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1. Calibration and Normalization
1. Calibration and Normalization

Description

In this section we give our recommendation on how spotted two-color (or multi-color) microarray
data is best calibrated and normalized.

Classical background subtraction

We do not recommend background subtraction in classical means where background is estimated
by various image analysis methods. This means that we will only consider foreground signals in
the analysis.

We estimate "background" by other means. In what is explain below, only a global background,
that is, a global bias, is estimated and removed.

Multiscan calibration

In Bengtsson et al (2004) we give evidence that microarray scanners can introduce a significant bias
in data. This bias, which is about 15-25 out of 65535, will introduce intensity dependency in the
log-ratios, as explained in Bengtsson \& Hdssjer (2006).

In Bengtsson et al (2004) we find that this bias is stable across arrays (and a couple of months), but
further research is needed in order to tell if this is true over a longer time period.

To calibrate signals for scanner biases, scan the same array at multiple PMT-settings (in decreas-
ing order) at three or more PMT settings. Do this without washing, cleaning or by other means
changing the array between subsequent scans. Although not necessary, it is preferred that the array
remains in the scanner between subsequent scans. This will simplify the image analysis since spot
identification can be made once if images aligns perfectly.

After image analysis, read all K scans for the same array into the two matrices, one for the red and
one for the green channel, where the K columns corresponds to scans and the N rows to the spots.
It is enough to use foreground signals.

In order to multiscan calibrate the data, for each channel separately call Xc <- calibrateMultiscan (X)
where X is the NxK matrix of signals for one channel across all scans. The calibrated signals are
returned in the Nx1 matrix Xc.

Multiscan calibration may sometimes be skipped, especially if affine normalization is applied im-
mediately after, but we do recommend that every lab check at least once if their scanner introduce
bias.
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Affine normalization

In Bengtsson \& Hossjer (2006), we carry out a detailed study on how biases in each channel intro-
duce so called intensity-dependent log-ratios among other systematic artifacts. Data with (additive)
bias in each channel is said to be affinely transformed. Data without such bias, is said to be linearly
(proportionally) transform. Ideally, observed signals (data) is a linear (proportional) function of true
gene expression levels.

We do not assume proportional observations. The scanner bias is real evidence that assuming
linearity is not correct. Affine normalization corrects for affine transformation in data. Without
control spots it is not possible to estimate the bias in each of the channels but only the relative bias
such that after normalization the effective bias are the same in all channels. This is why we call it
normalization and not calibration.

In its simplest form, affine normalization is done by Xn <- normalizeAffine (X) where X
is a Nx2 matrix with the first column holds the foreground signals from the red channel and the
second holds the signals from the green channel. If three- or four-channel data is used these are
added the same way. The normalized data is returned as a Nx2 matrix Xn.

To normalize all arrays and all channels at once, one may put all data into one big NxK matrix
where the K columns hold the all channels from the first array, then all channels from the second
array and so on. Then Xn <- normalizeAffine (X) will return the across-array and across-
channel normalized data in the NxK matrix Xn where the colunms are stored in the same order as
in matrix X.

Equal effective bias in all channels is much better. First of all, any intensity-dependent bias in the
log-ratios is removed for all non-differentially expressed genes. There is still an intensity-dependent
bias in the log-ratios for differentially expressed genes, but this is now symmetric around log-ratio
Zero.

Affine normalization will (by default and recommended) normalize all arrays together and at once.
This will guarantee that all arrays are "on the same scale". Thus, it not recommended to apply a
classical between-array scale normalization afterward. Moreover, the average log-ratio will be zero
after an affine normalization.

Note that an affine normalization will only remove curvature in the log-ratios at lower intensities.
If a strong intensity-dependent bias at high intensities remains, this is most likely due to saturation
effects, such as too high PMT settings or quenching.

Note that for a perfect affine normalization you should expect much higher noise levels in the log-
ratios at lower intensities than at higher. It should also be approximately symmetric around zero
log-ratio. In other words, a strong fanning effect is a good sign.

Due to different noise levels in red and green channels, different PMT settings in different channels,
plus the fact that the minimum signal is zero, "odd shapes" may be seen in the log-ratio vs log-
intensity graphs at lower intensities. Typically, these show themselves as non-symmetric in positive
and negative log-ratios. Note that you should not see this at higher intensities.

If there is a strong intensity-dependent effect left after the affine normalization, we recommend, for
now, that a subsequent curve-fit or quantile normalization is done. Which one, we do not know.

Why negative signals? By default, 5% of the normalized signals will have a non-positive signal
in one or both channels. This is on purpose, although the exact number 5% is chosen by experi-
ence. The reason for introducing negative signals is that they are indeed expected. For instance,
when measure a zero gene expression level, there is a chance that the observed value is (should
be) negative due to measurement noise. (For this reason it is possible that the scanner manufac-
turers have introduced scanner bias on purpose to avoid negative signals, which then all would
be truncated to zero.) To adjust the ratio (or number) of negative signals allowed, use for exam-
ple normalizeAffine (X, constraint=0.01) for 1% negative signals. If set to zero (or
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"max") only as much bias is removed such that no negative signals exist afterward. Note that this
is also true if there were negative signals on beforehand.

Why not lowess normalization? Curve-fit normalization methods such as lowess normalization are
basically designed based on linearity assumptions and will for this reason not correct for channel
biases. Curve-fit normalization methods can by definition only be applied to one pair of channels at
the time and do therefore require a subsequent between-array scale normalization, which is by the
way very ad hoc.

Why not quantile normalization? Affine normalization can be though of a special case of quantile
normalization that is more robust than the latter. See Bengtsson \& Hossjer (2006) for details.
Quantile normalization is probably better to apply than curve-fit normalization methods, but less
robust than affine normalization, especially at extreme (low and high) intensities. For this reason, we
do recommend to use affine normalization first, and if this is not satisfactory, quantile normalization
may be applied.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

aroma.light-package
Package aroma.light

Description

Methods for microarray analysis that take basic data types such as matrices and lists of vectors.
These methods can be used standalone, be utilized in other packages, or be wrapped up in higher-
level classes.

Requirements

This package requires the R.oo0 package [1].

Installation
To install this package, see http://www.braju.com/R/. Required packages are installed in
the same way.

To get started

For scanner calibration:

1. see calibrateMultiscan.matrix() - scan the same array two or more times to cali-
brate for scanner effects and extended dynamical range.

To normalize multiple single-channel arrays all with the same number of probes/spots:

1. normalizeAffine.matrix()-normalizes, on the intensity scale, for differences in offset
and scale between channels.

2. normalizeQuantileRank.matrix(), normalizeQuantileSpline.matrix() -
normalizes, on the intensity scale, for differences in empirical distribution between channels.

To normalize multiple single-channel arrays with varying number probes/spots:
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1. normalizeQuantileRank.list(), normalizeQuantileSpline.list() - nor-
malizes, on the intensity scale, for differences in empirical distribution between channels.

To normalize two-channel arrays:

1. normalizeAffine.matrix()-normalizes, on the intensity scale, for differences in offset
and scale between channels. This will also correct for intensity-dependent affects on the log
scale.

2. normalizeCurveFit .matrix() - Classical intensity-dependent normalization, on the
log scale, e.g. lowess normalization.

To normalize three or more channels:

1. normalizeAffine.matrix()-normalizes, on the intensity scale, for differences in offset
and scale between channels. This will minimize the curvature on the log scale between any
two channels.

Further readings

Several of the normalization methods proposed in [3]-[6] are available in this package.

How to cite this package

Whenever using this package, please cite [2] as

No citation information available.

Wishlist

Here is a list of features that would be useful, but which I have too little time to add myself. Con-
tributions are appreciated.

* At the moment, nothing.

If you consider to contribute, make sure it is not already implemented by downloading the latest
"devel" version!

License

The releases of this package is licensed under LGPL version 2.1 or newer.

The development code of the packages is under a private licence (where applicable) and patches sent
to the author fall under the latter license, but will be, if incorporated, released under the "release"
license above.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)
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averageQuantile.list
Gets the average empirical distribution

Description

Gets the average empirical distribution for a set of samples of different sizes.

Usage
## S3 method for class 'list':
averageQuantile (X, ...)
Arguments
X a list with numeric vectors. The vectors may be of different lengths.

Not used.
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Value

backtransformAffine.matrix

Returns a numeric vector of length equal to the longest vector in argument X.

Missing values

Missing values are excluded.

Author(s)

Parts adopted from Gordon Smyth (http://www.statsci.org/)in 2002 \& 2006. Original
code by Ben Bolstad at Statistics Department, University of California.

See Also

snormalizeQuantileRank (). xnormalizeQuantileSpline (). quantile.

backtransformAffine.matrix

Reverse affine transformation

Description

Reverse affine transformation.

Usage

## S3 method for class 'matrix':

backtransformAffine (X, a=NULL, b=NULL, project=FALSE, ...)
Arguments

X An NxK matrix containing data to be backtransformed.

a A scalar, vector, amatrix, ora list. First, if a 1ist, it is assumed to
contained the elements a and b, which are the used as if they were passed as
seperate arguments. If a vector, a matrix of size NxK is created which is
then filled row by row with the values in the vector. Commonly, the vector is
of length K, which means that the matrix will consist of copies of this vector
stacked on top of each other. If a matrix, a matrix of size NxK is created
which is then filled column by column with the values in the matrix (collected
column by column. Commonly, the matrix is of size NxK, or NxL with L < K
and then the resulting matrix consists of copies sitting next to each other. The
resulting NxK matrix is subtracted from the NxK matrix X.

b A scalar, vector, amatrix. A NxK matrix is created from this argument.
For details see argument a. The NxK matrix X—-a is divided by the resulting
NxK matrix.

project returned (K values per data point are returned). If TRUE, the backtransformed

values " (X—-a) /b" are projected onto the line L(a,b) so that all columns will be
identical.

Not used.
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Value
The " (X-a) /b" backtransformed NxK matrix is returned. If project is TRUE, an NxI1
matrix is returned, because all columns are identical anyway.

Missing values
Missing values remain missing values. If projected, data points that contain missing values are
projected without these.

See Also

For more information see mat rix.

Examples

X <- matrix(1:8, nrow=4, ncol=2)
X[2,2] <- NA

print (X)

# Returns a 4x2 matrix
print (backtransformAffine (X, a=c(1,5)))

# Returns a 4x2 matrix
print (backtransformAffine (X, b=c(1,1/2)))

# Returns a 4x2 matrix
print (backtransformAffine (X, a=matrix(l:4,ncol=1l)))

# Returns a 4x2 matrix
print (backtransformAffine (X, a=matrix(l:3,ncol=1l)))

# Returns a 4x2 matrix
print (backtransformAffine (X, a=matrix(l:2,ncol=1l), b=c(1,2)))

# Returns a 4x1 matrix
print (backtransformAffine (X, b=c(1,1/2), project=TRUE))

# If the columns of X are identical, and a identity
# backtransformation is applied and projected, the

# same matrix is returned.

X <- matrix(l:4, nrow=4, ncol=3)

Y <- backtransformAffine (X, b=c(1l,1,1), project=TRUE)
print (X)

print (Y)

stopifnot (sum(X[,1]-Y) <= .MachineS$double.eps)

# If the columns of X are identical, and a identity
# backtransformation is applied and projected, the
# same matrix is returned.

X <= matrix(l:4, nrow=4, ncol=3)

X[,2] <= X[,2]*2; X[,3] <= X[,31*3;

print (X)

Y <- backtransformAffine (X, b=c(1,2,3))

print (Y)
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Y <- backtransformAffine (X, b=c(1,2,3), project=TRUE)
print (Y)
stopifnot (sum(X[,1]-Y) <= .Machine$double.eps)

backtransformPrincipalCurve.matrix
Reverse transformation of principal-curve fit

Description

Reverse transformation of principal-curve fit.

Usage

## S3 method for class 'matrix':
backtransformPrincipalCurve (X, fit, dimensions=NULL, targetDimension=NULL,

Arguments
X An NxK matrix containing data to be backtransformed.
fit An MXxL principal-curve fit object of class principal . curve as returned by

xfitPrincipalCurve (). Typically L = K, but not always.

dimensions An (optional) subset of of D dimensions all in [1,L] to be returned (and back-
transform).

targetDimension

An (optional) index specifying the dimension in [1,L] to be used as the target
dimension of the £it. More details below.

Passed internally to smooth.spline.

Value

The backtransformed NxK (or NxD) mat rix.

Target dimension

By default, the backtransform is such that afterward the signals are approximately proportional to
the (first) principal curve as fitted by xfitPrincipalCurve (). This scale and origin of this
principal curve is not uniquely defined. If targetDimension is specified, then the backtrans-
formed signals are approximately proportional to the signals of the target dimension, and the signals
in the target dimension are unchanged.

Subsetting dimensions

Argument dimensions can be used to backtransform a subset of dimensions (K) based on a
subset of the fitted dimensions (L). If K = L, then both X and fit is subsetted. If K <> L, then
it is assumed that X is already subsetted/expanded and only £it is subsetted.

