix as input and attributes a score to each edge connecting a pair of
nodes. Different entropy estimators are implemented in this package as well as
different inference methods, namely aracne, clr and mrnet [1, 6, 9]. Also, the
package integrates accuracy assessment tools, like PR-curves and ROC-curves,
to compare the inferred network with a reference one.

This vignette guides the package user in :

1. Estimating the mutual information matrix.

2. Inferring a network modeling the interactions between the dataset’s vari-
ables.

3. Comparing the infered network to a network of known interactions in order
to compute Fβ − scores.

4. Plotting precision-recall and receiver operating characteristic curves.

5. Plotting the infered network using the Rgraphviz package.

The data used in the following examples was generated using the SynTReN
simulator [4]. This data generator uses a known network of interacting genes in
order to generate gene expression levels for all the genes included in the network.
Once the network is infered from the generated data, it can be compared to the
true underlying network in order to validate the inference algorithm.

1

2 Mutual Information Estimation

Mutual information networks are a subcategory of network inference methods.
These methods set a link between two nodes if it exhibits a high score based on
the mutual information between the nodes.

Mutual informaton networks rely on the computation of the mutual infor-
mation matrix (MIM), a square matrix whose element

MIMij = I(Xi;Xj) =
∑
xi∈Xi

∑
xj∈Xj

p(xi, xj) log p(xi)p(xj)

is the mutual information between Xi and Xj , where Xi ∈ X , i = 1, ..., n, is a
discrete random variable denoting the expression level of the ith gene.

2.1 Obtaining The Mutual Information Matrix

> library(minet)

> data(syn.data)

> estimator = "spearman"

> mim <- build.mim(syn.data, estimator)

> mim[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
CDC11 0.0000000 6.9077553 6.9077553 0.2576434 2.409649
SWI4 6.9077553 0.0000000 6.9077553 0.2576434 2.409649
CDC10 6.9077553 6.9077553 0.0000000 0.2576434 2.409649
SPT16 0.2576434 0.2576434 0.2576434 0.0000000 0.219135
SWI4_SWI6 2.4096490 2.4096490 2.4096490 0.2191350 0.000000

In the above code, the mutual information matrix is built using the function
build.mim. This function takes the dataset and one of the mutual information
estimator explained in this section as input. All the estimators require discrete
data values. The discretize function allows the user to choose between two
binning algorithms.

3 Network Inference

Three network inference methods are available in the package : aracne, clr and
mrnet. These receive as input the mutual information matrix and return the
weighted adjacency matrix of the network. The network can be directly infered
from the dataset by using the minet function. This function takes as input the
dataset, the name of the estimator and the name of the discretization method
to be used as well as the number of bins to be used.

2

3.1 Obtaining The Network

In the following code, the mrnet algorithm is applied to the mutual information
matrix estimated in the previous section:

> net <- mrnet(mim)

> net[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
CDC11 0.000000 6.9077553 6.9077553 0 2.4096490
SWI4 6.907755 0.0000000 0.0000000 0 0.5476285
CDC10 6.907755 0.0000000 0.0000000 0 0.5476285
SPT16 0.000000 0.0000000 0.0000000 0 0.0000000
SWI4_SWI6 2.409649 0.5476285 0.5476285 0 0.0000000

The returned value is the weighted adjacency matrix of the network.

3.2 MRNET

The MRNET approach [9] consists in repeating a MRMR feature selection pro-
cedure for each variable of the dataset. The MRMR method [13] starts by se-
lecting the variable Xi having the highest mutual information with the target Y .
In the following steps, given a set S of selected variables, the criterion updates
S by choosing the variable Xk that maximizes I(Xk;Y)− 1

|S|
∑
Xi∈S I(Xk;Xi)

The weight of each pair Xi, Xj will be the maximum score between the one
computed when Xi is the target and the one computed when Xj is the target.

3.3 CLR

The CLR algorithm [6] considers the MIM as the weighted adjacency matrix
of the network but instead of using the information I(Xi;Xj) as the weight of

the link between features Xi and Xj , it takes into account the score
√
z2
i + z2

j ,
where

zi = max
{

0,
I(Xi;Xj)− µi

σi

}
and µi and σi are, respectively, the mean and the standard deviation of the
empirical distribution of the mutual information values I(Xi;Xk), k = 1, ..., n.

