goseq: Gene Ontology testing for RNA-seq datasets

Matthew D. Young Matthew J. Wakefield Gordon K. Smyth

myoung@wehi.edu.au

Alicia Oshlack
1 April 2010

1 Introduction

This document gives an introduction to the use of the goseq R Bioconductor package [Young et al.,
2010]. This package provides methods for performing Gene Ontology analysis of RNA-seq data,
taking length bias into account [Oshlack and Wakefield, 2009]. The methods and software used
by goseq are equally applicable to other category based test of RNA-seq data, such as KEGG
pathway analysis.

Once installed, the goseq package can be easily loaded into R using:

> library(goseq)

In order to perform a GO analysis of your RNA-seq data, goseq only requires a simple named
vector, which contains two pieces of information.

1. Measured genes: all genes for which RNA-seq data was gathered for your experiment. Each
element of your vector should be named by a unique gene identifier.

2. Differentially expressed genes: each element of your vector should be either a 1 or a
0, where 1 indicates that the gene is differentially expressed and 0 that it is not.

If the organism, gene identifier or category test is currently not natively supported by goseq,
it will also be necessary to supply additional information regarding the genes length and/or the
association between categories and genes.

At the time of writing packages for producing counts summarized by gene from raw RNA-seq
data are still in development. However, several packages exist for performing differential expression
analysis on summarized data (eg. edgeR [Robinson and Smyth, 2007, 2008, Robinson et al., 2010]).

goseq will work with any method for determining differential expression and as such differential
expression analysis is outside the scope of this document, but in order to facilitate ease of use, we
will make use of the edgeR package to calculate differentially expressed (DE) genes in all the case
studies in this document.

2 Reading data

We assume that the user can use appropriate in-built R functions (such as read.table or scan)
to obtain two vectors, one containing all genes assayed in the RNA-seq experiment, the other
containing all genes which are DE. If we assume that the vector of genes being assayed is named
assayed.genes and the vector of DE genes is named de.genes we can construct a named vector
suitable for use with goseq using the following:

> gene.vector = as.integer(assayed.genes jinj, de.genes)
> names (gene.vector) = assayed.genes

It may be that the user can already read in a vector in this format, in which case it can then
be immediately used by goseq.

3 GO testing of RNA-seq data

To begin the analysis, goseq first needs to quantify the length bias present in the dataset under
consideration. This is done by calculating a Probability Weighting Function or PWF which can
be thought of as a function which gives the probability that a gene will be DE, based on its length
alone. The PWF is calculated by fitting a monotonic spline to the binary data series of differential
expression (1=DE, 0=Not DE) as a function of gene length. The PWF is used to weight the
chance of selecting each gene when forming a null distribution for GO category membership. The
fact that the PWF is calculated directly from the dataset under consideration makes this approach
robust, only correcting for the length bias present. For example, if goseq is run on a microarray
dataset, for which no length bias exists, the calculated PWF will be nearly flat and all genes will
be weighted equally, resulting in no length bias correction.

In order to account for the length bias inherent to RNA-seq data when performing a GO analysis
(or other category based tests), one cannot simply use the hypergeometric distribution as the null
distribution for category membership, which is appropriate for data without DE length bias, such
as microarray data. GO analysis of RNA-seq data requires the use of random sampling in order
to generate a suitable null distribution for GO category membership and calculate each categories
significance for over representation amongst DE genes.

However, this random sampling is computationally expensive. In most cases, the Wallenius
distribution can be used to approximate the true null distribution, without any significant loss in

accuracy. The goseq package implements this approximation as its default option. The option to
generate the null distribution using random sampling is also included as an option.

Having established a null distribution, each GO category is then tested for over and under
representation amongst the set of differentially expressed genes and the null is used to calculate a
p-value for under and over representation.