See Also

*fitPrincipalCurve ()
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Examples
# Consider the case where K=4 measurements have been done
# for the same underlying signals 'x'. The different measurements
# have different systematic variation
#
# y_k = f(x_k) + eps_k; k =1,...,K.
#
# In this example, we assume non-linear measurement functions
#
# f(x) = a + bxx + x"c + eps (b*x)
#
# where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
# We also assume heteroscedastic zero-mean noise with standard
# deviation proportional to the rescaled underlying signal 'x'.
#
# Furthermore, we assume that measurements k=2 and k=3 undergo the
# same transformation, which may illustrate that the come from
# the same batch. However, when xfittingx the model below we
# will assume they are independent.
# Transforms
a <- c(2, 15, 15, 3)
b <= c¢c(2, 3, 3, 4)
c <-c(1, 2, 2, 1/2)
K <- length(a)
# The true signal
N <- 1000

x <— rexp (N)

# The noise
bX <- outer (b, x)
E <- apply (bX, MARGIN=2, FUN=function (x) rnorm(K, mean=0, sd=0.1%x))

# The transformed signals with noise
Xc <- t(sapply(c, FUN=function(c) x"c))
Y <- a + bX + Xc + E

Y <- t(Y)

# Fit principal curve through Y = (y_1, v_2, ..., y_K)
fit <- fitPrincipalCurve (Y)

# Flip direction of 'lambda'?
rho <- cor(fit$lambda, Y[,1l], use="complete.obs")
flip <= (rho < 0)
if (flip) {
fit$lambda <- max (fit$lambda, na.rm=TRUE)-fit$lambda

L <- ncol(fit$s)
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# Backtransform toward the principal curve (the "common scale")
YN1 <- backtransformPrincipalCurve (Y, fit=fit)
stopifnot (ncol (YN1) == K)

# Backtransform toward the first dimension
YN2 <- backtransformPrincipalCurve (Y, fit=fit, targetDimension=1)
stopifnot (ncol (YN2) == K)

# Backtransform toward the last (fitted) dimension
YN3 <- backtransformPrincipalCurve (Y, fit=fit, targetDimension=L)
stopifnot (ncol (YN3) == K)

# Backtransform toward the third dimension (dimension by dimension)

# Note, this assumes that K ==

YN4 <- Y

for (cc in 1:L) {

YN4[,cc] <- backtransformPrincipalCurve (Y, fit=fit,

targetDimension=1, dimensions=cc)

t

stopifnot (identical (YN4, YN2))

# Backtransform a subset toward the first dimension
# Note, this assumes that K ==
YN5 <- backtransformPrincipalCurve (Y, fit=fit,
targetDimension=1, dimensions=2:3)
stopifnot (identical (YN5, YN2[,2:3]1))
stopifnot (ncol (YN5) == 2)

# Extract signals from measurement #2 and backtransform according

# its model fit. Signals are standardized to target dimension 1.

y6 <- Y[,2,drop=FALSE]

yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
targetDimension=1)

stopifnot (identical (yN6, YN2[,2,drop=FALSE]))

stopifnot (ncol (yN6) == 1)

# Extract signals from measurement #2 and backtransform according

# the the model fit of measurement #3 (because we believe these

# two have undergone very similar transformations.

# Signals are standardized to target dimension 1.

y7 <= Y[,2,drop=FALSE]

yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
targetDimension=1)

stopifnot (ncol (yN7) == 1)

stopifnot (cor (yN7, yN6) > 0.9999)



calibrateMultiscan.matrix 11

calibrateMultiscan.matrix
Weighted affine calibration of a multiple re-scanned channel

Description

Weighted affine calibration of a multiple re-scanned channel.

Usage

## S3 method for class 'matrix':
calibrateMultiscan (X, weights=NULL, typeOfWeights=c ("datapoint"), method="L1", c

Arguments
X An NxK matrix (K>=2) where the columns represent the multiple scans of
one channel (a two-color array contains two channels) to be calibrated.
weights If NULL, non-weighted normalization is done. If data-point weights are used,

this should be a vector of length N of data point weights used when estimating
the normalization function.
typeOfWeights

A character string specifying the type of weights given in argument weights.

method A character string specifying how the estimates are robustified. See iwpca()
for all accepted values.

constraint Constraint making the bias parameters identifiable. See *fit IWPCA () for
more details.

satSignal Signals equal to or above this threshold is considered saturated signals.

Other arguments passed to » 1t IWPCA () and in turn iwpca().

average A function to calculate the average signals between calibrated scans.
deviance A function to calculate the deviance of the signals between calibrated scans.
project If TRUE, the calibrated data points projected onto the diagonal line, otherwise
not. Moreover, if TRUE, argument average is ignored.
.fitOnly If TRUE, the data will not be back-transform.
Details

Fitting is done by iterated re-weighted principal component analysis IWPCA).

Value

If average is specified or project is TRUE, an NxI matrix is returned, otherwise an NxK
matrix is returned. If deviance is specified, a deviance Nx1 matrix is returned as attribute
deviance. In addition, the fitted model is returned as attribute modelFit.

Negative, non-positive, and saturated values
Affine multiscan calibration applies also to negative values, which are therefor also calibrated, if
they exist.

Saturated signals in any scan are set to NA. Thus, they will not be used to estimate the calibration
function, nor will they affect an optional projection.
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Missing values

Only observations (rows) in X that contain all finite values are used in the estimation of the alibration
functions. Thus, observations can be excluded by setting them to NA.

Weighted normalization

Each data point/observation, that is, each row in X, which is a vector of length K, can be assigned a
weight in [0,1] specifying how much it should affect the fitting of the calibration function. Weights
are given by argument weights, which should be a numeric vector of length N. Regardless
of weights, all data points are calibrated based on the fitted calibration function.

Robustness

By default, the model fit of multiscan calibration is done in L; (method="L1"). This way, outliers
affect the parameter estimates less than ordinary least-square methods.

When calculating the average calibrated signal from multiple scans, by default the median is used,
which further robustify against outliers.

For further robustness, downweight outliers such as saturated signals, if possible.

Tukey’s biweight function is supported, but not used by default because then a "bandwidth" param-
eter has to selected. This can indeed be done automatically by estimating the standard deviation, for
instance using MAD. However, since scanner signals have heteroscedastic noise (standard deviation
is approximately proportional to the non-logged signal), Tukey’s bandwidth parameter has to be a
function of the signal too, cf. 1oess. We have experimented with this too, but found that it does
not significantly improve the robustness compared to L1. Moreover, using Tukey’s biweight as is,
that is, assuming homoscedastic noise, seems to introduce a (scale dependent) bias in the estimates
of the offset terms.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

References

[1] H. Bengtsson, J. Vallon-Christersson and G. Jonsson, Calibration and assessment of channel-
specific biases in microarray data with extended dynamical range, BMC Bioinformatics, 5:177,
2004.

See Also

snormalizeAffine (). For more information see matrix.

Examples

## Not run: # For an example, see help(normalizeAffine).
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callNaiveGenotypes.numeric
Calls genotypes in a normal sample

Description

Calls genotypes in a normal sample.

Usage

## S3 method for class 'numeric':
callNaiveGenotypes(y, cn=rep(2, length(y)), flavor=c("density"), adjust=1.5,

Arguments
y A numeric vector of length J containing allele B fractions for a normal
sample.
cn An optional numeric vector of length J specifying the true total copy num-
ber in {0, 1,2, NA} at each locus. This can be used to specify which loci are
diploid and which are not, e.g. autosomal and sex chromosome copy numbers.
flavor A character string specifying the type of algorithm used.
adjust A postive double specifying the amount smoothing for the empirical density
estimator.
Additional arguments passed to findPeaksAndValleys().
censorAt A double vector of length two specifying the range for which values are
considered finite. Values below (above) this range are treated as -Inf (+Inf).
verbose A logical oraVerbose object.
Value

Returns a numeric vector of length J containing the genotype calls in allele B fraction space,
that is, in [0,1] where 1/2 corresponds to a heterozygous call, and 0 and 1 corresponds to homozy-
gous A and B, respectively. Non called genotypes have value NA.

Missing and non-finite values
A missing value always gives a missing (NA) genotype call. Negative infinity (-Inf) always gives
genotype call 0. Positive infinity (+ Inf) always gives genotype call 1.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

Internally findPeaksAndvalleys() is used to identify the thresholds.
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Examples

layout (matrix (1:3, ncol=1l))
par (mar=c(2,4,4,1)+0.1)

xAA <- rnorm(n=10000, mean=0, sd=0.1)

xBB <- rnorm(n=10000, mean=1, sd=0.1)

x <—- c(xAA,xBB)

fit <- findPeaksAndvValleys (x)

print (fit)

calls <- callNaiveGenotypes (x, cn=rep(l,length(x)), verbose=-20)
xc <- split(x, calls)

print (table(calls))

xx <— c(list (x),xc)

plotDensity (xx, adjust=1.5, lwd=2, col=seqg(along=xx), main=" (AA,BB)")
abline (v=£fit$x)

XAB <- rnorm(n=10000, mean=1/2, sd=0.1)

x <—- c(xAA,xAB, xBB)

X [sample (length (x), size=0.05%xlength(x))] <- NA;

X [sample (length (x), size=0.0lxlength(x))] <- -Inf;
x[sample (length(x), size=0.0lxlength(x))] <- +Inf;
fit <- findPeaksAndvalleys (x)

print (fit)

calls <- callNaiveGenotypes (x)

xc <- split(x, calls)

print (table(calls))

xx <— c(list (x),xcC)

plotDensity (xx, adjust=1.5, lwd=2, col=seq(along=xx), main=" (AA,AB,BB)")
abline (v=£fit$x)

xAA <- rnorm(n=10000, mean=0, sd=0.02)
XAB <- rnorm(n=10000, mean=1/2, sd=0.02)
xBB <- rnorm(n=10000, mean=1, sd=0.02)

x <- c(xAA,xAB, xBB)

fit <- findPeaksAndValleys (x)

print (fit)

calls <- callNaiveGenotypes (x)

xc <- split(x, calls)

print (table(calls))

xx <- c(list (x),xc)

plotDensity (xx, adjust=1.5, lwd=2, col=seg(along=xx), main=" (AA',AB',BB")")
abline (v=£fit$x)

distanceBetweenLines
Finds the shortest distance between two lines
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Description

Finds the shortest distance between two lines.
Consider the two lines
z(s) =ag + by * sand y(t) = a, + by * t

in an K-space where the offset and direction vectors are a, and b, (in RX) that define the line
x(s) (s is a scalar). Similar for the line y(¢). This function finds the point (s, t) for which |z(s) —
2(t)| is minimal.

Usage

## Default S3 method:
distanceBetweenLines (ax, bx, ay, by, ...)

Arguments
ax, bx Offset and direction vector of length K for line z,.
ay, by Offset and direction vector of length K for line z,.
Not used.
Value

Returns the a 11 st containing

ax, bx The given line z(s).

ay, by The given line y(t).

s, t The values of s and ¢ such that |z(s) — y(¢)| is minimal.

xs,yt The values of z:(s) and y(t) at the optimal point (s, t).

distance The distance between the lines, i.e. |z(s) — y(¢)| at the optimal point (s, ).
Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

References

[1] M. Bard and D. Himel, The Minimum Distance Between Two Lines in n-Space, September 2001,
Advisor Dennis Merino.

[2] Dan Sunday, Distance between Lines and Segments with their Closest Point of Approach,
http://geometryalgorithms.com/Archive/algorithm_0106/.

Examples

for (zzz in 0) {

# This example requires plot3d() in R.basic [http://www.braju.com/R/]
if (!'require (R.basic)) break

layout (matrix (1:4, nrow=2, ncol=2, byrow=TRUE))

FHAFHH AR AR A A R R
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distanceBetweenLines

# Lines in two-dimensions

HHHH A AR
x <- list(a=c(1,0), b=c(1,2))

y <= list(a=c(0,2), b=c(1,1))

fit <- distanceBetweenLines (ax=x$a, bx=x$b, ay=y$a, by=yS$b)

xlim <- ylim <- c(-1,8)
plot (NA, xlab="", ylab="", xlim=ylim, ylim=ylim)

# Highlight the offset coordinates for both lines
points (t (x$a), pch="+", col="red")

text (t (x$a), label=expression(alx]), adj=c(-1,0.5))
points (t(y$a), pch="+", col="blue")

text (t (y$a), label=expression(aly]), adj=c(-1,0.5))

v <-= c(-1,1)%10;
xv <= list(x=x$al[l]l+x$b[l]+*v, y=x$al[2]+xSb[2]%*V)
yv <— list(x=yS$al[ll+ySb[l]l*v, y=y$al[2]+ySb[2]x*v)

lines (xv, col="red")
lines (yv, col="blue")

points (t (fit$xs), cex=2.0, col="red")
text (t (fit$xs), label=expression(x(s)), adj=c(+2,0.5))
points (t (fit$yt), cex=1.5, col="blue")
text (t (£it$yt), label=expression(y(t)), adj=c(-1,0.5))

print (fit)

gt sss s a LR RS EEEREEEEEEEEEEEEEEEEE
# Lines in three-dimensions

FHEH AR
x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal'

y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line

fit <- distanceBetweenLines (ax=xS$a, bx=xS$b, ay=y$a, by=yS$b)

x1lim <- ylim <- zlim <- c(-1,3)
dummy <- t(c(1,1,1))*100;

# Coordinates for the lines in 3d
v <- seq(-10,10, by=1l);

xv <- list(x=xS$a[ll+xSb[1l]x*v, y=x$al[2]+x$b[2]*v, z=x$a[3]+x$b[3]~*V)
yv <- list(x=ySalll+y$b[l]l*v, y=ySal2]+y$bl[2]*v, z=y$a[3]1+ySb[3]*v)

for (theta in seq(30,140,length=3)) {

plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",

xlim=ylim, ylim=ylim, zlim=zlim)

# Highlight the offset coordinates for both lines
points3d(t (x$a), pch="+", col="red")

text3d(t (x$a), label=expression(al[x]), adj=c(-1,0.5))
points3d(t (y$a), pch="+", col="blue")

text3d(t (yS$a), label=expression(aly]), adj=c(-1,0.5))

# Draw the lines
lines3d (xv, col="red")
lines3d(yv, col="blue")
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# Draw the two points that are closest to each other
points3d(t (fit$xs), cex=2.0, col="red")

text3d(t (fit$xs), label=expression(x(s)), adj=c(+2,0.5))
points3d(t (fit$yt), cex=1.5, col="blue")

text3d(t (fit$yt), label=expression(y(t)), adj=c(-1,0.5))

# Draw the distance between the two points
lines3d (rbind (fit$xs, fit$yt), col="purple", lwd=2)
print (fit)

} # for (zzz in 0)
rm(zzz)

fitIWPCA.matrix Robust fit of linear subspace through multidimensional data

Description

Robust fit of linear subspace through multidimensional data.