3.4 ARACNE

The ARACNE algorithm [1] is based on the Data Processing Inequality . This
inequality states that, if gene X1 interacts with gene X3 through gene X2, then

I(X1;X3) ≤ min (I(X1;X2), I(X2;X3))

The ARACNE procedure starts by assigning to each pair of nodes a weight equal
to the mutual information. Then the weakest edge of each triplet is interpreted

3

EDGE Infered Not Infered
Exists TP FN

Doesn’t Exist FP TN

Table 1: Confusion matrix

as an indirect interaction and is removed if the difference between the two lowest
weights is above a threshold W0. The function aracne has an extra argument
eps which is the numerical value of W0.

3.5 The minet function

The minet function infers directly the mutual information network from the
input dataset. Besides the dataset, this function’s arguments are the mutual
information estimator, the inference method, the binning algorithm and the
number of bins to be used. All the instructions used until now can then be
summarized with the following call to minet:

> library(minet)

> data(syn.data)

> net <- minet(syn.data, method = "mrnet")

> net[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
CDC11 0.0000000 1.00000000 1.00000000 0 0.34883242
SWI4 1.0000000 0.00000000 0.00000000 0 0.07927735
CDC10 1.0000000 0.00000000 0.00000000 0 0.07927735
SPT16 0.0000000 0.00000000 0.00000000 0 0.00000000
SWI4_SWI6 0.3488324 0.07927735 0.07927735 0 0.00000000

Note that in this case the returned object is the normalized weighted adjacency
matrix of the network (i.e. the values range from 0 to 1).

4 Validation

4.1 Obtaining Confusion Matrices

The networks infered using this package are weighted but many low weighted
edges can be removed by using a threshold value. By setting to 0 all edges whose
weight are lower than the threshold and to 1 the other edges weight, the network
inference problem can be seen as a binary decision problem. The decision made
by the algorithm can be summarized by a confusion matrix (see table 4.1).

In our case, the threshold value can be seen as the minimal edge weight
required for the edge to be infered : edges whose weight are strictly below the
threshold are removed from the network. Then, a different confusion matrix

4

is obtained for each different threshold. The table returned by the validate
function contains all the confusion matrices obtained with steps thresholds
ranging from the lowest to the highest value of the edges weight.

> library(minet)

> data(syn.data)

> data(syn.net)

> net <- minet(syn.data)

> table <- validate(net, syn.net, steps = 20)

> table[1:10,]

thrsh tp fp tn fn
1 0.00 130 2370 0 0
2 0.05 52 126 2244 78
3 0.10 48 76 2294 82
4 0.15 48 70 2300 82
5 0.20 44 62 2308 86
6 0.25 44 48 2322 86
7 0.30 44 44 2326 86
8 0.35 40 26 2344 90
9 0.40 40 26 2344 90
10 0.45 40 26 2344 90

In the above code, the validate function compares the infered network net
to syn.net, the network underlying syn.data. Note that the true underlying
network has to be a matrix containing values 1 (presence of the edge) or 0
(absence of the edge).

Each line of the returned table contains the threshold used and the confusion
matrix obtained by comparing syn.net to the infered network.

Note that the validate function distinguishes the following cases:

• Both networks are oriented

• Both networks are unoriented

• One of the network is oriented and the other unoriented

In the third case, the oriented network will be considered unoriented.

4.2 Using the Confusion Matrices

The confusion matrix summarizes the decisions made by the algorithm. Thus
in order to compare inference algorithms, we compare their confusion matrix,
more precisely, we compare several criteras that are derived from that matrix
[3]:

• Precision: p = TP
TP+FP

• Recall: r = TP
TP+FN

5

• True Positive Rate: tpr = TP
TP+TN

• False Positive Rate: fpr = FP
FP+FN

• Fβ-score: Fβ = (1 + β) pr
βp+r

These scores are returned by the functions rates, pr and fscores. The
functions show.pr and show.roc can be used to visualize precision-recall curves
and receiver operating characteristic curves respectively. The show.pr function
uses the precisions and recalls computed by the function pr and the show.roc
relies on the rates returned by the rates function in order to plot receiver
operating characteristic curves. All these functions take as input the data.frame
returned by the validate function:

> library(minet)

> data(syn.data)

> data(syn.net)

> net1 <- minet(syn.data, method = "mrnet")

> net2 <- minet(syn.data, method = "clr")

> table1 <- validate(net1, syn.net, steps = 50)

> table2 <- validate(net2, syn.net, steps = 50)

Once the data.frames table1 and table2 are computed, we can use the
function

• pr(table) to obtain precisions and recalls.