4 Natively supported Gene Identifiers and category tests

goseq needs to know the length of each gene, as well as what GO categories (or other categories
of interest) each gene is associated with. goseq relies on the UCSC genome browser to provide
the length information for each gene. However, because the process of fetching the length of every
transcript is slow and bandwidth intensive, goseq relies on an offline copy of this information
stored in the data package geneLenDataBase. To see which genome/gene identifier combinations
are in the local database, simply run:

> supportedGenomes ()
or
> supportedGenelIDs ()

The rightmost column in the output of both these commands lists the identifiers (in the case of
supportedGenomes) or genomes (in the case of supportedGenelDs) for which length data exists
in the local database. If your genome/ID combination is not in the local database, it will be
downloaded from the UCSC genome browser. If your genome/ID combination is not in the UCSC
database, you will have to manually specify the gene lengths.

In order to link GO categories to genes, goseq uses the organism packages from Bioconductor.
These packages are named org.<Genome>.<ID>.db, where <Genome> is a short string identifying
the genome and <ID> is a short string identifying the gene identifier. Currently, goseq will
automatically retrieve the mapping between GO categories and genes from the relevant package
(as long as it is installed) for commonly used genome/ID combinations. If GO mappings are not
automatically available for your genome/ID combination, you will have to manually specify the
relationship between genes and categories.

5 Non-native (Gene Identifier or category test

If the organism, Gene Identifier or category test you wish to perform is not in the native goseq
database, you will have to supply one or all of the following:

e Length data: the length of each gene in your gene identifier format.

e Category mappings: the mapping (usually many-to-many) between the categories you wish
to test for over/under representation amongst DE genes and genes in your gene identifier
format.

5.1 Length data format

The length data must be formatted as a numeric vector, of the same length as the main named
vector specifying gene names/DE genes. Each entry should give the length of the corresponding
gene in bp. If length data is unavailable for some genes, that entry should be set to NA.

5.2 Category mapping format

The mapping between category names and genes should be given as a data frame with two columns.
One column should contain the gene IDs and the other the name of an associated category. As the
mapping between categories and genes is usually many-to-many, this data frame will usually have
multiple rows with the same gene name and category name.

Alternatively, mappings between genes and categories can be given as a list. The names of
list entries should be gene IDs and the entries themselves should be a vector of category names to
which the gene ID corresponds.

6 Case study: Prostate cancer data

6.1 Introduction

This section provides an analysis of data from an RNA-seq experiment to illustrate the use of
goseq for GO analysis.

This experiment examined the effects of androgen stimulation on a human prostate cancer cell
line, LNCaP. The data set includes more than 17 million short cDNA reads obtained for both the
treated and untreated cell line and sequenced on IlluminaaAZs 1G genome analyzer.

For each sample we were provided with the raw 35 bp RNA-seq reads from the authors. For
the untreated prostate cancer cells (LNCaP cell line) there were 4 lanes totaling 10 million, 35
bp reads. For the treated cells there were 3 lanes totaling 7 million, 35 bp reads. All replicates
were technical replicates. Reads were mapped to NCBI version 36.3 of the human genome using
bowtie. Any read with which mapped to multiple locations was discarded. Using the ENSEMBL
54 annotation from biomart, each mapped read was associated with an ENSEMBL gene. This was
done by associating any read that overlapped with any part of the gene (not just the exons) with
that gene. Reads that did not correspond to genes were discarded.

6.2 Source of the data

The data set used in this case study is taken from [Li et al., 2008] and was made available from
the Authors upon request.

6.3 Determining the DE genes using edgeR

To begin with we load in the text data and convert it the appropriate edgeR DGEList object.

> library(edgeR)

> table.summary = read.table(system.file("extdata", "Li_sum.txt",

+ package = "goseq"), sep = "\t", header = TRUE, stringsAsFactors = FALSE)
> counts = table.summary[, -1]

> rownames (counts) = table.summary[, 1]

> grp = factor(rep(c("Control", "Treated"), times = c(4, 3)))

> summarized = DGEList(counts, lib.size = colSums(counts), group = grp)

Now use edgeR to calculate the DE genes.

