nem

April 19, 2009

BFSlevel

Build (generalized) hierarchy by Breath-First Search

Description

BFSlevel builds a (generalized) hierarchy by Breath-First Search as described in (Yu and Gerstein, 2006)

Usage

BFSlevel(g,verbose=TRUE)

Arguments

g	graphNEL object
verbose	Default: TRUE

Details

Haiyuan Yu and Mark Gerstein: Genomic analysis of the hierarchical structure of regulatory networks, PNAS 103(40):14724-14731, 2006

Value

level vector of levels for each node

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

Examples

bla

BoutrosRNAi2002 RNAi data on Drosophila innate immune response

Description

Data from a study on innate immune response in *Drosophila* (Boutros et al, 2002). Selectively removing signaling components by RNAi blocked induction of all, or only parts, of the transcriptional response to LPS. The nested structure of perturbation effects allows to reconstruct a branching in the Imd pathway.

Usage

```
data(BoutrosRNAi2002)
```

Format

BoutrosRNAiExpression: data matrix: 14010 x 16 BoutrosRNAiDiscrete: binary matrix: 68 x 16

Details

The dataset consists of 16 Affymetrix-microarrays: 4 replicates of control experiments without LPS and without RNAi (negative controls), 4 replicates of expression profiling after stimulation with LPS but without RNAi (positive controls), and 2 replicates each of expression profiling after applying LPS and silencing one of the four candidate genes tak, key, rel, and mkk4/hep.

BoutrosRNAiExpression: For preprocessing we performed normalization on probe level using a variance stabilizing transformation (Huber et al, 2002), and probe set summarization using a median polish fit of an additive model (Irizarry et al, 2003).

BoutrosRNAiDiscrete: contains only the 68 genes more than two-fold up-regulated between negative and positive controls. The continuous expression values are discretized to 1 (effect: closer to negative controls) and 0 (no effect: closer to positive controls).

BoutrosRNAiDens: log *p*-value density matrix for the 68 genes with more than two-fold upregulated between negative and positive controls.

BoutrosRNAiLods: B-value matrix for the 68 genes with more than two-fold up-regulated between negative and positive controls.

BoutrosRNAiLogFC: matrix with log fold changes

References

Boutros M, Agaisse H, Perrimon N, Sequential activation of signaling pathways during innate immune responses in Drosophila. Developmental Cell. 3(5):711-722, 2002

See Also

```
nem.discretize
```

Examples

```
data("BoutrosRNAi2002")
dim(BoutrosRNAiExpression)
dim(BoutrosRNAiDiscrete)
```

FULLmLL

Description

The function the full marginal likelihood of a phenotypic hierarchy. The full marginal likelihood equals the marginal likelihood mLL averaged over the error probabilities α and β .

Usage

FULLmLL(Phi, D1, D0, a0, b0, a1, b1, Pe, Pm=NULL, lambda=0)

Arguments

Phi	an adjacency matrix with unit main diagonal
D1	count matrix: phenotypes x genes. How often did we see an effect after interventions?
DO	count matrix: phenotypes x genes. How often did we NOT see an effect after intervention?
a0, b0, a1,	bl
	Hyperparameters
Ре	prior of effect positions in the hierarchy. A matrix of size phenotypes x genes, where each row contains positive numbers summing to 1.
Pm	prior on model graph (n x n matrix) with entries $0 \le priorPhi[i,j] \le 1$ describing the probability of an edge between gene i and gene j.
lambda	regularization parameter to incorporate prior assumptions.

Details

Additionally to the marginal likelihood introduced in Markowetz et al (2005), we can average over the error probabilities α and β assuming Beta priors. The parameters of the two Beta priors are hyperparameters of the full marginal likelihood score. The four hyperparameters fall into two categories: al and b0 are weights for observing the predicted state, while a0 and b1 are weights for observing errors. We suggest setting al=b0 and a0=b1. The ratio between the two values should correspond to our assessment of the noise level. See the example section for an application. The function FULLmLL is usually called from within function score.

Value

mLL	full marginal likelihood of a model
pos	posterior distribution of effect positions in the hierarchy
mappos	maximum aposteriori estimate of effect positions
LLperGene	likelihood per E-gene

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

References

Markowetz F, Probabilistic Models for Gene Silencing Data. PhD thesis, Free University Berlin, 2006.