Usage

## S3 method for class 'matrix':
fitIWPCA (X, constraint=c ("diagonal", "baseline", "max"), baselineChannel=NULL,

Arguments

X NxK matrix where N is the number of observations and K is the number of
dimensions (channels).

constraint A character string or a numeric value. If character it specifies which
additional contraint to be used to specify the offset parameters along the fitted
line;
If "diagonal™", the offset vector will be a point on the line that is closest to the
diagonal line (1,...,1). With this constraint, all bias parameters are identifiable.

If "baseline" (requires argument baselineChannel), the estimates are
such that of the bias and scale parameters of the baseline channel is 0 and 1,
respectively. With this constraint, all bias parameters are identifiable.

If "max", the offset vector will the point on the line that is as "great" as pos-
sible, but still such that each of its components is less than the correspond-
ing minimal signal. This will guarantee that no negative signals are created
in the backward transformation. If numeric value, the offset vector will the
point on the line such that after applying the backward transformation there are
constraint«N. Note that constraint==0 corresponds approximately to
constraint=="max". With the latter two constraints, the bias parameters
are only identifiable modulo the fitted line.
baselineChannel

Index of channel toward which all other channels are conform. This argument
is required if constraint=="baseline". This argument is optional if
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constraint=="diagonal" and then the scale factor of the baseline chan-
nel will be one. The estimate of the bias parameters is not affected in this case.
Defaults to one, if missing.

Additional arguments accepted by iwpca(). For instance, a N vector of
weights for each observation may be given, otherwise they get the same weight.

aShift, Xmin For internal use only.

Details

This method uses re-weighted principal component analysis IWPCA) to fit a the nodel y,, = a +
bx,, + eps, where y,, a, b, and eps,, are vector of the K and x,, is a scalar.

The algorithm is: For iteration i: 1) Fit a line L through the data close using weighted PCA with
weights {w,, }. Let 7, = {rp.1, ..., "n i } be the K principal components. 2) Update the weights as
wy, < —1/ Ef (rn,k+€r) Where we have used the residuals of all but the first principal component.
3) Find the point a on L that is closest to the line D = (1,1, ...,1). Similarily, denote the point on
D thatis closestto Lby t = a x (1,1,...,1).

Value

Returns a 11 st that contains estimated parameters and algorithm details;

a A double vector (a[l], ..., a[ K])with offset parameter estimates. It is made
identifiable according to argument constraint.

b A double vector (b[1],...,b[K])with scale parameter estimates. It is made
identifiable by constraining b [baselineChannel] == 1. These estimates
are idependent of argument constraint.

adiag If identifiability constraint "diagonal™,adouble vector (adiag[l], ..., adiag| K]),
where adiag[l] = adiag[2] = ...adiag[K], specifying the point on the diagonal
line that is closest to the fitted line, otherwise the zero vector.

eigen A KxK matrix with columns of eigenvectors.

converged TRUE if the algorithm converged, otherwise FALSE.

nbrOfIterations
The number of iterations for the algorithm to converge, or zero if it did not
converge.

t0 Internal parameter estimates, which contains no more information than the above
listed elements.

t Always NULL.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

This is an internal method used by the xcalibrateMultiscan () and xnormalizeAffine ()
methods. Internally the function iwpca() is used to fit a line through the data cloud and the function
distanceBetweenLines() to find the closest point to the diagonal (1,1,...,1).
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fitPrincipalCurve.matrix
Fit a principal curve in K dimensions

Description

Fit a principal curve in K dimensions.

Usage
## S3 method for class 'matrix':
fitPrincipalCurve (X, ..., verbose=FALSE)
Arguments
X An NxK matrix (K>=2) where the columns represent the dimension.

Other arguments passed to principal.curve.

verbose A logical or aVerbose object.

Value

Returns a principal.curve object (whichisa 1ist). See principal.curve for more details.

Missing values

The estimation of the affine normalization function will only be made based on complete observa-
tions, i.e. observations that contains no NA values in any of the channels.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

References

[1] Hastie, T. and Stuetzle, W, Principal Curves, JASA, 1989.

See Also

xbacktransformPrincipalCurve (). principal.curve
Examples

# Simulate data from the model y <- a + bx + x"c + eps (bx)

J <= 1000

x <- rexp(J)

a <- c(2,15,3)

b <= c(2,3,4)

c <- c(1,2,1/2)

bx <- outer (b, x)
xc <- t(sapply(c, FUN=function(c) x"c))
eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1xx))
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y <— a + bx + xc + eps
y <= t(y)

# Fit principal curve through (y_1, v_2, y_3)
fit <- fitPrincipalCurve (y, verbose=TRUE)

# Flip direction of 'lambda'?
rho <- cor(fit$lambda, y[,1], use="complete.obs")
flip <= (rho < 0)
if (flip) {
fit$lambda <- max (fit$lambda, na.rm=TRUE)-fit$lambda

# Backtransform (y_1, y_2, y_3) to be proportional to
yN <- backtransformPrincipalCurve(y, fit=fit)

# Same backtransformation dimension by dimension
yN2 <- vy
for (cc in l:ncol(y)) {
yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit,
}
stopifnot (identical (yN2, yN))

xlim <= ¢ (0, 1.04xmax(x))
ylim <- range(c(y,yN), na.rm=TRUE)

# Display raw and backtransform data
layout (matrix(1:4, nrow=2, byrow=TRUE))
par (mar=c(4,4,2,1)+0.1)
for (rr in 1:2) {
ylab <- substitute(y[c], env=list (c=rr))
for (cc in 2:3) {
if (cc == rr) {
plot.new ()
next
}

xlab <- substitute(y[c], env=list (c=cc))

fitPrincipalCurve.matrix

each other

dimensions=cc)

plot (NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)

abline (a=0, b=1, lty=2)
points(y[,c(cc,rr)])
points(yN[,c(cc,rr)], col="tomato")

layout (matrix (1:4, nrow=2, byrow=TRUE))
par (mar=c(4,4,2,1)+0.1)
for (cc in 1:3) {
ylab <- substitute(y[c], env=list (c=cc))
plot (NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
points(x, yl[,cc])
points(x, yN[,cc], col="tomato")
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fitXYCurve.matrix Fitting a smooth curve through paired (x,y) data

Description

Fitting a smooth curve through paired (x,y) data.

Usage

## S3 method for class 'matrix':

fitXYCurve (X, weights=NULL, typeOfWeights=c ("datapoint"), method=c("loess",

Arguments
X An Nx2 matrix where the columns represent the two channels to be normal-
ized.
weights If NULL, non-weighted normalization is done. If data-point weights are used,

this should be a vect or of length N of data point weights used when estimating

the normalization function.
typeOfWeights

A character string specifying the type of weights given in argument weights.

method character string specifying which method to use when fitting the intensity-
dependent function. Supported methods: "1oess" (better than lowess), "lowess"
(classic; supports only zero-one weights), "spline" (more robust than lowess
at lower and upper intensities; supports only zero-one weights), "robustSpline"
(better than spline).

bandwidth A double value specifying the bandwidth of the estimator used.
satSignal Signals equal to or above this threshold will not be used in the fitting.
Not used.

Value

A named 11st structure of class XYCurve.

Missing values

The estimation of the function will only be made based on complete non-saturated observations, i.e.
observations that contains no NA values nor saturated values as defined by satSignal.

Weighted normalization

Each data point, that is, each row in X, which is a vector of length 2, can be assigned a weight in
[0,1] specifying how much it should affect the fitting of the affine normalization function. Weights
are given by argument weight s, which should be a numeric vector of length N.

Note that the lowess and the spline method only support zero-one {0,1} weights. For such methods,
all weights that are less than a half are set to zero.

Details on loess

"low

For 1oess, the arguments family="symmetric", degree=1, span=3/4,control=1loess.control (trac

iterations=5, surface="direct") are used.
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Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

Examples

# Simulate data from the model y <- a + bx + x”c + eps (bx)
x <— rexp(1000)
a <- c(2,15)
b <= c(2,1)
c <= c(1,2)
bx <- outer (b, x)
xc <- t{(sapply(c, FUN=function(c) x"c))
eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length (x), mean=0, sd=0.1xx))
Y <- a + bx + xc + eps
Y <— t(Y)

lim <= c(0,70)
plot (Y, xlim=lim, ylim=1im)

# Fit principal curve through a subset of (y_1, y_2)
subset <- sample(nrow(Y), size=0.3xnrow(Y))
fit <- fitXYCurve (Y[subset,], bandwidth=0.2)

lines (fit, col="red", lwd=2)

# Backtransform (y_1, y_2) keeping y_1 unchanged
YN <- backtransformXYCurve (Y, fit=fit)

points (YN, col="blue")

abline (a=0, b=1, col="red", 1lwd=2)

iwpca.matrix Fits an R-dimensional hyperplane using iterative re-weighted PCA

Description

Fits an R-dimensional hyperplane using iterative re-weighted PCA.

Usage

## S3 method for class 'matrix':
iwpca (X, w=NULL, R=1, method=c("symmetric", "bisquare", "tricube", "L1"), maxIte

Arguments
X N-times-K mat rix where N is the number of observations and K is the number
of dimensions.
w An N vector of weights for each row (observation) in the data matrix. If

NULL, all observations get the same weight.

R Number of principal components to fit. By default a line is fitted.
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method If"symmetric" (or "bisquare"), Tukey’s biweightisused. If "t ricube™",
the tricube weight is used. If "L1", the model is fitted in L;. If a function,
it is used to calculate weights for next iteration based on the current iteration’s

residuals.
maxIter Maximum number of iterations.
acc The (Euclidean) distance between two subsequent parameters fit for which the

algorithm is considered to have converged.

reps Small value to be added to the residuals before the the weights are calculated
based on their inverse. This is to avoid infinite weights.

£it0 A list containing elements vt and pc specifying an initial fit. If NULL, the
initial guess will be equal to the (weighted) PCA fit.

Additional arguments accepted by »wpca () .

Details

This method uses weighted principal component analysis (WPCA) to fit a R-dimensional hyper-
plane through the data with initial internal weights all equal. At each iteration the internal weights
are recalculated based on the "residuals". If method=="1L1", the internal weights are 1 / sum(abs(r)
+ reps). This is the same as method=function (r) 1/sum(abs (r)+reps). The "residu-
als" are orthogonal Euclidean distance of the principal components R,R+1,....K. In each iteration
before doing WPCA, the internal weighted are multiplied by the weights given by argument w, if
specified.

Value
Returns the fit (a 11 st) from the last call to *xwpca () with the additional elements nbrOfIterations
and converged.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

Internally »wpca () is used for calculating the weighted PCA.