> disp = estimateCommonDisp (summarized)
> tested = exactTest (disp)

Comparison of groups: Treated - Control
> topTags(tested)

Comparison of groups: Treated - Control

logConc logFC PValue FDR
ENSG00000127954 -31.02991 37.972297 6.800102e-79 3.366459e-74
ENSG00000151503 -12.96052 5.404687 9.143635e-66 2.263324e-61
ENSGO0000096060 -11.77715 4.899691 4.866397e-60 8.030528e-56
ENSG0O0000091879 -15.35999 5.771018 5.469701e-55 6.769575e-51
ENSG00000132437 -14.14850 -5.896416 3.487845e-52 3.453385e-48
ENSG00000166451 -12.61713 4.567569 4.410990e-52 3.626363e-48
ENSG00000131016 -14.80016 5.274233 5.127569e-52 3.626363e-48
ENSG00000163492 -17.28041 7.296034 1.231576e-44 7.621300e-41
ENSG00000113594 -12.24687 4.053165 6.002790e-44 3.301935e-40
ENSG00000116285 -13.01524 4.112220 4.005898e-43 1.983160e-39

Format the DE genes into a vector suitable for goseq

> genes =

+ 0], method = "BH") < 0.05)

> names (genes) =
> table(genes)

as.integer(p.adjust (tested$table$p.value[tested$table$logFC !=

row.names (tested$table[tested$table$logFC != 0,])

genes
0 1
19344 3399

6.4 Determining Genome and Gene 1D

In order to allow for automatic data retrieval, the user has to tell goseq what genome and gene
ID format were used to summarize the data. In our case we used build 36.1 of the NCBI human
genome, we check what code this corresponds to by running:

> head (supportedGenomes ())

db organism date name
1 hgl9 Human Feb. 2009 Genome Reference Consortium GRCh37
2 hgl8 Human Mar. 2006 NCBI Build 36.1
3 hgl7 Human May 2004 NCBI Build 35
4 hgl6 Human Jul. 2003 NCBI Build 34
5 felCat3 Cat Mar. 2006 Broad Institute Release 3
6 galGal3 Chicken May 2006 WUSTL Gallus-gallus-2.1

1 ccdsGene, ensGene, exoniphy, geneSym
2 acembly,acescan,ccdsGene,ensGene,exoniphy, geneSymbol, geneid, genscan,knownGene, knownG
3 acembly,acescan,ccdsGene,ensGene,exoniphy,geneSymbol,geneid, genscan,knownGene,refGene,
4 acembly,ensGene, exoniphy, geneSymb
5 ensGene,geneSymbol, geneid, ge
6 ensGene,genesS

Which lists the genome codes in the far left column, headed “db”. As we are using NCBI
build 36.1, we see that we should use “hg18”. We also know that we used ENSEMBL Gene ID to
summarize our read data, we check what code this corresponds to by running:

> head(supportedGeneIDs(), n = 12)

db track subtrack GeneID
1 knownGene UCSC Genes <NA> Entrez Gene ID
2 knownGene0ld3 0l1d UCSC Genes <NA>
3 wgEncodeGencodeManualRel2 Gencode Genes Genecode Manual HAVANA Pseudogene ID
4 wgEncodeGencodeAutoRel2 Gencode Genes Genecode Auto HAVANA Pseudogene ID
5 wgEncodeGencodePolyaRel2 Gencode Genes Genecode PolyA HAVANA Pseudogene ID
6 ccdsGene Consensus CDS <NA>
7 refGene RefSeq Genes <NA> Entrez Gene ID
8 xenoRefGene (Other RefSeq <NA>
9 vegaGene Vega Genes Vega Protein Genes HAVANA Pseudogene ID

6

10 vegaPseudoGene Vega Genes Vega Pseudogenes HAVANA Pseudogene ID

11 ensGene Ensembl Genes <NA> Ensembl gene ID
12 acembly AceView Genes <NA>

1

2

3

4

5

6

7

8 anoCarl,aplCall,braFlol,caeJapl,caePbl,caePb2,caeRem2,caeRem3,caljacl,canFaml, canFam?
9

10

11

12

Note that the head command is only used here to save on space in this guide. Again, the gene
ID codes are listed in the far left “db” column. We find that our gene ID code is “ensGene”. We
will use these strings whenever we are asked for a genome or id.