See Also

nem, score, mLL

Examples

```
data("BoutrosRNAi2002")
res <- nem(BoutrosRNAiDiscrete[,9:16],type="FULLmLL",hyperpara=c(1,9,9,1))</pre>
```

SCCgraph

Combines Strongly Connected Components into single nodes

Description

SCCgraph is used to identify all nodes which are not distinguishable given the data.

Usage

SCCgraph(x,name=TRUE,nlength=20)

Arguments

Х	graphNEL object or an adjacency matrix
name	Concatenate all names of summarized nodes, if TRUE, or number nodes, if FALSE. Default: TRUE
nlength	maximum length of names

Details

A graph inferred by either nem or nemModelSelection may have cycles if some phenotypic profiles are not distinguishable. The function SCCgraph identifies cycles in the graph (the strongly conneced components) and summarizes them in a single node. The resulting graph is then acyclic.

Value

graph	a graphNEL object with connected components of the input graph summarized into single nodes
SCC	a list mapping SCCs to nodes
which.scc	a vector mapping nodes to SCCs

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>, Holger Froehlich <URL: http://www.dkfz.de/mga2/j

See Also

nem, transitive.reduction

4

closest.transitive.greedy

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
res <- nem(D,para=c(.13,.05))
#
sccg <- SCCgraph(res$graph,name=TRUE)
#
par(mfrow=c(1,2))
plot(res, main="inferred from data")
plot(sccg$graph, main="condensed (rel,key)")</pre>
```

closest.transitive.greedy

Find transitively closed graph most similar to the given one

Description

First, from the original graph Φ spurious edges are pruned via prune.graph. Then the new graph Φ' is transitively closed. Afterwards, the algorithms successively introduces new edges minimizing the distance to the original graph (defined as $\sum_i j |\Phi_i j - \Phi'_i j|$) most. After each edge addition the graph is transitively closed again.

Usage

```
closest.transitive.greedy(Phi, verbose=TRUE)
```

Arguments

Phi	adjacency matrix
verbose	do you want to see progress statements printed or not? Default: TRUE

Value

adjacency matrix

Author(s)

Holger Froehlich

See Also

```
prune.graph, \code{prune.graph}, \code{prune.graph}
```

enumerate.models Exhaustive enumeration of models

Description

The function enumerate.models is used to create the model space for inference by exhaustive enumeration. It computes a list of all transitively closed directed graphs on a given number of nodes.

Usage

enumerate.models(x,name=NULL,verbose=TRUE)

Arguments

Х	either the number of nodes or a vector of node names.
name	optionally the nodenames, if they are not provided in x
verbose	if TRUE outputs number of (unique) models. Default: TRUE

Details

The model space of Nested Effects Models consists of all transitively closed directed graphs. The function <code>enumerate.models</code> creates them in three steps: (1.) build all directed graphs on x (or <code>length(x))</code> nodes, (2.) transitively close each one of them, and (3.) remove redundant models to yield a unique set. So far, enumeration is limited to up to 5 nodes.

I'm aware that this is inefficient! It would be very desirable to enumerate the models directly (i.e. without creating all directed graphs as an intermediate step).

Value

a list of models. Each entry is a transitively closed adjacency matrix with unit main diagonal.

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

See Also

score, nem

Examples

