
Making and Utilizing TranscriptDb Objects

Marc Carlson, Patrick Aboyoun, Herve Pages, Seth Falcon and Martin Morgaan

August 17, 2010

1 Introduction

The GenomicFeatures package retrieves and manages transcript-related fea-
tures from UCSC Genome Bioinformatics and BioMart data resources. The
package is useful for ChIP-chip, ChIP-seq, and RNA-seq analyses.

> library(GenomicFeatures)

2 Transcript Metadata

2.1 TranscriptDb Objects

The GenomicFeatures package uses TranscriptDb objects to store transcript
metadata. This class is designed to map the 5’ untranslated regions (UTRs),
protein coding sequence (CDSs), and 3’ UTRs for a set mRNA transcripts
to their associated genome, where the combined 5’ UTR, CDS, and 3’ UTR
region for an mRNA transcript either originated from a single exon or from
multiple exons that were post-transcriptionally spliced.

As the suffix of the class name suggests, TranscriptDb objects are backed
by a SQLite database. This database manages genomic locations and the re-
lationships between pre-processed mRNA transcripts, exons, protein coding
sequences, and their related gene IDs.

2.2 Creating New TranscriptDb Objects

There are three methods for creating new TranscriptDb objects in the Ge-
nomicFeatures package:

1. Use makeTranscriptDbFromUCSC to download from UCSC Genome
Bioinformatics.

1

2. Use makeTranscriptDbFromBiomart to download from BioMart.

3. Use a data.frame containing transcript metadata with makeTranscriptDb
to make a custom database.

The function makeTranscriptDbFromUCSC downloads UCSC Genome
Bioinformatics transcript tables (e.g. "knownGene", "refGene", "ensGene")
for a genome build (e.g. "mm9", "hg19"). Use the supportedUCSCtables
utility function to get the list of supported tables.

> supportedUCSCtables()

track subtrack
knownGene UCSC Genes <NA>
knownGeneOld3 Old UCSC Genes <NA>
wgEncodeGencodeManualV3 Gencode Genes Genecode Manual
wgEncodeGencodeAutoV3 Gencode Genes Genecode Auto
wgEncodeGencodePolyaV3 Gencode Genes Genecode PolyA
ccdsGene CCDS <NA>
refGene RefSeq Genes <NA>
xenoRefGene Other RefSeq <NA>
vegaGene Vega Genes Vega Protein Genes
vegaPseudoGene Vega Genes Vega Pseudogenes
ensGene Ensembl Genes <NA>
acembly AceView Genes <NA>
sibGene SIB Genes <NA>
nscanPasaGene N-SCAN N-SCAN PASA-EST
nscanGene N-SCAN N-SCAN
sgdGene SGD Genes <NA>
sgpGene SGP Genes <NA>
geneid Geneid Genes <NA>
genscan Genscan Genes <NA>
exoniphy Exoniphy <NA>
augustusHints Augustus Augustus Hints
augustusXRA Augustus Augustus De Novo
augustusAbinitio Augustus Augustus Ab Initio
acescan ACEScan <NA>

> mm9KG <- makeTranscriptDbFromUCSC(genome = "mm9", tablename = "knownGene")

Retrieve data from BioMart by specifying the ‘mart’ and data set (not
all BioMart data sets are currently supported):

2

> mmusculusEnsembl <-

+ makeTranscriptDbFromBiomart(biomart = "ensembl",

+ dataset = "mmusculus_gene_ensembl")

The function makeTranscriptDb creates TransctriptDb objects from data.frame
objects.

2.3 Saving and Loading a TranscriptDb Object

TranscriptDb objects can be saved as SQLite files for future access (e.g., to
easily reproduce results with identical genomic feature data at a later date,
or for access from programs other than R).

> saveFeatures(mm9KG, file="fileName.sqlite")

Load a saved TranscriptDb object with loadFeatures:

> mm9KG <- loadFeatures("fileName.sqlite")

For instance, a sample of UCSC known genes is included in GenomicFea-
tures.

> exampleFile <-

+ system.file("extdata", "UCSC_knownGene_sample.sqlite",

+ package="GenomicFeatures")

> txdb <- loadFeatures(exampleFile)

> txdb

TranscriptDb object:
| Db type: TranscriptDb
| Data source: UCSC
| Genome: hg18
| UCSC Table: knownGene
| Type of Gene ID: Entrez Gene ID
| Full dataset: no
| transcript_nrow: 135
| exon_nrow: 544
| cds_nrow: 324
| Db created by: GenomicFeatures package from Bioconductor
| Creation time: 2010-03-25 19:49:07 -0700 (Thu, 25 Mar 2010)
| GenomicFeatures version at creation time: 0.4.9
| RSQLite version at creation time: 0.8-4

3

In addition to transcript data, the object contains information about how
it was created (e.g., the number of transcripts, exons, and coding sequence
rows) and about software versions and creation dates.

