\name{qvalue} \alias{qvalue} \title{Estimate the q-values for a given set of p-values} \description{ Estimate the q-values for a given set of p-values. The q-value of a test measures the proportion of false positives incurred (called the false discovery rate) when that particular test is called significant. } \usage{ qvalue(p=NULL, lambda=seq(0,0.90,0.05), pi0.method="smoother", fdr.level=NULL, robust=FALSE, gui=FALSE, smooth.df=3, smooth.log.pi0=FALSE) } \arguments{ \item{p}{A vector of p-values (only necessary input)} \item{lambda}{The value of the tuning parameter to estimate \eqn{\pi_0}{pi_0}. Must be in [0,1). Optional, see Storey (2002).} \item{pi0.method}{Either "smoother" or "bootstrap"; the method for automatically choosing tuning parameter in the estimation of \eqn{\pi_0}{pi_0}, the proportion of true null hypotheses} \item{fdr.level}{A level at which to control the FDR. Must be in (0,1]. Optional; if this is selected, a vector of TRUE and FALSE is returned that specifies whether each q-value is less than fdr.level or not.} \item{robust}{An indicator of whether it is desired to make the estimate more robust for small p-values and a direct finite sample estimate of pFDR. Optional.} \item{gui}{A flag to indicate to 'qvalue' that it should communicate with the gui. Should not be specified on command line. Optional.} \item{smooth.df}{Number of degrees-of-freedom to use when estimating \eqn{\pi_0}{pi_0} with a smoother. Optional.} \item{smooth.log.pi0}{If TRUE and \texttt{pi0.method} = "smoother", \eqn{\pi_0}{pi_0} will be estimated by applying a smoother to a scatterplot of \textit{log} \eqn{\pi_0}{pi_0} estimates against the tuning parameter \eqn{\lambda}{lambda}. Optional.} } \details{ If no options are selected, then the method used to estimate \eqn{\pi_0}{pi_0} is the smoother method described in Storey and Tibshirani (2003). The bootstrap method is described in Storey, Taylor & Siegmund (2004). } \value{ A list containing: \item{call}{function call} \item{pi0}{an estimate of the proportion of null p-values} \item{qvalues}{a vector of the estimated q-values (the main quantity of interest)} \item{pvalues}{a vector of the original p-values} \item{significant}{if fdr.level is specified, and indicator of whether the q-value fell below fdr.level (taking all such q-values to be significant controls FDR at level fdr.level)} } \references{ Storey JD. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B, 64: 479-498. Storey JD and Tibshirani R. (2003) Statistical significance for genome-wide experiments. Proceedings of the National Academy of Sciences, 100: 9440-9445. Storey JD. (2003) The positive false discovery rate: A Bayesian interpretation and the q-value. Annals of Statistics, 31: 2013-2035. Storey JD, Taylor JE, and Siegmund D. (2004) Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the Royal Statistical Society, Series B, 66: 187-205. QVALUE Manual \url{http://faculty.washington.edu/~jstorey/qvalue/manual.pdf} } \author{John D. Storey \email{jstorey@u.washington.edu}} \seealso{\code{\link{qplot}}, \code{\link{qwrite}}, \code{\link{qsummary}}, \code{\link{qvalue.gui}}} \examples{ \dontrun{ p <- scan("pvalues.txt") qobj <- qvalue(p) qplot(qobj) qwrite(qobj, filename="myresults.txt") qobj <- qvalue(p, lambda=0.5, robust=TRUE) qobj <- qvalue(p, fdr.level=0.05, pi0.method="bootstrap") } } \keyword{misc}