6.5 GO analysis
6.5.1 Fitting the Probability Weighting Function (PWF)

We first need to obtain a weighting for each gene, depending on its length, given by the PWF.
As you may have noticed when running supportedGenomes or supportedGenelDs, length data is
available in the local database for our gene ID, “ensGene” and our genome, “hg18”. We will let
goseq automatically fetch this data from its databases.

> pwf = nullp(genes, "hgl8", "ensGene")

0.30
I

0.25
l
)
)

o

L N

0 o

[

i)

=

 —

o

e o

e o

[a
o
-
o
o
O__
o

I I I I I
0 2000 4000 6000 8000

Bias Data in 300 gene bins.

nullp plots the resulting fit, allowing verification of the goodness of fit before continuing the
analysis.
6.5.2 Using the Wallenius approximation

To start with we will use the default method, to calculate the over and under expressed GO
categories among DE genes. Again, we allow goseq to fetch data automatically.

> GO0.wall = goseq(genes, pwf, "hgl8", "ensGene")
> head(GO.wall)

category upval dpval
1668 GO0:0005737 3.246950e-40 1
1563 GO0:0005515 1.004640e-36 1
3640 G0:0016020 5.873025e-31 1

3641 G0:0016021 2.414473e-26 1
1730 GO:0006829 1.427783e-24 1
1618 GO:0005634 4.270388e-16 1

The resulting object is ordered by GO category over representation amongst DE genes.

6.5.3 Using random sampling

It may sometimes be desirable to use random sampling to generate the null distribution for category
membership. This is easily accomplished by using the method option to specify sampling and the
repcnt option to specify the number of samples to generate:

> GO.samp = goseq(genes, pwf, "hgl8", "ensGene", method = "Sampling",
+ repcnt = 1000)

> head (GO.samp)

category upval dpval
66 G0:0000139 0.000999001 1
81 G0:0000166 0.000999001 1
134 G0:0000287 0.000999001 1
255 G0:0001501 0.000999001 1
327 G0:0001666 0.000999001 1
672 G0:0003700 0.000999001 1

You will notice that this takes far longer than the Wallenius approximation. Plotting the
p-values against one another, we see that there is little difference between the two methods.

> plot(logl10(GO.walll[, 2]), 1logl0(GO.samp[match(GO.samp[, 1], GO.walll,

+ 1]), 2]), xlab = "loglO(Wallenius p-values)", ylab = "logl0(Sampling p-values)"
+ xlim = c(-3, 0))

> abline(0, 1, col = 3, 1lty = 2)

log10(Sampling p—values)

I I I I I I I
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

log10(Wallenius p—values)

6.5.4 Ignoring length bias

goseq also allows for one to perform a GO analysis without correcting for RNA-seq length bias.
In practice, this is only useful for assessing the effect of length bias on your results. You should
NEVER use this option as your final analysis. If length bias is truly not present in your data,
goseq will produce a nearly flat PWF and no length bias correction will be applied to your data
and all methods will produce the same results.

However, if you still wish to ignore length bias in calculating GO category enrichment, this is
again accomplished using the method option.

> GO.nobias = goseq(genes, pwf, "hgl8", "ensGene", method = "Hypergeometric')
> head(GO.nobias)

10

category upval dpval
1668 GO0:0005737 2.529875e-52
1563 GO0:0005515 4.789639e-49
3640 G0:0016020 8.866666e-37
3641 G0:0016021 6.765009e-32
1730 GO:0005829 5.954424e-27
1618 G0:0005634 4.916752e-23

e e

Ignoring length bias gives very different results from a length bias corrected analysis.