3 Retrieving Transcript, Exon, and Coding Se-
quence Ranges

3.1 Working with Basic Features

The most basic operation for getting data out of a transcriptDb object is to
simple retrieve the ranges of exons, transcripts or coding sequences into a
GRanges object. For this purpose, the functions transcripts, exons, and
cds have been provided.

So as an example, you can use transcripts to simply retrieve all the
transcripts present in a TranscriptDb object and return them as a single
GRanges object like this:

> txdb <- loadFeatures(system.file("extdata", "UCSC_knownGene_sample.sqlite",

+ package="GenomicFeatures"))

> GR <- transcripts(txdb)

> GR

GRanges with 135 ranges and 2 elementMetadata values
seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>
[1] chr1 [1116, 4121] + | 1 uc001aaa.2
[2] chr1 [1116, 4272] + | 2 uc009vip.1
[3] chr1 [4269, 6628] - | 3 uc009vis.1
[4] chr10 [170643, 285201] + | 39 uc001ifj.1
[5] chr10 [82997, 85178] - | 37 uc001ifi.1
[6] chr10 [82997, 85178] - | 38 uc009xhe.1
[7] chr11 [117131, 118022] - | 40 uc009ybr.1
[8] chr11 [121174, 121242] - | 41 uc001lnw.1
[9] chr11 [123614, 129117] - | 42 uc001lnx.2
...

[127] chrX [132991, 160020] + | 32 uc004cpa.1
[128] chrX [138079, 156125] + | 31 uc004cpb.1
[129] chrX [157539, 160020] + | 33 uc004cpc.1
[130] chrX_random [46059, 438262] + | 105 uc004fny.2
[131] chrX_random [68697, 80051] + | 103 uc004fnz.2

4

[132] chrX_random [281521, 289293] + | 104 uc004foa.2
[133] chrY [132991, 160020] + | 35 uc004fon.1
[134] chrY [138079, 156125] + | 34 uc004foo.1
[135] chrY [157539, 160020] + | 36 uc004fop.1

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

Now suppose that you wanted to further refine things and retrieve only
the things that are present on the plus strand of chromosome 1. Well the
transcripts function will allow you to do things like that too.

> GR <- transcripts(txdb, vals <- list(tx_chrom = "chr1", tx_strand = "+"))

> GR

GRanges with 2 ranges and 2 elementMetadata values
seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>
[1] chr1 [1116, 4121] + | 1 uc001aaa.2
[2] chr1 [1116, 4272] + | 2 uc009vip.1

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

The exons, and cds functions have a similar role to play and are used
to retrieve just the exons or just the coding sequences.

3.2 Working with Grouped Features

Often it will not be enough to just get exons, cds or transcripts only. Some-
times you will want to give greater consideration to the context of the data.
In these cases, you will want to think of the ranged annotation data as
being grouped in a specific way, for example, you might want to consider
that the transcripts are each associated with a specific gene or the exon
composition of specific transcripts. These relationships are maintained with
TranscriptDb objects and can be accessed through the transcriptsBy, ex-
onsBy, and cdsBy functions.

So for example, to extract all the transcripts grouped by their exons you
can call:

5

> txdb <- loadFeatures(system.file("extdata", "UCSC_knownGene_sample.sqlite",

+ package="GenomicFeatures"))

> GRList <- transcriptsBy(txdb, "gene")

> GRList

GRangesList of length 51
$100132288
GRanges with 1 range and 2 elementMetadata values

seqnames ranges strand | tx_id tx_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr21_random [103280, 164670] - | 120 uc002zka.1

$10752
GRanges with 3 ranges and 2 elementMetadata values

seqnames ranges strand | tx_id tx_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3 [213650, 426097] + | 7 uc003bot.1
[2] chr3 [213650, 426097] + | 8 uc003bou.1
[3] chr3 [214327, 265280] + | 9 uc003bov.1

$10771
GRanges with 1 range and 2 elementMetadata values

seqnames ranges strand | tx_id tx_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr10 [170643, 285201] + | 39 uc001ifj.1