Examples

for (zzz in 0) {

# This example requires plot3d() in R.basic [http://www.braju.com/R/]

if (!'require(R.basic)) break

# Simulate data from the model y <- a + bx + eps (bx)
x <— rexp(1000)

a <- c(2,15,3)

b <= c(2,3,4)

bx <- outer (b, x)

eps <- apply(bx, MARGIN=2, FUN=function (x) rnorm(length (x), mean=0, sd=0.1xx))
y <- a + bx + eps

y <= t(y)

# Add some outliers by permuting the dimensions for 1/10 of the observations
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idx <- sample(l:nrow(y), size=1/10xnrow(y))
ylidx,] <= y[idx,c(2,3,1)]

# Plot the data with fitted lines at four different view points
opar <- par (mar=c(1,1,1,1)+0.1)
N <- 4
layout (matrix (1:N, nrow=2, byrow=TRUE))
theta <- seqg (0,270, length=N)
phi <- rep (20, length.out=N)
xlim <- ylim <= zlim <- c(0,45);
persp <— list();
for (kk in seqg(theta)) {
# Plot the data
persp[[kk]] <- plot3d(y, theta=thetalkk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)

Weights on the observations

Example a: Equal weights

<- NULL

Example b: More weight on the outliers (uncomment to test)
<- rep(l, length(x)); wl[idx] <- 0.8

S # 5 #

# ...and show all iterations too with different colors.
maxIter <- c(seq(l,20,length=10),Inf)
col <- topo.colors(length (maxIter))
# Show the fitted value for every iteration
for (ii in seg(along=maxIter)) {
# Fit a line using IWPCA through data
fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)

ymid <- fit$xMean

d0 <- apply(y, MARGIN=2, FUN=min) - ymid

dl <- apply(y, MARGIN=2, FUN=max) - ymid

b <- fitsvtI[1,]

y0 <= -b * max (abs(d0))

vyl <= Db * max(abs(dl))

yline <- matrix(c(y0,yl), nrow=length(b), ncol=2)
yline <- yline + ymid

for (kk in seqg(theta)) {
# Set pane to draw in
par (mfg=c ((kk-1) %/% 2, (kk-1) %% 2) + 1);
# Set the viewpoint of the pane
options (persp.matrix=persp[[kk]]);

# Get the first principal component
points3d(t (ymid), col=col[ii])
lines3d(t (yline), col=col[ii])

# Highlight the last one

if (ii == length (maxIter))
lines3d(t (yline), col="red", 1lwd=3)

par (opar)
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} # for (zzz in 0)
rm(zzz)

likelihood.smooth.spline
Calculate the log likelihood of a smoothing spline given the data

Description

Calculate the (log) likelihood of a spline given the data used to fit the spline, g. The likelihood
consists of two main parts: 1) (weighted) residuals sum of squares, and 2) a penalty term. The
penalty term consists of a smoothing parameter lambda and a roughness measure of the spline
J(g) = [ ¢"(t)dt. Hence, the overall log likelihood is

log L(glz) = (y — g(x)) W (y — g(x)) + AJ(g)

In addition to the overall likelihood, all its seperate components are also returned.

Note: when fitting a smooth spline with (x, y) values where the s are nof unique, smooth.spline
will replace such (z,y)’s with a new pair (x,y’) where y’ is a reweighted average on the original
y’s. It is important to be aware of this. In such cases, the resulting smooth.spline object does
not contain all (x,y)’s and therefore this function will not calculate the weighted residuals sum of
square on the original data set, but on the data set with unique z’s. See examples below how to
calculate the likelihood for the spline with the original data.

Usage

## S3 method for class 'smooth.spline':
likelihood (object, x=NULL, y=NULL, w=NULL, base=exp(l), rel.tol=.MachineS$double.

Arguments

object The smooth.spline object.

X, Yy The x and y values for which the (weighted) likelihood will be calculated. If x
is of type xy . coords any value of argument y will be omitted. If x==NULL,
the x and y values of the smoothing spline will be used.

w The weights for which the (weighted) likelihood will be calculated. If NULL,
weights equal to one are assumed.

base The base of the logarithm of the likelihood. If NULL, the non-logged likelihood
is returned.

rel.tol The relative tolerance used in the call to integrate.

Not used.
Details

The roughness penalty for the smoothing spline, g, fitted from data in the interval [a, b] is defined
as

b
J(g) = / o (1)t

which is the same as
J(g)=9g'(b) — g'(a)
The latter is calculated internally by using predict .smooth.spline.
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Value

Returns the overall (log) likelihood of class SmoothSplineLikelihood, a class with the fol-
lowing attributes:

WLSS the (weighted) residual sum of square

penalty the penalty which is equal to —1lambda*roughness.

lambda the smoothing parameter

roughness the value of the roughness functional given the specific smoothing spline and

the range of data

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

smooth.spline and robustSmoothSpline().

Examples

# Define f(x)
f <- expression(0.1xx"4 + 1%x"3 + 2%xx"2 + x + 10%sin(2*x))

Simulate data from this function in the range [a,Db]
<- =2; b <=5

<- seqg(a, b, length=3000)

<- eval (f)

OOX OO

ETS

Add some noise to the data
y <-= y + rnorm(length(y), 0, 10)

# Plot the function and its second derivative
plot (x,y, type="1", lwd=4)

# Fit a cubic smoothing spline and plot it
g <- smooth.spline(x,y, df=16)
lines (g, col="yellow", lwd=2, 1lty=2)

# Calculating the (log) likelihood of the fitted spline
1 <- likelihood(g)

cat ("Log likelihood with unique x values:\n")
print (1)

# Note that this is not the same as the log likelihood of the
# data on the fitted spline iff the x values are non-unique
x[1:5] <= x[1] # Non-unique x values

g <- smooth.spline(x,y, df=16)

1 <= likelihood(g)

cat ("\nLog likelihood of the *splinex data set:\n");
print (1)

# In cases with non unique x values one has to proceed as
# below if one want to get the log likelihood for the original
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# data.

1 <- likelihood(g, x=x, y=y)

cat ("\nLog likelihood of the *originalx data set:\n");
print (1)

medianPolish.matrix
Median polish

Description
Median polish.
Usage
## S3 method for class 'matrix':
medianPolish (X, tol=0.01, maxIter=10, na.rm=NA, ..., .addExtra=TRUE)
Arguments
X N-times-K mat rix
tol A numeric value greater than zero used as a threshold to identify when the
algorithm has converged.
maxIter Maximum number of iterations.
na.rm If TRUE (FALSE), NAs are exclude (not exclude). If NA, it is assumed that X
contains no NA values.
.addExtra If TRUE, the name of argument X is returned and the returned structure is as-
signed a class. This will make the result compatible what medpolish returns.
Not used.
Details

The implementation of this method give identical estimates as medpoli sh, but is about 3-5 times
more efficient when there are no NA values.

Value

Returns a named 1ist structure with elements:

overall The fitted constant term.
row The fitted row effect.
col The fitted column effect.
residuals The residuals.

converged If TRUE, the algorithm converged, otherwise not.
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Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

medpolish.

Examples

# Deaths from sport parachuting; from ABC of EDA, p.224:

deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
rownames (deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")

colnames (deaths) <— 1973:1975

print (deaths)
mp <- medianPolish (deaths)
mpl <- medpolish(deaths, trace=FALSE)

print (mp)

ff <- c¢("overall", "row", "col", "residuals")
stopifnot (all.equal (mp[ff], mpl[ff]))

# Validate decomposition:
stopifnot (all.equal (deaths, mpS$Soverall+outer (mpSrow,mp$col, "+")+mpSresid))

normalizeAffine.matrix
Weighted affine normalization between channels and arrays

Description

Weighted affine normalization between channels and arrays.

This method will both remove curvature in the M vs A plots that are due to an affine transformation
of the data. In other words, if there are (small or large) biases in the different (red or green) channels,
biases that can be equal too, you will get curvature in the M vs A plots and this type of curvature
will be removed by this normalization method.

Moreover, if you normalize all slides at once, this method will also bring the signals on the same
scale such that the log-ratios for different slides are comparable. Thus, do not normalize the scale
of the log-ratios between slides afterward.

It is recommended to normalize as many slides as possible in one run. The result is that if creating
log-ratios between any channels and any slides, they will contain as little curvature as possible.

Furthermore, since the relative scale between any two channels on any two slides will be one if one
normalizes all slides (and channels) at once it is possible to add or multiply with the same constant
to all channels/arrays without introducing curvature. Thus, it is easy to rescale the data afterwards
as demonstrated in the example.

Usage

## S3 method for class 'matrix':
normalizeAffine (X, weights=NULL, typeOfWeights=c("datapoint"), method="L1", cons
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Arguments
X An NxK matrix (K>=2) where the columns represent the channels, to be nor-
malized.
weights If NULL, non-weighted normalization is done. If data-point weights are used,

this should be a vect or of length N of data point weights used when estimating
the normalization function.

typeOfWeights
A character string specifying the type of weights given in argument weights.

method A character string specifying how the estimates are robustified. See iwpca()
for all accepted values.

constraint Constraint making the bias parameters identifiable. See *fit IWPCA () for
more details.

satSignal Signals equal to or above this threshold will not be used in the fitting.

Other arguments passed to » it IWPCA () and in turn iwpca(). For example,
the weight argument of iwpca(). See also below.

.fitOnly If TRUE, the data will not be back-transform.

Details

A line is fitted robustly throught the (yg, yo) observations using an iterated re-weighted principal
component analysis IWPCA), which minimized the residuals that are orthogonal to the fitted line.

Each observation is down-weighted by the inverse of the absolute residuals, i.e. the fit is done in
L.

Value

A NxK mat rix of the normalized channels. The fitted model is returned as attribute modelFit.

Negative, non-positive, and saturated values

Affine normalization applies equally well to negative values. Thus, contrary to normalization meth-
ods applied to log-ratios, such as curve-fit normalization methods, affine normalization, will not set
these to NA.

Data points that are saturated in one or more channels are not used to estimate the normalization
function, but they are normalized.

Missing values

The estimation of the affine normalization function will only be made based on complete non-
saturated observations, i.e. observations that contains no NA values nor saturated values as defined
by satSignal.

Weighted normalization

Each data point/observation, that is, each row in X, which is a vector of length K, can be assigned a
weight in [0,1] specifying how much it should affect the fitting of the affine normalization function.
Weights are given by argument weights, which should be a numeric vector of length N.
Regardless of weights, all data points are normalized based on the fitted normalization function.
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Robustness

By default, the model fit of affine normalization is done in L; (method="L1"). This way, outliers
affect the parameter estimates less than ordinary least-square methods.
For further robustness, downweight outliers such as saturated signals, if possible.

We do not use Tukey’s biweight function for reasons similar to those outlinedin xcalibrateMultiscan ().

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

References

[1] Henrik Bengtsson and Ola Hossjer, Methodological Study of Affine Transformations of Gene
Expression Data, Methodological study of affine transformations of gene expression data with pro-
posed robust non-parametric multi-dimensional normalization method, BMC Bioinformatics, 2006,
7:100.

See Also

*calibrateMultiscan ().

Examples

pathname <- system.file ("data-ex", "PMT-RGData.dat", package="aroma.light")
rg <- read.table (pathname, header=TRUE, sep="\t")
nbrOfScans <- max(rg$slide)

rg <- as.list(rg)
for (field in c("R", "G"))
rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
rg$slide <- rg$spot <- NULL
rg <- as.matrix(as.data.frame(rg))
colnames (rg) <- rep(c("R", "G"), each=nbrOfScans)

layout (matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
rgC <- rg
for (channel in c("R", "G")) {

sidx <- which (colnames (rg) == channel)
channelColor <- switch(channel, R="red", G="green");

plotMvsAPairs (rg[,sidx])
title (main=paste ("Observed", channel))
box (col=channelColor)

rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)

plotMvsAPairs (rgCl[,sidx])
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title (main=paste ("Calibrated", channel))
box (col=channelColor)
} # for (channel ...)

ETS

The average calibrated data

Note how the red signals are weaker than the green. The reason
for this can be that the scale factor in the green channel is
greater than in the red channel, but it can also be that there
is a remaining relative difference in bias between the green
and the red channel, a bias that precedes the scanning.

EEE

4=

rgCA <- rg

for (channel in c("R", "G")) {
sidx <- which (colnames (rg) == channel)
rgCA[,sidx] <- calibrateMultiscan (rg[,sidx])

rgCAavg <- matrix (NA, nrow=nrow (rgCA), ncol=2)
colnames (rgCAavg) <- c("R", "G");
for (channel in c("R", "G")) {
sidx <- which(colnames (rg) == channel)
rgCAavg|[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE);

# Add some "fake" outliers
outliers <- 1:600
rgCRAavg[outliers,"G"] <- 50000;

plotMvsA (rgCAavg)
title (main="Average calibrated (AC)")

# Weight-down outliers when normalizing
weights <- rep(l, nrow(rgCAavg));
weights[outliers] <- 0.001;

# Affine normalization of channels

rgCANa <- normalizeAffine (rgCAavg, weights=weights)

# It is always ok to rescale the affine normalized data if its
# done on (R,G); not on (A,M)! However, this is only needed for
# esthetic purposes.

rgCANa <- rgCANa =*2"1.4

plotMvsA (rgCANa)

title (main="Normalized AC")

# Curve-fit (lowess) normalization
rgCANlw <- normalizeLowess (rgCAavg, weights=weights)
plotMvsA (rgCANlw, col="orange", add=TRUE)

# Curve-fit (loess) normalization
rgCAN1l <- normalizeloess (rgCAavg, weights=weights)
plotMvsA (rgCANl, col="red", add=TRUE)
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# Curve-fit (robust spline) normalization
rgCANrs <- normalizeRobustSpline (rgCAavg, weights=weights)
plotMvsA (rgCANrs, col="blue", add=TRUE)

legend (x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")

plotMvsMPairs (cbind (rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
title (main="Normalized AC")
plotMvsMPairs (cbind (rgCANa, rgCANl), col="red", add=TRUE)
plotMvsMPairs (cbind (rgCANa, rgCANrs), col="blue", add=TRUE)
abline (a=0, b=1, 1lty=2)
legend (x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,

col=c ("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")

normalizeAverage.matrix
Rescales channel vectors to get the same average

Description

Rescales channel vectors to get the same average.