```
enumerate.models(2)
enumerate.models(c("Anna", "Bert"))
```

generateNetwork Random networks and data sampling

Description

1. Random network generation; 2. sampling of data from a given network topology

Usage

sampleRndNetwork(Sgenes, scaleFree=TRUE, gamma=2.5, maxOutDegree=length(Sgenes),

sampleData(Phi, m, prob=NULL, uninformative=0, type="binary", replicates=4, type

Sgenes	character vector of S-genes
scaleFree	should the network topology be scale free?
gamma	for scale free networks: out-degrees of nodes are sampled from $\frac{1}{Z} * (0 : maxOutDegree)^{-\gamma}$, where Z is a normalization factor
maxOutDegree	maximal out-degree of nodes
maxInDegree	maximal in-degree of nodes prior to transitive closure
trans.close	Should the transitive closure of the graph be returned? Default: TRUE
DAG	Should only DAGs be sampled? Default: FALSE
Phi	adjacency matrix
m	number of E-genes to sample
prob	probability for each S-gene to get an E-gene attached
uninformativ	
	additional number of uninformative E-genes, i.e. E-genes carrying no informa- tion about the nested structure
type	"binary" = binary data; "density" = log 'p-value' densities sampled from beta- uniform mixture model; "lodds" = log odds sampled from two normal distribu- tions
replicates	number of replicate measurements to simulate for binary data
typeI.err	simulated type I error for binary data
typeII.err	simulated type II error for binary data
alpha	parameter for $Beta(\alpha, 1)$ distribution: one parameter per S-gene
beta	parameter for $Beta(1,\beta)$ distribution: one parameter per S-gene
lambda	mixing coefficients for beta-uniform mixture model of the form: $\lambda_1 + \lambda_2 *$
	$Beta(\alpha, 1) + \lambda_3 * Beta(1, \beta)$. There is a vector of 3 mixing coefficients per model and one model per S-gene.
meansH1	normal distribution means of log odds ratios under the hypothesis of expecting an effect: one mean per S-gene
meansH0	normal distribution means of log odds ratios under the null hypothesis: one mean per S-gene
sdsH1	normal distribution standard deviations of log odds values under the hypothesis of expecting an effect: one sd per S-gene
sdsH0	normal distribution standard deviations of log odds values under the null hypothesis: one sd per S-gene

Details

Random networks are generated as follows: For each S-gene S_k we randomly choose the number o of outgoing edges between 0 and maxOutDegree. This is either done uniform randomly or, if scale free networks are created, according to a power law distribution specified by gamma. We then select o S-genes having at most maxInDegree ingoing edge and connected S_k to them.

The function sampleData samples data from a given network topology as follows: We first attach E-genes to S-genes according to the probabilities prob (default: uniform). We then simulate knock-downs of the individual S-genes. For those E-genes, where no effects are expected, values are sampled from a null distribution, otherwise from an alternative distribution. In the simplest case we only sample binary data, where 1 indicates an effect an 0 no effect. Alternatively, we can sample log "p-value" densities according to a beta-uniform mixture model, where the null distribution is uniform and the alternative a mixture of two beta distributions. A third possibility is to sample log odds ratios, where alternative and null distribution are both normal.

Value

For sampleRndNetwork an adjacency matrix, for sampleData a data matrix, for sampleData.BN a data matrix and a linking of effects to signals.

Author(s)

Holger Froehlich <URL: http://www.dkfz.de/mga2/people/froehlich>, Cordula Zeller

See Also

getDensityMatrix

Examples

```
Phi = sampleRndNetwork(paste("S",1:5,sep=""))
D = sampleData(Phi, 100, type="density")$D
plot(as(transitive.reduction(Phi),"graphNEL"), main="original graph")
x11()
plot(nem(D, type="CONTmLLBayes"), transitiveReduction=TRUE, SCC=FALSE, main="infection")
```

getDensityMatrix Calculate density matrix from raw p-value matrix

Description

Fit a 3 component BUM model to each column of a raw p-value matrix.

Usage

getDensityMatrix(Porig, dirname=NULL, startab=c(0.3,10), startlam=c(0.6,

infer.edge.type

Arguments

Porig	matrix of raw p-values
dirname	name of a directory to save histograms and QQ-plots to. If dirname=NULL, then the plots are made to the screen, and after each fit the user is asked to press a key in order to continue.
startab	start values for alpha and beta parameter
startlam	start values for mixing coefficients
tol	convergence tolerance: If the absolute likelihood ratio -1 becomes smaller than this value, then the EM algorithm is supposed to be converged.

Details

The BUM density model consists of 3 components: $f(x) = lambda_1+lambda_2*dbeta(x, alpha, 1)+lambda_3*dbeta(x, 1, beta)$. The mixing coefficients and the parameters alpha and beta are fitted together via an EM algorithm.

Value

log-density matrix of same dimensions as Porig

Note

Note the difference to the previous package version: the LOG-density is returned now!

Author(s)

Holger Froehlich

infer.edge.type Infer regulation direction for each edge

Description

The method infers edge types (up-regulation, down-regulation) for a given nem model. For an edge a->b the method looks at the fraction of E-genes attached to b (including b itself), which are up-or down-regulated in a knock-down of a. If significantly more genes are down-regulated than up-regulated, the edge a->b is assumed to be an activation. Likewise, if significantly more genes are up-regulated than down-regulated, a->b is assumed to be an inhibition. If there is no significant difference in up- and down-regulated edges, a->b does not have a specified type.

Usage