...
<48 more elements>

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

Similarly, to extract all the exons for each transcript you can call:

> txdb <- loadFeatures(system.file("extdata", "UCSC_knownGene_sample.sqlite",

+ package="GenomicFeatures"))

> GRList <- exonsBy(txdb, "tx")

> GRList

6

GRangesList of length 135
$1
GRanges with 3 ranges and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr1 [1116, 2090] + | 1 NA 1
[2] chr1 [2476, 2584] + | 2 NA 2
[3] chr1 [3084, 4121] + | 3 NA 3

$2
GRanges with 2 ranges and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr1 [1116, 2090] + | 1 NA 1
[2] chr1 [2476, 4272] + | 4 NA 2

$3
GRanges with 4 ranges and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr1 [6470, 6628] - | 8 NA 1
[2] chr1 [5659, 5805] - | 7 NA 2
[3] chr1 [4833, 4901] - | 6 NA 3
[4] chr1 [4269, 4692] - | 5 NA 4

...
<132 more elements>

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

These functions return GRangesList objects that contain locations and
identifiers all grouped according to the type of feature specified. These
objects can be used in downstream analyses such as using findOverlaps
contextualize the alignments from high-throughput sequencing.

It is important to consider the context created when grouping by a par-
ticular feature. For example, in the 1st example, where we grouped by genes,
the name of the features is an Entrez Gene ID. If the database had been

7

based instead on Ensembl sources, it would be an Ensembl Gene ID. How-
ever, in the second example where we group by transcript, we see that the
groups are labeled by an ID that is not a traditional transcript ID. In this
second case, we have been given an internally assigned database ID. This is
because some sources may choose to overload their use of traditional tran-
script IDs in ways that would make the existence of our database schema
impossible. So in the second case we have to use an internal id to guarantee
uniqueness. This will happen whenever you group by anything that is not a
gene. So when you want to use traditional transcript IDs you can look them
up using the appropriate basic accessors described in the preceding section.

Another case where context can matter is when considering the order
of the elements returned. In most cases the grouped elements will be listed
in the order that they occur along the chromosome. But in the context
where you have grouped exons or CDS by transcripts, they will instead
be grouped according to their position along the transcript itself. This is
important because alternative splicing can mean that the order along the
transcript can be different from that along the chromosome.

3.3 Prespecfied grouping functions

An important kind of grouping functions are the ones that group in a pre-
specified manner. The intronsByTranscript, fiveUTRsByTranscript and
threeUTRsByTranscript functions are like this. These functions retrieve
the GRangesList objects for the introns, 5’ UTR’s, and 3’ UTR’s grouped
by transcript respectively.

> intronsByTranscript(txdb)

GRangesList of length 135
$1
GRanges with 2 ranges and 0 elementMetadata values

seqnames ranges strand |
<Rle> <IRanges> <Rle> |

[1] chr1 [2091, 2475] + |
[2] chr1 [2585, 3083] + |

$2
GRanges with 1 range and 0 elementMetadata values

seqnames ranges strand |
<Rle> <IRanges> <Rle> |

8

[1] chr1 [2091, 2475] + |

$3
GRanges with 3 ranges and 0 elementMetadata values

seqnames ranges strand |
<Rle> <IRanges> <Rle> |

[1] chr1 [4693, 4832] - |
[2] chr1 [4902, 5658] - |
[3] chr1 [5806, 6469] - |

...
<132 more elements>

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

> fiveUTRsByTranscript(txdb)

GRangesList of length 61
$7
GRanges with 3 ranges and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr3 [213650, 213746] + | 20 NA 1
[2] chr3 [261296, 261375] + | 21 NA 2
[3] chr3 [336366, 336459] + | 22 NA 3

$8
GRanges with 3 ranges and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr3 [213650, 213746] + | 20 NA 1
[2] chr3 [261296, 261375] + | 21 NA 2
[3] chr3 [336366, 336459] + | 22 NA 3

$10
GRanges with 1 range and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank

9

<Rle> <IRanges> <Rle> | <integer> <character> <integer>
[1] chr4 [43227, 43382] + | 50 NA 1

...
<58 more elements>

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

> threeUTRsByTranscript(txdb)

GRangesList of length 58
$7
GRanges with 1 range and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr3 [422395, 426097] + | 47 NA 28

$8
GRanges with 1 range and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr3 [422395, 426097] + | 47 NA 27

$10
GRanges with 1 range and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr4 [145913, 146490] + | 53 NA 4

...
<55 more elements>

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

10

3.4 Convenience functions

The transcriptsByOverlaps, exonsByOverlaps and cdsByOverlaps func-
tions return a GRangesList object containing data about transcripts, exons,
or coding sequences that overlap genomic coordinates specified by a GRanges
object.