Usage

## S3 method for class 'matrix':

normalizeAverage (x, baseline=1, avg=median, targetAvg=2200, ...)
Arguments

be A numeric NxXKmatrix (or 1ist of length K).

baseline An integer in [1,K] specifying which channel should be the baseline.

avg A function for calculating the average of one channel.

targetAvg The average that each channel should have afterwards. If NULL, the baseline

column sets the target average.

... Additional arguments passed to the avg function.

Value

Returns a normalized numeric NxK matrix (or 1ist of length K).

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)
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normalizeCurveFit .matrix
Weighted curve-fit normalization between a pair of channels

Description

Weighted curve-fit normalization between a pair of channels.

This method will estimate a smooth function of the dependency between the log-ratios and the
log-intensity of the two channels and then correct the log-ratios (only) in order to remove the de-
pendency. This is method is also known as intensity-dependent or lowess normalization.

The curve-fit methods are by nature limited to paired-channel data. There exist at least one method
trying to overcome this limitation, namely the cyclic-lowess [1], which applies the paired curve-fit
method iteratively over all pairs of channels/arrays. Cyclic-lowess is not implented here.

We recommend that affine normalization [2] is used instead of curve-fit normalization.

Usage

## S3 method for class 'matrix':
normalizeCurveFit (X, weights=NULL, typeOfWeights=c("datapoint"), method=c ("loess

Arguments
X An Nx2 matrix where the columns represent the two channels to be normal-
ized.
weights If NULL, non-weighted normalization is done. If data-point weights are used,

this should be a vector of length N of data point weights used when estimating
the normalization function.

typeOfWeights
A character string specifying the type of weights given in argument weights.

method character string specifying which method to use when fitting the intensity-
dependent function. Supported methods: "loess" (better than lowess), "1lowess"
(classic; supports only zero-one weights), "spline" (more robust than lowess
at lower and upper intensities; supports only zero-one weights), "robustSpline"
(better than spline).

bandwidth A double value specifying the bandwidth of the estimator used.
satSignal Signals equal to or above this threshold will not be used in the fitting.
Not used.
Details

A smooth function ¢(A) is fitted throught data in (A, M), where M = loga(y2/y1) and A =
1/2 x loga(y2 * y1). Data is normalized by M < —M — ¢(A).

Loess is by far the slowest method of the four, then lowess, and then robust spline, which iteratively
calls the spline method.

Value

A Nx2 mat rix of the normalized two channels. The fitted model is returned as attribute mode1Fit.
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Negative, non-positive, and saturated values

Non-positive values are set to not-a-number (NaN). Data points that are saturated in one or more
channels are not used to estimate the normalization function, but they are normalized.

Missing values

The estimation of the affine normalization function will only be made based on complete non-
saturated observations, i.e. observations that contains no NA values nor saturated values as defined
by satSignal.

Weighted normalization

Each data point, that is, each row in X, which is a vector of length 2, can be assigned a weight in
[0,1] specifying how much it should affect the fitting of the affine normalization function. Weights
are given by argument weights, which should be a numeric vector of length N. Regardless
of weights, all data points are normalized based on the fitted normalization function.

Note that the lowess and the spline method only support zero-one {0,1} weights. For such methods,
all weights that are less than a half are set to zero.

Details on loess

For 1oess, the arguments family="symmetric", degree=1, span=3/4,control=1loess.control (trac
iterations=5, surface="direct") are used.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

References

[1]1M. Astrand, Contrast Normalization of Oligonucleotide Arrays, Journal Computational Biology,
2003, 10, 95-102.

[2] Henrik Bengtsson and Ola Hossjer, Methodological Study of Affine Transformations of Gene
Expression Data, Methodological study of affine transformations of gene expression data with pro-
posed robust non-parametric multi-dimensional normalization method, BMC Bioinformatics, 2006,
7:100.

See Also

*normalizeAffine ().

Examples

pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
rg <- read.table (pathname, header=TRUE, sep="\t")
nbrOfScans <- max (rg$slide)

rg <- as.list (rg)
for (field in c("R", "G"))
rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
rg$slide <- rg$spot <- NULL
rg <- as.matrix(as.data.frame (rqg))
colnames (rg) <- rep(c("R", "G"), each=nbrOfScans)
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layout (matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))

rgC <- rg
for (channel in c("R", "G")) {
sidx <- which(colnames (rg) == channel)

channelColor <- switch (channel, R="red", G="green");

plotMvsAPairs (rgl[, sidx])
title (main=paste ("Observed", channel))
box (col=channelColor)

rgC[,sidx] <- calibrateMultiscan(rgl[,sidx], average=NULL)

plotMvsAPairs (rgCl[, sidx])
title (main=paste ("Calibrated", channel))
box (col=channelColor)

} # for (channel ...)

The average calibrated data

#

#

# Note how the red signals are weaker than the green. The reason
# for this can be that the scale factor in the green channel is
# greater than in the red channel, but it can also be that there
# is a remaining relative difference in bias between the green

# and the red channel, a bias that precedes the scanning.

rgCA <- rg

for (channel in c("R", "G")) {
sidx <- which (colnames (rg) == channel)
rgCA[,sidx] <- calibrateMultiscan (rg[,sidx])

rgCAavg <- matrix (NA, nrow=nrow (rgCA), ncol=2)
colnames (rgCAavg) <- c("R", "G");
for (channel in c("R", "G")) {
sidx <- which(colnames (rg) == channel)
rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE);

# Add some "fake" outliers
outliers <- 1:600
rgCRAavg[outliers,"G"] <- 50000;

plotMvsA (rgCAavg)
title (main="Average calibrated (AC)")

# Normalize data
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# Weight-down outliers when normalizing
weights <- rep(l, nrow(rgCAavg));
weights[outliers] <- 0.001;

# Affine normalization of channels

rgCANa <- normalizeAffine (rgCAavg, weights=weights)

# It is always ok to rescale the affine normalized data if its
# done on (R,G); not on (A,M)! However, this is only needed for
# esthetic purposes.

rgCANa <- rgCANa =*2"1.4

plotMvsA (rgCANa)

title (main="Normalized AC")

# Curve—-fit (lowess) normalization
rgCANlw <- normalizeLowess (rgCAavg, weights=weights)
plotMvsA (rgCANlw, col="orange", add=TRUE)

# Curve—-fit (loess) normalization
rgCANl <- normalizelLoess (rgCAavg, weights=weights)
plotMvsA (rgCAN1l, col="red", add=TRUE)

# Curve-fit (robust spline) normalization
rgCANrs <- normalizeRobustSpline (rgCAavg, weights=weights)
plotMvsA (rgCANrs, col="blue", add=TRUE)

legend (x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")

plotMvsMPairs (cbind (rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
title (main="Normalized AC")
plotMvsMPairs (cbind (rgCANa, rgCANl), col="red", add=TRUE)
plotMvsMPairs (cbind (rgCANa, rgCANrs), col="blue", add=TRUE)
abline (a=0, b=1, 1lty=2)
legend (x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,

col=c ("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")

normalizeDifferencesToAverage.list
Rescales channel vectors to get the same average

Description

Rescales channel vectors to get the same average.

Usage

## S3 method for class 'list':
normalizeDifferencesToAverage (x, baseline=1, FUN=median, ...)
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Arguments
X A numeric list of length K.
baseline An integer in [1,K] specifying which channel should be the baseline. The
baseline channel will be almost unchanged. If NULL, the channels will be shifted
towards median of them all.
FUN A function for calculating the average of one channel.
... Additional arguments passed to the avg function.
Value

Returns a normalized 11ist of length K.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

Examples

# Simulate three shifted tracks of different lengths with same profiles

ns <- c(A=2, B=1, C=0.25)%x1000;

xx <- lapply(ns, FUN=function(n) { seqg(from=1l, to=max(ns), length.out=n) });
zz <- mapply(seg(along=ns), ns, FUN=function(z,n) rep(z,n));

yy <— list(
A = rnorm(ns["A"], mean=0, sd=0.5),
B = rnorm(ns["B"], mean=5, sd=0.4),
C = rnorm(ns["C"], mean=-5, sd=1.1)

)i

vy <- lapply(yy, FUN=function(y) {
n <- length(y);
yv[1l:(n/2)] <= y[l:(n/2)] + 2;
y[1l:(n/4)] <= y[1l:(n/4)] - 4;
Yi

1)

# Shift all tracks toward the first track
yyN <- normalizeDifferencesToAverage (yy, baseline=1l);

# The baseline channel is not changed
stopifnot (identical (yy[[11], yyN[[111));

# Get the estimated parameters
fit <- attr(yyN, "fit");

# Plot the tracks

layout (matrix(1:2, ncol=1l));

x <— unlist (xx);

col <— unlist(zz);

y <- unlist(yy);

yN <- unlist (yyN);

plot(x, y, col=col, ylim=c(-10,10));
plot (x, yN, col=col, ylim=c(-10,10));
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normalizeFragmentLength
Normalizes signals for PCR fragment-length effects

Description

Normalizes signals for PCR fragment-length effects. Some or all signals are used to estimated the
normalization function. All signals are normalized.

Usage

## Default S3 method:
normalizeFragmentLength(y, fragmentLengths, targetFcns=NULL, subsetToFit=NULL, cC

Arguments
y A numeric vector of length K of signals to be normalized across E enzymes.
fragmentLengths

An integer KxE matrix of fragment lengths.

targetFcns An optional 1ist of E functions; one per enzyme. If NULL, the data is
normalized to have constant fragment-length effects (all equal to zero on the
log-scale).

subsetToFit The subset of data points used to fit the normalization function. If NULL, all
data points are considered.

onMissing Specifies how data points for which there is no fragment length is normalized. If
"ignore™", the values are not modified. If "median™, the values are updated
to have the same robust average as the other data points.

.isLogged A logical.
Additional arguments passed to lowess.

.returnFit A logical.

Value

Returns a numeric vector of the normalized signals.

Multi-enzyme normalization

It is assumed that the fragment-length effects from multiple enzymes added (with equal weights)
on the intensity scale. The fragment-length effects are fitted for each enzyme separately based on
units that are exclusively for that enzyme. If there are no or very such units for an enzyme, the
assumptions of the model are not met and the fit will fail with an error. Then, from the above single-
enzyme fits the average effect across enzymes is the calculated for each unit that is on multiple
enzymes.
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Target functions

It is possible to specify custom target function effects for each enzyme via argument targetFcns.
This argument has to be a 1ist containing one function per enzyme and ordered in the same
order as the enzyme are in the columns of argument fragmentLengths. For instance, if one
wish to normalize the signals such that their mean signal as a function of fragment length effect is

contantly equal to 2200 (or the intensity scale), the use targetFcns=function (f1, ...)
1log2 (2200) which completely ignores fragment-length argument *fI° and always returns a con-
stant. If two enzymes are used, then use targetFcns=rep (list (function (fl, ...)

log2(2200)), 2).

Note, if targetFcns is NULL, this corresponds to targetFecns=rep (1ist (function (f1,
) 0), ncol (fragmentLengths)).

Alternatively, if one wants to only apply minimial corrections to the signals, then one can normalize
toward target functions that correspond to the fragment-length effect of the average array.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

References

[1] H. Bengtsson, R. Irizarry, B. Carvalho, and T. Speed, Estimation and assessment of raw copy
numbers at the single locus level, Bioinformatics, 2008.

Examples

# Example 1: Single-enzyme fragment-length normalization of 6 arrays

# Number samples
I <= 9;

# Number of loci
J <-= 1000;

# Fragment lengths
fl <- seq(from=100, to=1000, length.out=J);

# Simulate data points with unknown fragment lengths
hasUnknownFL <- seq(from=1, to=J, by=50);
fl[hasUnknownFL] <- NA;

# Simulate data
y <- matrix (0, nrow=J, ncol=I);
max¥Y <- 12;
for (kk in 1:I) {
k <= runif(n=1, min=3, max=5);
mu <- function (fl) {
mu <- rep (maxY¥, length(fl));

ok <= lis.na(fl);
mul[ok] <— mul[ok] - fl[ok]"{1/k};
mu;

}

eps <- rnorm(J, mean=0, sd=1l);
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vi,kk] <= mu(fl) + eps;

# Normalize data (to a zero baseline)
yN <- apply(y, MARGIN=2, FUN=function(y) {
normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median");

})

# The correction factors

rho <- y-yN;

print (summary (rho)) ;

# The correction for units with unknown fragment lengths
# equals the median correction factor of all other units
print (summary (rho[hasUnknownFL, 1)) ;

# Plot raw data

layout (matrix(1:9, ncol=3));

xlim <- ¢ (0,max (fl, na.rm=TRUE));

ylim <- c(0,max(y, na.rm=TRUE));

xlab <- "Fragment length";

ylab <- expression(log2 (theta));

for (kk in 1:I) {
plot (fl, vyI[,kk], xlim=x1lim, ylim=ylim, xlab=xlab, ylab=ylab);
ok <- (is.finite(fl) & is.finite(yl[,kkl]));
lines (lowess (fl[ok], ylok,kk]), col="red", lwd=2);

# Plot normalized data

layout (matrix (1:9, ncol=3));

ylim <- c(-1,1)*max(y, na.rm=TRUE)/2;

for (kk in 1:I) {
plot (f1, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab);
ok <-= (is.finite(fl) & is.finite(y[,kk]));
lines (lowess (fl[ok], yN[ok,kk]), col="blue", lwd=2);