> plot(logl0(GO.wall[, 2]), logl0(GO.nobias[match(GO.nobias[, 1],

+ GO.wall[, 1]), 2]), xlab = "logl0(Wallenius p-values)", ylab = "log10(Hypergeome
+ xlim = ¢(-3, 0), ylim = c(-3, 0))

> abline(0, 1, col = 3, 1ty = 2)

o |
o
o
o 4

) '

()

=

€ o

| o

o |

3]

S

=

g
o

3 |

[@)]

-

s

= ©

T o

~ |

o

—

(@)]

2 1
o 4
|
o
@

I I I I I I I
-3.0 -2.5 -2.0 -15 -1.0 -0.5 0.0

log10(Wallenius p—values)

11

6.5.5 Limiting GO categories and other category based tests

By default, goseq tests all three major Gene Ontology branches; Cellular Components, Biological
Processes and Molecular Functions. However, it is possible to limit testing to any combination
of the major branches by using the test.cats argument to the goseq function. This is done by
specifying a vector consisting of some combination of the strings “GO:CC”, “GO:BP” and “GO:MF".
For example, to test for only Molecular Function GO categories:

> GO.MF = goseq(genes, pwf, "hgl8", "ensGene", test.cats = c("GO:MF"))
> head(GO.MF)

category upval dpval
1008 GO:0005515 1.004640e-36 1
18 G0:0000166 4.211247e-15 1
1016 GO:00056524 6.809393e-13 1
1567 G0:0016787 1.708889e-09 1
1007 GO:0005509 3.269572e-08 1
1589 G0:0016874 2.531662e-07 1

Native support for other category tests, such as KEGG pathway analysis are also made available
via this argument. See the man goseq function man page for up to date information on what
category tests are natively supported.

6.5.6 Making sense of the results

Having performed the GO analysis, you may now wish to interpret the results. If you wish to
identify categories significantly enriched/unenriched below some p-value cutoff, it is necessary to
first apply some kind of multiple hypothesis testing correction. For example, GO categories over
enriched using a .05 FDR cutoff [Benjamini and Hochberg, 1995] are:

> enriched.GO = GO.wall$category[p.adjust(GO.wall$upval, method = "BH") <
+ 0.05]
> head(enriched.GO)

[1] "GO:0005737" "GO:0005515" "GO:0016020" "GO:0016021" "GO:0005829" "GO:0005634"

Unless you are a machine, GO accession identifiers are probably not very meaningful to you.
Information about each term can be obtained from the Gene Ontology website, http://www.
geneontology.org/, or using the R package GO.db.

> library(GO.db)

> for (go in enriched.GO[1:10]) {
+ print (GOTERM[[gol])
+
+

12

GOID: GO:0005737

Term: cytoplasm

Ontology: CC

Definition: All of the contents of a cell excluding the plasma membrane
and nucleus, but including other subcellular structures.

GOID: GO:0005515

Term: protein binding

Ontology: MF

Definition: Interacting selectively and non-covalently with any protein or
protein complex (a complex of two or more proteins that may include
other nonprotein molecules).

Synonym: alpha-2 macroglobulin receptor-associated protein activity

Synonym: protein amino acid binding

Synonym: protein degradation tagging activity

Synonym: protein folding chaperone

Synonym: protein tagging activity

Synonym: G0:0045308

Secondary: G0:0045308

GOID: G0:0016020

Term: membrane

Ontology: CC

Definition: Double layer of lipid molecules that encloses all cells, and,
in eukaryotes, many organelles; may be a single or double lipid
bilayer; also includes associated proteins.

GOID: G0:0016021

Term: integral to membrane

Ontology: CC

Definition: Penetrating at least one phospholipid bilayer of a membrane.
May also refer to the state of being buried in the bilayer with no
exposure outside the bilayer. When used to describe a protein,
indicates that all or part of the peptide sequence is embedded in the
membrane.