> library(org.Mm.eg.db)

> set.seed(0L)

> idx <- sample(length(org.Mm.egCHRLOC), 50)

> tbl <- unique(merge(toTable(org.Mm.egCHRLOC[idx]),

+ toTable(org.Mm.egCHRLOCEND[idx])))

> gr <- with(tbl, {

+ lvls <- paste("chr", c(1:19, "X", "Y", "MT", "Un"), sep="")

+ GRanges(seqnames=factor(paste("chr", Chromosome, sep=""),

+ levels=lvls),

+ ranges=IRanges(abs(start_location), abs(end_location)),

+ strand=ifelse(start_location >= 0, "+", "-"),

+ egid=gene_id)

+ })

> transcriptsByOverlaps(txdb, gr)

GRanges with 0 ranges and 2 elementMetadata values
seqnames ranges strand | tx_id tx_name

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

The convenience functions can be a great shortcut, but because they have
to make assumptions about how the results are compared and represented,
they are ultimately not as flexible as just using the basic and grouping
accessors in combination with findOverlaps.

4 Examples

Let’s suppose that you have run an experiment. After mapping all your
reads to a genome and collapsing them into a set of ranges, you want to find
out what genomic Features a particular range overlaps with. How would be
the usual way to proceed? Here is an example:

11

4.1 Retrieving data from an RNA-seq experiment

Let’s consider the case where you have some RNA-seq data and you want to
convert your ranges into counts representing how hits per transcript. For this
example, let’s also assume that you are only interested in counting ranges
that overlap with exons (not introns).

First lets say that this is your data:

> gr <- GRanges(seqnames = rep("chr5",4),

+ ranges = IRanges(start = c(244620,244670,245804,247502),

+ end = c(244652,244702,245836,247534)),

+ strand = rep("+",4))

From our TranscriptDb object, we want to recover the annotations for all
of the relevant exons, but grouped according to their transcripts. Therefore,
we want to use exonsby and group them by transcripts.

> annotGr <- exonsBy(txdb, "tx")

Then we need to used findOverlaps to learn which of our data ranges,
gr, will overlap with the in exons that we have grouped by transcripts.

> OL <- findOverlaps(annotGr, gr)

Finally, once we have called findOverlaps we can subset out the an-
notations that meet our criteria. The subjectHits method will allow us
to retrieve only the things that overlapped with the subject in our original
findOverlaps call. And once we have subsetted out annotations in this
way, the length of the resulting GRangesList object is also the number of
transcripts that overlap with our data.

> tdata <- annotGr[subjectHits(OL),]

> tdata

GRangesList of length 0
<0 elements>

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

> length(tdata)

12

[1] 0

By using findOverlaps along with the different accessors in this way,
it is possible to connect any data that has been represented as a GRanges
object with the annotations stored in a TranscriptDb object. Calling find-
Overlaps along with the appropriate GRanges object not only allows users
to quickly determine what has overlapped, but also controls what criteria
are used for determining whether an overlap has occurred. This can be done
by passing in an alternate type parameter to findOverlaps. In addition,
because the basic accesors allow for the users to retrieve data grouped in
different ways, the user has control over which parts of a transcript or gene
are included in the overlap.

5 Session Information

The version number of R and packages loaded for generating the vignette
were:

R version 2.11.1 (2010-05-31)
x86_64-unknown-linux-gnu

locale:
[1] LC_CTYPE=en_US LC_NUMERIC=C LC_TIME=en_US
[4] LC_COLLATE=en_US LC_MONETARY=C LC_MESSAGES=en_US
[7] LC_PAPER=en_US LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US LC_IDENTIFICATION=C

attached base packages:
[1] tools stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] org.Mm.eg.db_2.4.1 RSQLite_0.9-2 DBI_0.2-5
[4] AnnotationDbi_1.10.2 Biobase_2.8.0 GenomicFeatures_1.0.10
[7] GenomicRanges_1.0.7 IRanges_1.6.14 rtracklayer_1.8.1
[10] RCurl_1.4-3 bitops_1.0-4.1

loaded via a namespace (and not attached):
[1] biomaRt_2.4.0 Biostrings_2.16.9 BSgenome_1.16.5 XML_3.1-1

13