# Example 2: Two-enzyme fragment-length normalization of 6 arrays
set.seed (0xbeef) ;

# Number samples
I <-5;

# Number of loci
J <- 3000;

# Fragment lengths (two enzymes)
fl <- matrix (0, nrow=J, ncol=2);
f1[,1] <- seq(from=100, to=1000, length.out=J);
f1[,2] <= seq(from=1000, to=100, length.out=J);

# Let 1/2 of the units be on both enzymes
fl[seq(from=1, to=J, by=4),1] <- NA;
fl[seg(from=2, to=J, by=4),2] <- NA;
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# Let some have unknown fragment lengths
hasUnknownFL <- seq(from=1, to=J, by=15);
fl[hasUnknownFL,] <- NA;

# Sty/Nsp mixing proportions:

rho <- rep(l, I);

rho[l] <- 1/3; # Less Sty in 1st sample
rho[3] <- 3/2; # More Sty in 3rd sample

# Simulate data
z <- array (0, dim=c(J,2,I1));
maxLog2Theta <- 12;
for (ii in 1:I) {
# Common effect for both enzymes
mu <- function (fl) {
k <= runif(n=1, min=3, max=5);
mu <- rep (maxLog2Theta, length(fl));
ok <- is.finite (fl);
mul[ok] <- mul[ok] - fl[ok]”*{1l/k};
mu;

# Calculate the effect for each data point
for (ee in 1:2) {
z[,ee,1i] <- mu(fl[,eel);

# Update the Sty/Nsp mixing proportions
ee <- 2;
z[,ee,ii] <- rhol[ii]lxz[,ee,1i];

# Add random errors
for (ee in 1:2) {

eps <- rnorm(J, mean=0, sd=1/sqrt(2));
z[,ee,11] <= z[,ee,ii] + eps;

hasFl <- is.finite(fl);

unitSets <- list(

nsp = which( hasF1l[,1] & 'hasF1l[,2]),
sty = which('hasF1l[,1] & hasF1l[,2]),
both = which( hasF1[,1] & hasFl[,2]),
none = which('hasF1l[,1] & 'hasF1l[,2])

# The observed data is a mix of two enzymes
theta <- matrix (NA, nrow=J, ncol=I);

# Single-enzyme units

for (ee in 1:2) {
uu <- unitSets|[[ee]];
thetaluu,] <- 2”z[uu,ee,];

41
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# Both-enzyme units (sum on intensity scale)
uu <— unitSets$both;
thetaluu,] <- (2"z[uu,1,1+2%z[uu,2,1)/2;

# Missing units (sample from the others)
uu <— unitSets$none;
thetafuu,] <- apply(theta, MARGIN=2, sample, size=length (uu))

# Calculate target array
thetaT <- rowMeans (theta, na.rm=TRUE) ;
targetFcns <- list();
for (ee in 1:2) {
uu <- unitSets|[[ee]];
fit <- lowess (fl[uu,ee], log2(thetaT[uul));
class (fit) <- "lowess";
targetFcns|[[ee]] <- function(fl, ...) {
predict (fit, newdata=fl);

# Fit model only to a subset of the data
subsetToFit <- setdiff(l1:J, seqg(from=1l, to=J, by=10))

# Normalize data (to a target baseline)
thetaN <- matrix (NA, nrow=J, ncol=I);
fits <- vector("list", I);
for (ii in 1:I) {
lthetaNi <- normalizeFragmentLength(log2 (thetal,ii]), targetFcns=targetFcns,
fragmentLengths=fl, onMissing="median",
subsetToFit=subsetToFit, .returnFit=TRUE);
fits[[ii]] <- attr(lthetaNi, "modelFit");
thetaN[,1i] <- 2"1lthetaNi;

# Plot raw data

xlim <- ¢ (0, max(fl, na.rm=TRUE));

ylim <- c (0, max(log2(theta), na.rm=TRUE));
Mlim <- c(-1,1)*4;

xlab <- "Fragment length";

ylab <- expression(log2(theta));

Mlab <- expression (M==log[2] (theta/theta[R]));

layout (matrix (1l: (3xI), ncol=I, byrow=TRUE));
for (ii in 1:I) {
plot (NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw");

# Single—enzyme units
for (ee in 1:2) {
# The raw data
uu <— unitSets|[[eel];
points (fl[uu,ee], log2(thetaluu,ii]), col=ee+l);

# Both-enzyme units (use fragment-length for enzyme #1)
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<— unitSets$both;
ints(fl[uu,1l], log2(thetaluu,iil]), col=3+1);

r (ee in 1:2) {

# The true effects

uu <— unitSets[[eel];

lines (lowess (fl[uu,ee], log2(thetaluu,ii])), col="black", lwd=4, 1lty=3);

# The estimated effects
fit <- fits[[ii]][[ee]l]lSfit;
lines (fit, col="orange", 1lwd=3);

muT <- targetFcns[[ee]] (fl[uu,ee]);
lines (fl[uu,ee], muT, col="cyan", lwd=1l);

lculate log-ratios
aR <- rowMeans (thetaN, na.rm=TRUE) ;
log2 (thetaN/thetaR);

ot normalized data

(i1 in 1:I) {

ot (NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized");
Single-enzyme units

r (ee in 1:2) {

# The normalized data

uu <—- unitSets|[[ee]];

points (fl[uu,ee], M[uu,ii], col=ee+tl);

Both-enzyme units (use fragment-length for enzyme #1)
<— unitSetsS$both;
ints(fl[uu,1], M[uu,ii], col=3+1);

<= c¢(0,1.5);

(ii in 1:I) |
ta <— list();

r (ee in 1:2) {

# The normalized data
uu <- unitSets|[ee]];
data[[ee]] <- M[uu,i1i];

<—- unitSetsS$both;
(length (uu) > 0)
data[[3]] <- M[uu,ii];

<— unitSetsS$none;
(length (uu) > 0)
data[[4]] <- M[uu,ii];

1ls <- seg(along=data)+1;
otDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized");

line (v=0, 1lty=2);
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normalizeQuantileRank.list

Normalizes the empirical distribution of a set of samples to a target
distribution

Description

Normalizes the empirical distribution of a set of samples to a target distribution. The samples may
differ in size.

Usage
## S3 method for class 'list':
normalizeQuantileRank (X, xTarget=NULL, ...)
Arguments
X a list with numeric vectors. The vectors may be of different lengths.
xTarget The target empirical distribution. If NULL, the target distribution is calculated

as the average empirical distribution of the samples.

Passed to normalizeQuantileRank.numeric().

Value

Returns a 1ist of normalized numeric vector of the same lengths as the corresponding ones
in the input matrix.

Missing values

Missing values are excluded. Values that are NA remain NA after normalization. No new NAs are
introduced.

Author(s)

Adopted from Gordon Smyth (http://www.statsci.org/)in 2002 \& 2006. Original code
by Ben Bolstad at Statistics Department, University of California.

See Also

The target empirical distribution is calculated as the average using raverageQuantile (). Each
vector is normalized toward this target disribution using normalizeQuantileRank.numeric().
*normalizeQuantileSpline ().
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Examples
# Simulate ten samples of different lengths
N <- 10000
X <= list ()
for (kk in 1:8) {
rfcn <- list (rnorm, rgamma) [[sample (2, size=1)]]

size <- runif(l, min=0.3, max=1)
a <- rgamma (1, shape=20, rate=10)
b <- rgamma (1, shape=10, rate=10)
values <- rfcn(size*N, a, b)

# "Censor" values

values[values < 0 values > 8] <—- NA

X[[kk]] <= values

# Add 20% missing values

X <= lapply (X, FUN=function (x) {
x [sample (length (x), size=0.20xlength(x))] <- NA;
X

})

# Normalize quantiles
Xn <- normalizeQuantile (X)

# Plot the data

layout (matrix (1:2, ncol=1l))

x1lim <- range (X, na.rm=TRUE);

plotDensity (X, lwd=2, xlim=xlim, main="The original distributions")
plotDensity (Xn, lwd=2, xlim=xlim, main="The normalized distributions")

normalizeQuantileRank.matrix
Weighted sample quantile normalization

Description

Normalizes channels so they all have the same average sample distributions.

The average sample distribution is calculated either robustly or not by utilizing either weightedMedian ()
or weighted.mean (). A weighted method is used if any of the weights are different from one.

Usage

## S3 method for class 'matrix':
normalizeQuantileRank (X, ties=FALSE, robust=FALSE, weights=NULL, typeOfWeights=c

Arguments
X a numerical NxK matrix with the K columns representing the channels and
the N rows representing the data points.
robust If TRUE, the (weighted) median function is used for calculating the average

sample distribution, otherwise the (weighted) mean function is used.
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ties Should ties be specially treated or not?

weights If NULL, non-weighted normalization is done. If channel weights, this should
be a vector of length K specifying the weights for each channel. If signal
weights, it should be an NxK mat rix specifying the weights for each signal.
typeOfWeights
A character string specifying the type of weights given in argument weights.

Not used.

Value

Returns an NxK matrix.

Missing values

Missing values are excluded when estimating the "common" (the baseline) distribution. Values that
are NA before remain NA. No new NAs are introduced.

Weights

Currently only channel weights are support due to the way quantile normalization is done. If signal
weights are given, channel weights are calculated from these by taking the mean of the signal
weights in each channel.

Author(s)

Adopted from Gordon Smyth (http://www.statsci.org/)in 2002 \& 2006. Original code
by Ben Bolstad at Statistics Department, University of California. Support for calculating the
average sample distribution using (weighted) mean or median was added by Henrik Bengtsson
(http://www.braju.com/R/).

See Also

median, weightedMedian(),mean()and weighted.mean. normalizeQuantileSpline ().

Examples

# Simulate three samples with on average 20% missing values
N <- 10000
X <- cbind(rnorm (N, mean=3, sd=1),
rnorm (N, mean=4, sd=2),
rgamma (N, shape=2, rate=1l))
X[sample (3xN, size=0.20%3%N)] <- NA

# Normalize quantiles
Xn <- normalizeQuantile (X)

# Plot the data

layout (matrix (1:2, ncol=1l))

x1lim <- range (X, Xn, na.rm=TRUE);

plotDensity (X, lwd=2, xlim=xlim, main="The three original distributions")
plotDensity (Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
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normalizeQuantileRank.numeric
Normalizes the empirical distribution of a single sample to a target
distribution

Description

Normalizes the empirical distribution of a single sample to a target distribution.

Usage

## S3 method for class 'numeric':
normalizeQuantileRank (x, xTarget, ties=FALSE, ...)

Arguments
x anumeric vector of length N.
xTarget a sorted numeric vector of length M.
ties Should ties in x be treated with care or not? For more details, see "limma:normalizeQuantiles".
Not used.
Value

Returns a numeric vector of length N.

Missing values

It is only the empirical distribution of the non-missing values that is normalized to the target distri-
bution. All NA values remain NA after normalization. No new NAs are introduced.

Author(s)
Adopted from Gordon Smyth (http://www.statsci.org/)in 2002 \& 2006. Original code

by Ben Bolstad at Statistics Department, University of California.

See Also

To calculate a target distribution from a set of samples, see averageQuantile.list(). This
method isused by normalizeQuantileRank.list(). xnormalizeQuantileSpline ().
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normalizeQuantileSpline.list

Normalizes the empirical distribution of a set of samples to a target
distribution

Description

Normalizes the empirical distribution of a set of samples to a target distribution. The samples may
differ in size.

Usage
## S3 method for class 'list':
normalizeQuantileSpline (X, xTarget=NULL, ...)
Arguments
X a list with numeric vectors. The vectors may be of different lengths.
xTarget The target empirical distribution. If NULL, the target distribution is calculated

as the average empirical distribution of the samples.

Passed to normalizeQuantileSpline.numeric().

Value

Returns a 1ist of normalized numeric vector of the same lengths as the corresponding ones
in the input matrix.

Missing values
Missing values are excluded. Values that are NA remain NA after normalization. No new NAs are
introduced.

Author(s)

Henrik Bengtsson, Statistics Department, University of California at Berkeley.

See Also

The target empirical distribution is calculated as the average using raverageQuantile (). Each
vector is normalized toward this target disribution using normalizeQuantileSpline.numeric().
snormalizeQuantileRank ().
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normalizeQuantileSpline.matrix
Weighted sample quantile normalization

Description

Normalizes channels so they all have the same average sample distributions.

Usage

## S3 method for class 'matrix':
normalizeQuantileSpline (X, xTarget, ...)

Arguments
X A numeric NxK matrix with the K columns representing the channels and
the N rows representing the data points.
xTarget A numeric vector of length N.
Additional arguments passed to normalizeQuantileSpline.numeric().
Value

Returns an NxK matrix.

Missing values
Both argument X and xTarget may contain non-finite values. These values do not affect the
estimation of the normalization function. Non-finite values in X, remain in the output.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

References

[1] H. Bengtsson, R. Irizarry, B. Carvalho, and T. Speed, Estimation and assessment of raw copy
numbers at the single locus level, Bioinformatics, 2008.

See Also

Internally normalizeQuantileSpline.numeric()isused. xnormalizeQuantileRank ().