Synonym: transmembrane

GOID: GO:0005829

Term: cytosol

Ontology: CC

Definition: The part of the cytoplasm that does not contain organelles but
which does contain other particulate matter, such as protein

13

complexes.

GOID: GO:0005634

Term: nucleus

Ontology: CC

Definition: A membrane-bounded organelle of eukaryotic cells in which
chromosomes are housed and replicated. In most cells, the nucleus
contains all of the cell's chromosomes except the organellar
chromosomes, and is the site of RNA synthesis and processing. In some
species, or in specialized cell types, RNA metabolism or DNA
replication may be absent.

Synonym: cell nucleus

GOID: GO:0007049

Term: cell cycle

Ontology: BP

Definition: The progression of biochemical and morphological phases and
events that occur in a cell during successive cell replication or
nuclear replication events. Canonically, the cell cycle comprises the
replication and segregation of genetic material followed by the
division of the cell, but in endocycles or syncytial cells nuclear
replication or nuclear division may not be followed by cell division.

Synonym: cell-division cycle

GOID: GO:0005886

Term: plasma membrane

Ontology: CC

Definition: The membrane surrounding a cell that separates the cell from
its external environment. It consists of a phospholipid bilayer and
associated proteins.

Synonym: bacterial inner membrane

Synonym: cell membrane

Synonym: cytoplasmic membrane

Synonym: inner endospore membrane

Synonym: juxtamembrane

Synonym: plasma membrane lipid bilayer

Synonym: plasmalemma

Synonym: GO0:0005904

Secondary: G0:0005904

GOID: GO:0000166

Term: nucleotide binding

14

Ontology: MF

Definition: Interacting selectively and non-covalently with a nucleotide,
any compound consisting of a nucleoside that is esterified with
(ortho)phosphate or an oligophosphate at any hydroxyl group on the
ribose or deoxyribose moiety.

GOID: GO:0005524

Term: ATP binding

Ontology: MF

Definition: Interacting selectively and non-covalently with ATP, adenosine
5'-triphosphate, a universally important coenzyme and enzyme
regulator.

6.5.7 Understanding goseq internals

The situation may arise where it is necessary for the user to perform some of the data processing
steps usually performed automatically by goseq themselves. With this in mind, it will be useful
to step through the preprocessing steps performed automatically by goseq to understand what is
happening.

To start with, when nullp is called, goseq uses the genome and gene identifiers supplied to try
and retrieve length information for all genes given to the genes argument. To do this, it retrieves
the data from the database of gene lengths maintained in the package geneLenDataBase. This is
performed by the getlength function in the following way:

> len = getlength(names(genes), "hgl8", "ensGene")
> length(len)

[1] 22743

> length(genes)

[1] 22743

> head(len)

[1] NA 5455 2135 NA NA 954

After some data cleanup, the length data and the DE data is then passed to the makespline
function to produce the PWF.

Next we call the goseq function to determine over/under representation of GO categories
amongst DE genes. When we do this, goseq looks for the appropriate organism package and tries
to obtain the mapping from genes to GO categories from it. This is done using the getgo function
as follows:

15

> go = getgo(names(genes), "hgl8", "ensGene")
> length(go)

[1] 22743

> length(genes)
[1] 22743

> head(go)

$<NA>
NULL

$ENSG00000182463
[1] "GO:0006355" "GO:0007275" "GO:0005622" "GO:0005634" "GO:0003700" "GO:0046872"
[7] "G0:0008270" "GO:0043565"

$ENSG00000124208
[1] "GO:0000209" "G0O:0019941" "GO:0006282" "GO:0006355" "GO:0030154" "GO:0043123"
[7] "G0:0043687" "G0O:0051092" "GO:0051246" "GO:0005634" "GO:0005737" "GO:0031371"
[13] "G0O:0005515" "GO:0016563" "GO:0019787" "G0O:0016020" "GO:0016021" "GO:0005783"
[19] "GO:0005789"