• rates(table) to obtain true positive rates and false positive rates.

• fscores(table,beta) to obtain Fβ − scores.

Both functions show.pr and show.roc return the device associated to the plot-
ting window used. This allows the user to plot several curves on the same figure.
The following code generates the curves.

> dev <- show.pr(table1, pch = 2, type = "b", col = "green")

> show.pr(table2, device = dev, pch = 1, type = "b", col = "blue")

pdf
2

> dev <- show.roc(table1, type = "b", col = "green")

> show.roc(table2, device = dev, type = "b", col = "blue")

pdf
3

6

References

[1] Katia Basso, Adam Margolin, Gustavo Stolovitzky, Ulf Klein, Riccardo
Dalla-Favera, and Andrea Califano. Reverse engineering of regulatory net-
works in human b cells. Nature Genetics, 37, 2005.

[2] A. J. Butte and I.S. Kohane. Mutual information relevance networks:
Functional genomic clustering using pairwise entropy measurments. Pa-
cific Symposium on Biocomputing, 5:415–426, 2000.

[3] J. Davis and M. Goadrich. The relationship between precision-recall and
roc curves. In Proceedings of the 23rd international conference on Machine
learning, 2006.

[4] T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma,
A. Verschoren, B. De Moor, and K. Marchal. Syntren: a generator of
synthetic gene expression data for design and analysis of structure learning
algorithms. BMC Bioinformatics, 7(1):43, 2006.

[5] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised dis-
cretization of continuous features. In International Conference on Machine
Learning, pages pages 194–202, 1995.

[6] J.J. Faith, B. Hayete, J.T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel,
S. Kasif, J.J. Collins, and T.S. Gardner. Large-scale mapping and vali-
dation of escherichia coli transcriptional regulation from a compendium of
expression profiles. PLoS Biology, 5, 2007.

[7] T. S. Gardner and J. Faith. Reverse-engineering transcription control net-
works. Physics of Life Reviews 2, 2005.

[8] J.Hausser. Improving entropy estimation and inferring genetic regulatory
networks. Master thesis of the National Institute of Applied Sciences Lyon,
2006.

[9] P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi. Information-theoretic
inference of large transcriptional regulatory networks. EURASIP Journal
on Bioinformatics and Systems Biology, 2007.

[10] P. E. Meyer, F. Lafitte, and G. Bontempi. minet: A R/Bioconductor
Package for Inferring Large Transcriptional Networks Using Mutual Infor-
mation. BMC Bioinformatics, 9:461, 2008.

[11] I. Nemenman, W. Bialek, and R. de Ruyter van Steveninck. Entropy and
information in neural spike trains: Progress on the sampling problem. Phys-
ical Review Letters, 69, 2004.

[12] L. Paninski. Estimation of entropy and mutual information. Neural Com-
putation, 15(6):1191–1253, 2003.

7

[13] H. Peng, F. Long, and C. Ding. Feature selection based on mutual infor-
mation: criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine Intel ligence, 27(8),
2005.

[14] J. Schafer and K. Strimmer. A shrinkage approach to large-scale covari-
ance matrix estimation and implications for functional genomics. Statistical
Applications in Genetics and Molecular Biology, 4(32), 2005.

[15] T. Schurmann and P. Grassberger. Entropy estimation of symbol sequences.
Chaos, 1996.

[16] E. P. van Someren, L. F. A. Wessels, E. Backer, and M. J. T. Reinders.
Genetic network modeling. Pharmacogenomics, 3(4):507 525, 2002.

8

	Introduction
	Mutual Information Estimation
	Obtaining The Mutual Information Matrix

	Network Inference
	Obtaining The Network
	MRNET
	CLR
	ARACNE
	The minet function

	Validation
	Obtaining Confusion Matrices
	Using the Confusion Matrices