Examples

# Simulate three samples with on average 20% missing values
N <- 10000
X <= cbind(rnorm (N, mean=3, sd=1),
rnorm (N, mean=4, sd=2),
rgamma (N, shape=2, rate=1l))
X[sample (3xN, size=0.20x3xN)] <- NA
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# Plot the data

layout (matrix(c(1,0,2:5), ncol=2, byrow=TRUE))

xlim <- range (X, na.rm=TRUE);

plotDensity (X, lwd=2, xlim=xlim, main="The three original distributions")

Xn <-— normalizeQuantile (X)
plotDensity (Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
plotXYCurve (X, Xn, xlim=xlim, main="The three normalized distributions")

Xn2 <- normalizeQuantileSpline (X, xTarget=Xnl[,1], spar=0.99)
plotDensity (Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
plotXYCurve (X, Xn2, xlim=xlim, main="The three normalized distributions")

normalizeQuantileSpline.numeric
Normalizes the empirical distribution of a single sample to a target
distribution

Description

Normalizes the empirical distribution of a single sample to a target distribution.

Usage

## S3 method for class 'numeric':

normalizeQuantileSpline(x, w=NULL, xTarget, sortTarget=TRUE, ..., robust=TRUE)
Arguments

X anumeric vector of length V.

w an optional numeric vector of length N of weights.

xTarget anumeric vector of length V.

sortTarget If TRUE, argument xTarget is sorted.

e Arguments passed to (smooth.spline or robustSmoothSpline), e.g.
w for weights.

robust If TRUE, the normalization function is estimated robustly.

Value

Returns a numeric vector of length N.

Missing values

Both argument X and xTarget may contain non-finite values. These values do not affect the
estimation of the normalization function. Non-finite values in X, remain in the output.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)
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References

[1] H. Bengtsson, R. Irizarry, B. Carvalho, and T. Speed, Estimation and assessment of raw copy
numbers at the single locus level, Bioinformatics, 2008.

See Also

Internally either robust SmoothSpline or smooth.splineisused. normalizeQuantileSpline.matrix
snormalizeQuantileRank ().

normalizeTumorBoost .numeric
Normalizes allele B fractions for a tumor given a match normal

Description

TumorBoost [1] is a normalization method that normalizes the allele B fractions of a tumor sample
given the allele B fractions and genotypes of a matched normal. The method is a single-sample
(single-pair) method. It does not require total copy-number estimates. The normalization is done
such that the total copy number is unchanged afterwards.

Usage

## S3 method for class 'numeric':
normalizeTumorBoost (betaT, betaN, muN=callNaiveGenotypes (betaN), flavor=c("v4",

Arguments

betaT, betaN Two numeric vectors each of length J with tumor and normal allele B frac-
tions, respectively.

muN An optional vect or of length J containing normal genotypes calls in (0,1/2,1,NA)
for (AA,AB,BB).

flavor A character string specifying the type of correction applied.

Argument passed to callNaiveGenotypes(), if called.

Details

Allele B fractions are defined as the ratio between the allele B signal and the sum of both (all) allele
signals at the same locus. Allele B fractions are typically within [0,1], but may have a slightly wider
support due to for instance negative noise. This is typically also the case for the returned normalized
allele B fractions.

Value

Returns a numeric vector of length J containing the normalized allele B fractions for the tumor.
Attribute modelFit isa 1ist containing model fit parameters.
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Flavors

This method provides a few different "flavors" for normalizing the data. The following values of
argument flavor are accepted:

* v4: (default) The TumorBoost method, i.e. Eqns. (8)-(9) in [1].

* v3: Eqn (9) in [1] is applied to both heterozygous and homozygous SNPs, which effectly is
v4 where the normalized allele B fractions for homozygous SNPs becomes 0 and 1.

e v2: ...

* v1: TumorBoost where correction factor is force to one, i.e. 17; = 1. As explained in [1], this
is a suboptimal normalization method. See also the discussion in the paragraph following Eqn
(12) in [1].

Author(s)

Henrik Bengtsson and Pierre Neuvial

References

[1] H. Bengtsson, P. Neuvial & T.P. Speed, TumorBoost: Normalization of allele-specific tumor
copy numbers from a single pair of tumor-normal genotyping microarrays, 2010 (revised)

Examples

library(R.utils)

# Load data

pathname <- system.file("data-ex/TumorBoost, fracB,exampleData.Rbin", package="aroma.light
data <- loadObiject (pathname)

attachLocally (data)

pos <- position/leé6

muN <- genotypeN

layout (matrix (1:4, ncol=1l))

par (mar=c(2.5,4,0.5,1)+0.1)

ylim <- c¢(-0.05, 1.05)

col <- rep("#999999", length (muN))
col[muN == 1/2] <— "#000000"

# Allele B fractions for the normal sample
plot (pos, betaN, col=col, ylim=ylim)

# Allele B fractions for the tumor sample
plot (pos, betaT, col=col, ylim=ylim)

# TumorBoost w/ naive genotype calls
betaTN <- normalizeTumorBoost (betaT=betaT, betaN=betal)
plot (pos, betaTN, col=col, ylim=ylim)

# TumorBoost w/ external multi-sample genotype calls
betaTNx <- normalizeTumorBoost (betaT=betaT, betaN=betaN, muN=muN)
plot (pos, betaTNx, col=col, ylim=ylim)
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plotDensity.list Plots density distributions for a set of vector

Description

Plots density distributions for a set of vector.

Usage

## S3 method for class 'list':
plotDensity (X, x1im=NULL, ylim=NULL, xlab=NULL, ylab="density (integrates to one

Arguments

X

x1lim, ylim
xlab,vylab
col
1ty
1lwd

add

Author(s)

Asingleof 1ist of numeric vectors,anumericmatrix,oranumeric
data.frame.

character vector of length 2. The x and y limits.

character string for labels on x and y axis.

The color(s) of the curves.

The types of curves.

The width of curves.

Additional arguments passed to density, plot, and lines.

If TRUE, the curves are plotted in the current plot, otherwise a new is created.

Henrik Bengtsson (http://www.braju.com/R/)

plotMvsA.matrix Plot log-ratios vs log-intensities

Description

Plot log-ratios vs log-intensities.

Usage

## S3 method for class 'matrix':
plotMvsA (X, Alab="A", Mlab="M", Alim=c(0, 16), Mlim=c(-1, 1) % diff(Alim),

Arguments

X
Alab,Mlab
Alim,Mlim
pch

add

Nx2 mat rix with two channels and N observations.
Labels on the x and y axes.

Plot range on the A and M axes.

Plot symbol used.

Additional arguments accepted by points.

If TRUE, data points are plotted in the current plot, otherwise a new plot is
created.

pch="
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Details

Red channel is assumed to be in column one and green in column two. Log-ratio are calculated
taking channel one over channel two.

Value

Returns nothing.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

plotMvsAPairs.matrix
Plot log-ratios/log-intensities for all unique pairs of data vectors

Description

Plot log-ratios/log-intensities for all unique pairs of data vectors.

Usage

## S3 method for class 'matrix':
plotMvsAPairs (X, Alab="A", Mlab="M", Alim=c (0, 16), Mlim=c(-1, 1) » diff(Alim),

Arguments
X NxK matrix where N is the number of observations and K is the number of
channels.
Alab,Mlab Labels on the x and y axes.
Alim,Mlim Plot range on the A and M axes.
pch Plot symbol used.
Additional arguments accepted by points.
add If TRUE, data points are plotted in the current plot, otherwise a new plot is
created.
Details

Log-ratios and log-intensities are calculated for each neighboring pair of channels (columns) and
plotted. Thus, in total there will be K-1 data set plotted.

The colors used for the plotted pairs are 1, 2, and so on. To change the colors, use a different color
palette.

Value

Returns nothing.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)
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plotMvsMPairs.matrix
Plot log-ratios vs log-ratios for all pairs of columns

Description

Plot log-ratios vs log-ratios for all pairs of columns.

Usage

## S3 method for class 'matrix':

plotMvsMPairs (X, xlab="M", ylab="M", xlim=c(-1, 1) % 6, ylim=xlim, pch=".",
Arguments

X Nx2K mat rix where N is the number of observations and 2K is an even num-

ber of channels.

xlab,ylab Labels on the x and y axes.

xlim,ylim Plot range on the x and y axes.
pch Plot symbol used.
Additional arguments accepted by points.
add If TRUE, data points are plotted in the current plot, otherwise a new plot is
created.
Details

Log-ratio are calculated by over paired columns, e.g. column 1 and 2, column 3 and 4, and so on.

Value

Returns nothing.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

plotXYCurve.matrix Plot the relationship between two variables as a smooth curve

Description

Plot the relationship between two variables as a smooth curve.

Usage

## S3 method for class 'matrix':
plotXYCurve (X, Y, col=l:nrow(X), lwd=NULL, x1im=NULL, ylim=xlim, xlab=NULL,

ylak
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Arguments
X, Y
col
1lwd

x1lim,

xlab, ylab

add

Value

ylim

plotXYCurve.numeric

Two numeric NxKmatrix.

A vector of colors to be used for each of columns.

A vector of line widths to be used for each of columns.
The x and y plotting limits.

The x and y labels.

Additional arguments passed to plotXYCurve .numeric().

If TRUE, the graph is added to the current plot, otherwise a new plot is created.

Returns (invisibly) the curve fit.

Missing values

Data points (x,y) with non-finite values are excluded.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

Internally plotXYCurve . numeric() is used.

plotXYCurve.numeric

Plot the relationship between two variables as a smooth curve

Description

Plot the relationship between two variables as a smooth curve.

Usage

## S3 method for class
plotXYCurve (%,

Arguments

X, ¥
1lwd
col
dlwd
dcol

x1lim,

xlab, ylab

ylim

'numeric’':

y, lwd=2, col=1l, dlwd=1l, dcol=NA, x1im=NULL,

Two numeric vector of length N.

The width of the curve.

The color of the curve.

The width of the density curves.

The fill color of the interior of the density curves.
The x and y plotting limits.

The x and y labels.

ylim=xlim,

x1ab=NULL
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curveFit The function used to fit the curve. The two first arguments of the function
must take x and y, and the function must return a 11 st with fitted elements x
and y.
Additional arguments passed to 1ines used to draw the curve.
add If TRUE, the graph is added to the current plot, otherwise a new plot is created.
Value

Returns (invisibly) the curve fit.

Missing values

Data points (x,y) with non-finite values are excluded.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

plotXYCurve.matrix().

robustSmoothSpline Robust fit of a Smoothing Spline

Description

Fits a smoothing spline robustly using the L; norm. Currently, the algorithm is an iterative reweighted
smooth spline algorithm which calls smooth.spline (x,y,w, ...) ateach iteration with the
weights w equal to the inverse of the absolute value of the residuals for the last iteration step.

Usage

## Default S3 method:

robustSmoothSpline (x, y=NULL, w=NULL, ..., minIter=3, maxIter=max (minlter,
Arguments

X a vector giving the values of the predictor variable, or a 1ist or a two-

column matrix specifying x and y. If x is of class smooth.spline then
xS$x is used as the x values and x$yin are used as the y values.

responses. If y is missing, the responses are assumed to be specified by x.

a vector of weights the same length as x giving the weights to use for each
element of x. Default value is equal weight to all values.

Other arguments passed to smooth.spline.

minIter the minimum number of iterations used to fit the smoothing spline robustly.
Default value is 3.

maxIter the maximum number of iterations used to fit the smoothing spline robustly.
Default value is 25.

50),
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sdCriteria Convergence criteria, which the difference between the standard deviation of the
residuals between two consecutive iteration steps. Default value is 2e-4.

reps Small positive number added to residuals to avoid division by zero when calcu-
lating new weights for next iteration.

plotCurves If TRUE, the fitted splines are added to the current plot, otherwise not.

Value

Returns an object of class smooth.spline.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

smooth.spline

Examples

data (cars)
attach (cars)
plot (speed, dist, main = "data (cars) & robust smoothing splines")

# Fit a smoothing spline using L_2 norm
cars.spl <- smooth.spline (speed, dist)
lines(cars.spl, col = "blue")

# Fit a smoothing spline using L_1 norm
cars.rspl <- robustSmoothSpline (speed, dist)
lines(cars.rspl, col = "red")

# Fit a smoothing spline using L_2 norm with 10 degrees of freedom
lines (smooth.spline (speed, dist, df=10), lty=2, col = "blue")

# Fit a smoothing spline using L_1 norm with 10 degrees of freedom
lines (robustSmoothSpline (speed, dist, df=10), lty=2, col = "red")

legend (5,120, c(
paste ("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
paste ("robustSmoothSpline [C.V.] => df =",round(cars.rspl$df,1)),
"standard with s( » , df = 10)", "robust with s( = , df = 10)"
), col = c("blue","red", "blue","red"), lty = c(1,1,2,2), bg='bisque')

sampleCorrelations.matrix
Calculates the correlation for random pairs of observations

Description

Calculates the correlation for random pairs of observations.
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Usage

## S3 method for class 'matrix':
sampleCorrelations (X, MARGIN=1, pairs=NULL, npairs=max (5000, nrow (X)),

Arguments
X An NxK matrix where N >=2 and K >=2.
MARGIN The dimension (1 or 2) in which the observations are. If MARGIN==1 (==2),
each row (column) is an observation.
pairs If a Lx2 mat rix, the L index pairs for which the correlations are calculated. If
NULL, pairs of observations are sampled.
npairs The number of correlations to calculate.
Not used.
Value

Returns a double vector of length npairs.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

References

[1] A. Ploner, L. Miller, P. Hall, J. Bergh & Y. Pawitan. Correlation test to assess low-level pro-
cessing of high-density oligonucleotide microarray data. BMC Bioinformatics, 2005, vol 6.