$<NA>
NULL

$<NA>
NULL

$ENSG00000125835
[1] "G0O:0000387" "GO:0006397" "GO:0008380" "GO:0005829" "GO:0005634" "GO:0005654"
[7] "GO:0005681" "GO:0005683" "GO:0005515" "GO:0003723"

Note that it is just as valid to run the length and GO category fetching as separate steps and
then passed them to the nullp and goseq functions using the bias.data and gene2cat arguments
Thus the following two blocks of code are equivalent:

> pwf = nullp(genes, "hgl8", "ensGene")
> go = goseq(genes, pwf, "hgl8", "ensGene")

and

> gene_lengths = getlength(names(genes), "hgl8", "ensGene")
> pwf = nullp(genes, bias.data = gene_lengths)

> go_map = getgo(names(genes), "hgl8", "ensGene")

> go = goseq(genes, pwf, gene2cat = go_map)

16

6.6 KEGG pathway analysis

In order to illustrate performing a category test not present in the goseq database, we perform a
KEGG pathway analysis. For human, the mapping from KEGG pathways to genes are stored in
the package org.Hs.eg.db, in the object org.Hs.egPATH. In order to test for KEGG pathway over
representation amongst DE genes, we need to extract this information and put it in a format that
goseq understands. Unfortunately, the org.Hs.eg.db package does not contain direct mappings
between ENSEMBL gene ID and KEGG pathway. Therefore, we have to construct this map by
combining the ENSEMBL <-> Entrez and Entrez <-> KEGG mappings. This can be done using
the following code:

> en2eg = as.list(org.Hs.egENSEMBL2EG)

> eg2kegg = as.list(org.Hs.egPATH)

> grepKEGG = function(id, mapkeys) {

+ unique (unlist (mapkeys[id], use.names = FALSE))
+ }

> kegg = lapply(en2eg, grepKEGG, eg2kegg)

> head (kegg)

Note that this step is quite time consuming. The code written here is not the most efficient
way of producing this result, but the logic is much clearer than faster algorithms. The source code
for getgo contains a more efficient routine.

We produce the PWF as before. Then, to perform a KEGG analysis, we simply make use of
the gene2cat option in goseq:

> pwf = nullp(genes, "hgl8", "ensGene")
> KEGG = goseq(genes, pwf, gene2cat = kegg)
> head (KEGG)

6.7 Extracting mappings from organism packages

If you know that the information mapping gene ID to your categories of interest is contained in the
organism packages, but goseq fails to fetch it automatically, you may want to extract it yourself
and then pass it to the goseq function using the gene2cat argument. This is done in exactly
the same way as extracting the KEGG to ENSEMBL mappings in the section “KEGG pathway
analysis” above. This example is actually the worst case, where it is necessary to combine two
mappings to get the desired list. If we had instead wanted the association between Entrez gene
IDs and KEGG pathways, the following code would have been sufficient:

> kegg = as.list(org.Hs.egPATH)
> head (kegg)

17

$1°
[1] NA

$°10°
[1] "00232" "00983" "01100"

$°100°
[1] "00230" "01100" "05340"

$°1000"
[1] "04514" "05412"

$°10000°

[1] "04010" "04012" "04062" "04150" "04210" "04370" "04510" "04530" "04620" "04630"
[11] "04660" "04662" "04664" "04666" "04722" "04910" "04914" "04920" "05200" "05210"
[21] "05211" "05212" "05213" "05214" "05215" "05218" "05220" "05221" "05222" "05223"

$°100008586"
[1] NA

6.8 Correcting for other biases

It is possible that in some circumstances you will wish to correct not just for length bias, but for
the total number of counts. This can make sense because power to detect DE depends on the
total number of counts a gene receives, which is the product of gene length and gene expression.
So correcting for read count bias will compensate for all biases, known and unknown, in power
to detect DE. On the other hand, it will also remove bias resulting from differences in expression
level, which may not be desirable.