See Also

sample().

Examples

# Simulate 20000 genes with 10 observations each
X <= matrix (rnorm(n=20000), ncol=10)

# Calculate the correlation for 5000 random gene pairs
cor <- sampleCorrelations (X, npairs=5000)
print (summary (cor))
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sampleTuples Sample tuples of elements from a set

Description

Sample tuples of elements from a set. The elements within a sampled tuple are unique, i.e. no two
elements are the same.

Usage
## Default S3 method:
sampleTuples (x, size, length, ...)
Arguments
x A set of elements to sample from.
size The number of tuples to sample.
length The length of each tuple.

Additional arguments passed to sample().

Value

Returns a NxXK matrix where N=size and K= length.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

sample().

Examples

pairs <- sampleTuples(1:10, size=5, length=2)
print (pairs)

triples <- sampleTuples(1:10, size=5, length=3)
print (triples)

# Allow tuples with repeated elements
quadruples <- sampleTuples(l:3, size=5, length=4, replace=TRUE)
print (quadruples)
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weightedMedian Weighted Median Value

Description

Computes a weighted median of a numeric vector.

Usage

## Default S3 method:
weightedMedian (x, w, na.rm=NA, interpolate=is.null (ties), ties=NULL, method=c ("c

Arguments

X a numeric vector containing the values whose weighted median is to be
computed.

w a vector of weights the same length as x giving the weights to use for each
element of x. Negative weights are treated as zero weights. Default value is
equal weight to all values.

na.rm a logical value indicating whether NA values in x should be stripped before the

computation proceeds, or not. If NA, no check at all for NAs is done. Default
value is NA (for effiency).

interpolate If TRUE, linear interpolation is used to get a consistant estimate of the weighted
median.

ties If interpolate == FALSE, a character string specifying how to solve ties
between two x’s that are satisfying the weighted median criteria. Note that at
most two values can satisfy the criteria. When ties is "min", the smaller
value of the two is returned and when it is "max", the larger value is re-
turned. If ties is "mean", the mean of the two values is returned and if it is
"both", both values are returned. Finally, if tiesis "weighted" (or NULL)
a weighted average of the two are returned, where the weights are weights of all
values x [1] <= x[k]andx[i] >= x[k], respectively.

method If "shell", then order () is used and when method="quick", then in-
ternal gsort () is used.
Not used.
Details
Forthenelementsx = c(x[1], x[2], ..., x[n]) withpositive weightsw = c(w[1],
w[2], ..., w[n]) suchthat sum(w) = S, the weighted median is defined as the element

x [k] for which the total weight of all elements x[1] < x[k] is less or equal to S/2 and for
which the total weight of all elements x [1] > x[k] islessorequalto S/2 (c.f. [1]).

If w is missing then all elements of x are given the same positive weight. If all weights are zero, NA
is returned.

If one or more weights are Inf, it is the same as these weights have the same weight and the others
has zero. This makes things easier for cases where the weights are result of a division with zero. In
this case median () is used internally.

When all the weights are the same (after values with weight zero are excluded and Inf’s are taken
care of), median is used internally.
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The weighted median solves the following optimization problem:
a* = arg, minz Kuwg|z, —
k=1
where x = (21,2, ...,2k) are scalars and w = (wy, wa, . .., wk ) are the corresponding "weights"
for each individual z value.

Value

Returns the weighted median.

Benchmarks

When implementing this function speed has been highly prioritized and it also making use of the
internal quick sort algorithm (from R v1.5.0). The result is that weightedMedian (x) is about
half as slow as median (x). It is hard to say how much since it depends on the data set, but it is
also hard to time it exactly since internal garbage collector etc might mess up the measurements.

Initial test also indicates thatmethod="shel1", which uses order () is slower thanmethod="quick",
which uses internal gsort (). Non-weighted median can use partial sorting which is faster because
all values do not have to be sorted.

See examples below for some simple benchmarking tests.

Author(s)
Henrik Bengtsson and Ola Hossjer, Centre for Mathematical Sciences, Lund University. Thanks to
Roger Koenker, Econometrics, University of Illinois, for the initial ideas.

References
[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, The MIT Press, Mas-
sachusetts Institute of Technology, 1989.

See Also

median, mean() and weighted.mean.

Examples
x <- 1:10
n <- length (x)

ml <- median (x) # 5.5
m2 <- weightedMedian (x) # 5.5
stopifnot (identical (ml, m2))

w <— rep(l, n)

ml <- weightedMedian (x, w) # 5.5 (default)
m2 <- weightedMedian (x, ties="weighted") # 5.5 (default)
m3 <- weightedMedian (x, ties="min") # 5
m4 <- weightedMedian (x, ties="max") # 6

stopifnot (identical (ml,m2))

# Pull the median towards zero
w[l] <= 5
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ml <- weightedMedian (x, w) # 3.5

y <- c(rep(0,w[1]),

m2 <- median(y)
stopifnot (identical (ml,m2))

x[-11) # Only possible for integer weights
# 3.5

# Put even more weight on the zero

wl[l] <-

8.5

weightedMedian (x,

w) # 2

# All weight on the first value

wll] <-

Inf

weightedMedian (x,

w) # 1

# All weight on the last value

w[l] <-
w[n] <-

1
Inf

weightedMedian (x,

w) # 10

# All weights set to zero
w <- rep(ol n)
weightedMedian (x,

w) # NA

# Simple benchmarking
bench <- function (N=1le5, K=10) {

x <— rnorm(N)

t <= c()

gc ()

t[l] <- system.time(for (k in 1:K) median (x)) [3]

gc ()

t[2] <- system.time(for (k in 1:K) weightedMedian (x, method="quick")) [3]
gc ()

t[3] <- system.time (for (k in 1:K) weightedMedian(x, method="shell")) [3]
t <—t / tll]

t[4] <- t[2]/t[3]

names (t) <- c("median", "wMed-quick", "wMed-shell", "quick/shell")

t

print (bench (N=
print (bench (N=100,

5

3,

print (bench (N=1e5,

( (

( (
print (bench (N=1le

( (

( (

print (bench (N=1e6,

K=1000))
K=1000))
K=100))
K=10))
K=1))

wpca.matrix

Light-weight Weighted Principal Component Analysis

Description

Calculates the (weighted) principal components of a matrix, that is, finds a new coordinate system
(not unique) for representing the given multivariate data such that i) all dimensions are orthogonal
to each other, and ii) all dimensions have maximal variances.
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Usage

## S3 method for class 'matrix':
wpca (x, w=NULL, center=TRUE, scale=FALSE, method=c ("dgesdd", "dgesvd",

Arguments

X An NxK matrix.

w An N vector of weights for each row (observation) in the data matrix. If
NULL, all observations get the same weight, that is, standard PCA is used.

center If TRUE, the (weighted) sample mean column vector is subtracted from each
column in mat, first. If data is not centered, the effect will be that a linear
subspace that goes through the origin is fitted.

scale If TRUE, each column in mat is divided by its (weighted) root-mean-square of
the centered column, first.

method If "dgesdd" LAPACK’s divide-and-conquer based SVD routine is used (faster
[1]), if "dgesvd", LAPACK’s QR-decomposition-based routine is used, and
if "dsvdc™", LINPACK’s DSVDC(?) routine is used. The latter is just for pure
backward compatibility with R v1.7.0.

swapDirections
If TRUE, the signs of eigenvectors that have more negative than positive com-
ponents are inverted. The signs of corresponding principal components are also
inverted. This is only of interest when for instance visualizing or comparing
with other PCA estimates from other methods, because the PCA (SVD) decom-
postion of a matrix is not unique.

Not used.

Value

Returns a 11ist with elements:

pc An NxK matrix where the column vectors are the principal components
(a.k.a. loading vectors, spectral loadings or factors etc).
d An K vector containing the eigenvalues of the principal components.
vt An KxK mat rix containing the eigenvector of the principal components.
xMean The center coordinate.
Itholdsthat x == t (t (fit$pc %$x% fit$vt) + fit$xMean).
Method

A singular value decomposition (SVD) is carried out. Let X=mat, then the SVD of the matrix is
X = UDV’, where U and V are othogonal, and D is a diagonal matrix with singular values. The
principal returned by this method are U D.

Internally La.svd () (or svd()) of the base package is used. For a popular and well written
introduction to SVD see for instance [2].

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

"dsvdc"),
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References

[1]J. Demmel and J. Dongarra, DOE2000 Progress Report,2004. http://www.cs.berkeley.
edu/~demmel/DOE2000/Report0100.html

[2] Todd Will, Introduction to the Singular Value Decomposition, UW-La Crosse, 2004. http:
//www.uwlax.edu/faculty/will/svd/

See Also

For a iterative re-weighted PCA method, see *iwpca (). For Singular Value Decomposition,
see svd(). For other implementations of Principal Component Analysis functions see (if they are
installed): prcomp in package stats and pca () in package pcurve.

Examples

for (zzz in 0) {

# This example requires plot3d() in R.basic [http://www.braju.com/R/]
if (!'require(R.basic)) break

<- rexp(1000)
<- c(2,15,3)
<- c(2,3,15)
bx <- outer (b, x)
eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1xx))

#
#
#
# Simulate data from the model y <- a + bx + eps (bx)
X
a
b

y <— a + bx + eps
y <= t(y)

# Add some outliers by permuting the dimensions for 1/3 of the observations
idx <- sample(l:nrow(y), size=1/3%nrow(y))
ylidx,] <= y[idx,c(2,3,1)]

# Down-weight the outliers W times to demonstrate how weights are used
W <= 10

# Plot the data with fitted lines at four different view points
N <- 4

theta <- seqg (0,180, length=N)

phi <- rep (30, length.out=N)

# Use a different color for each set of weights
col <- topo.colors (W)

opar <- par (mar=c(1,1,1,1)+0.1)
layout (matrix (1:N, nrow=2, byrow=TRUE))
for (kk in seqg(theta)) {

# Plot the data

plot3d(y, theta=thetalkk], phi=phi[kk])

# First, same weights for all observations
w <—- rep(l, length=nrow(y))


http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://www.uwlax.edu/faculty/will/svd/
http://www.uwlax.edu/faculty/will/svd/
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for (ww in 1:W) {
# Fit a line using IWPCA through data
fit <- wpca(y, w=w, swapDirections=TRUE)

# Get the first principal component

ymid <- fit$xMean

d0 <- apply(y, MARGIN=2, FUN=min) - ymid

dl <- apply(y, MARGIN=2, FUN=max) - ymid

b <- fit$vt[1,]

y0 <= -b * max (abs(d0))

yl <= Db *x max(abs(dl))

yline <- matrix(c(y0,yl), nrow=length(b), ncol=2)
yline <- yline + ymid

points3d(t (ymid), col=col)
lines3d(t (yline), col=col)

# Down-weight outliers only, because here we know which they are.
wlidx] <- w[idx]/2

# Highlight the last one
lines3d(t (yline), col="red", lwd=3)

par (opar)

} # for (zzz in 0)
rm(zzz)

if (dev.cur() > 1) dev.off ()

# Data
x <- c¢(1,2,3,4,5)
y <- ¢c(2,4,3,3,6)

opar <- par (bty="L")
opalette <- palette(c("blue", "red", "black"))
x1lim <- ylim <- c(0,6)

# Plot the data and the center mass
plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
points (mean(x), mean(y), cex=2, lwd=2, col="blue")

# Linear regression y ~ x
fit <= Im(y ~ x)
abline (fit, 1lty=1, col=1)

# Linear regression y ~ x through without intercept
fit <- Im(y ~ x — 1)
abline (fit, lty=2, col=1l)
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# Linear regression x ~ y

fit <= Im(x ~ vy)

c <— coefficients (fit)

b <= 1/c[2]

a <- -bxc[1]

abline (a=a, b=b, lty=1l, col=2)

# Linear regression x ~ y through without intercept
fit <= Im(x ~ vy - 1)

b <- 1/coefficients (fit)

abline (a=0, b=b, lty=2, col=2)

# Orthogonal linear "regression"
fit <- wpca(cbind(x,vy))

b <— fits$vt([1l,2]/fit$vt[1,1]
a <- fit$xMean[2]-b*xfit$xMean[1]
abline (a=a, b=b, lwd=2, col=3)

# Orthogonal linear "regression" without intercept
fit <- wpca(cbind(x,y), center=FALSE)

b <- fit$vt[1,2]/fit$vt[1,1]

a <- fit$xMean[2]-b*xfit$xMean[1]

abline (a=a, b=b, lty=2, lwd=2, col=3)

legend(x1lim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)",
"Im(x~y-1)", "pca", "pca w/o intercept"), lty=rep(l:2,3),
lwd=rep(c(1l,1,2),each=2), col=rep(l:3,each=2))

palette (opalette)
par (opar)
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