Correcting for count bias will produce a different PWEF. Therefore, we need to tell goseq about
the data on which the fraction DE depends when calculating the PWF using the nullp function.
We then simply pass the result to goseq as usual.

So, in order to tell goseq to correct for read count bias instead of length bias, all you need to
do is supply a numeric vector, containing the number of counts for each gene to nullp.

> countbias = rowSums (counts) [rowSums (counts) != 0]
> length(countbias)

[1] 22743

> length(genes)

18

[1] 22743

To use the count bias when doing GO analysis, simply pass this vector to nullp using the
bias.data option:

> pwf.counts = nullp(genes, bias.data = countbias)
> GO.counts = goseq(genes, pwf.counts, "hgl8", "ensGene")
> head(GO.counts)

category upval dpval
3641 G0:0016021 2.141517e-24 1
3640 G0:0016020 1.644879e-21 1
1765 GO:0005886 7.761261e-15 1
1668 G0:0005737 1.949602e-13 1
1588 G0:0005576 6.544777e-13 1
1563 GO0:0005515 4.960275e-12 1

Note that if you want to correct for length bias, but your organism/gene identifier is not natively
supported, then you need to follow the same procedure as above, only the numeric vector supplied
will contain each gene’s length instead of its number of reads.

7 Setup

This vignette was built on:
> sessionInfo()

R version 2.11.1 (2010-05-31)
x86_64-unknown-linux-gnu

locale:
[1] LC_CTYPE=en_US LC_NUMERIC=C LC_TIME=en_US
[4] LC_COLLATE=en_US LC_MONETARY=C LC_MESSAGES=en_US
[7] LC_PAPER=en_US LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US LC_IDENTIFICATION=C

attached base packages:
[1] tools stats graphics grDevices utils datasets methods base

other attached packages:

[1] GO.db_2.4.1 org.Hs.eg.db_2.4.1 RSQLite_0.9-1
[4] DBI_0.2-5 AnnotationDbi_1.10.1 Biobase_2.8.0

19

[7] edgeR_1.6.8 goseq_1.0.3 geneLenDataBase_0.99.4
[10] BiasedUrn_1.03

loaded via a namespace (and not attached):

[1] biomaRt_2.4.0 Biostrings_2.16.6 BSgenome_1.16.5
[4] GenomicFeatures_1.0.3 GenomicRanges_1.0.5 grid_2.11.1

[7] IRanges_1.6.8 lattice_0.18-8 limma_3.4.4
[10] Matrix_0.999375-40 mgcv_1.6-2 nlme_3.1-96
[13] RCurl_1.4-2 rtracklayer_1.8.1 XML_3.1-0
References

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289-300,
1995.

Hairi Li, Michael T Lovci, Young-Soo Kwon, Michael G Rosenfeld, Xiang-Dong Fu, and Gene W
Yeo. Determination of tag density required for digital transcriptome analysis: application to
an androgen-sensitive prostate cancer model. Proc Natl Acad Sci USA, 105(51):20179-84, Dec
2008. doi: 10.1073/pnas.0807121105.

Alicia Oshlack and Matthew J Wakefield. Transcript length bias in RNA-seq data confounds
systems biology. Biol Direct, 4:14, Jan 2009. doi: 10.1186/1745-6150-4-14.

M. D. Robinson and G. K. Smyth. Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics, 23(21):2881-2887, 2007.

M. D. Robinson and G. K. Smyth. Small-sample estimation of negative binomial dispersion, with
applications to sage data. Biostatistics, 9(2):321-332, 2008.

M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26(1):139-40, Jan 2010. doi:
10.1093 /bioinformatics/btp616.

M. D. Young, M. J. Wakefield, G. K. Smyth, and A. Oshlack. Gene ontology analysis for RNA-seq:
accounting for selection bias. Genome Biology, 11:R14, Feb 2010.

20