```
infer.edge.type(x, logFC, alpha=0.05, adj.method="BY")
```

Х	nem object
logFC	matrix with fold changes. The rownames of this matrix should correspond to the rownames of the data matrix, which was used to infer the nem model.
alpha	p-value cutoff
adj.method	multiple testing correction method. Default: Benjamini-Yekutieli

Details

Significance is calculated using a two-tailed binomial test with null hypothesis p=0.5.

Value

Modified nem object. Each edge in the nem graph now has a "weight" and a "label" attribute. The label attribute corresponds to the original value in the adjacency matrix. The weight attribute encodes up- and down-regulation in the following way: value 2 means up-regulation, value -1 down-regulation and value 1 corresponds to an unknown regulation type.

Author(s)

Holger Froehlich

See Also

binom.test

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
p <- c(.13,.05)
result = nem(D, para=p)
resEdgeInf = infer.edge.type(result, BoutrosRNAiLogFC)
plot(resEdgeInf)</pre>
```

internal *internal functions*

Description

internal functions: do not call these functions directly.

Usage

various

Arguments

various

Value

various

Author(s)

Holger Froehlich

10

local.model.prior Computes a prior to be used for edge-wise model inference

Description

The function pairwise.posterior infers a phenotypic hierarchy edge by edge by choosing between four models (unconnected, subset, superset, undistinguishable). For each edge, local.model.prior computes a prior distribution over the four models. It can be used to ensure sparsity of the graph and high confidence in results.

Usage

local.model.prior(size,n,bias)

Arguments

size	expected number of edges in the graph.
n	number of perturbed genes in the dataset, number of nodes in the graph
bias	the factor by which the double-headed edge is preferred over the single-headed edges

Details

A graph on n nodes has N=n*(n-1)/2 possible directed edges (one- or bi-directional). If each edge occurs with probability p, we expect to see Np edges in the graph. The function local.model.prior takes the number of genes (n) and the expected number of edges (size) as an input and computes a prior distribution for edge occurrence: no edge with probability size/N, and the probability for edge existence being split over the three edge models with a bias towards the conservative double-headed model specified by bias. To ensure sparsity, the size should be chosen small compared to the number of possible edges.

Value

a distribution over four states: a vector of four positive real numbers summing to one

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

See Also

pairwise.posterior,nem

Examples

```
# uniform over the 3 edge models
local.model.prior(4,4,1)
# bias towards <->
local.model.prior(4,4,2)
```

mLL

Description

computes the marginal likelihood of observed phenotypic data given a phenotypic hierarchy.

Usage

mLL(Phi,D1,D0=NULL,a=0.15,b=0.05,Pe=NULL,Pm=NULL,lambda=0,type="mLL")

Arguments

Phi	an adjacency matrix with unit main diagonal
Dl	(i) count matrix for discrete data: phenotypes x genes. How often did we see an effect after interventions? (ii) matrix describing the PROBABILITIES of an effect (iii) matrix discribing the log-LIKELIHOOD of an effect (e.g. log-density matrix, log-odds matrix)
DO	count matrix: phenotypes x genes. How often did we NOT see an effect after intervention? Not used for continious data
a	false positive rate: how probable is it to miss an effect? (for count matrix)
b	false negative rate: how probable is it to see a spurious effect? (for count matrix)
Ре	prior of effect reporter positions in the phenotypic hierarchy
Pm	prior on model graph (n x n matrix) with entries 0 <= priorPhi[i,j] <= 1 describ- ing the probability of an edge between gene i and gene j.
lambda	regularization parameter to incorporate prior assumptions.
type	see nem
a b Pe Pm lambda	 count matrix: phenotypes x genes. How often did we NOT see an effect after intervention? Not used for continious data false positive rate: how probable is it to miss an effect? (for count matrix) false negative rate: how probable is it to see a spurious effect? (for count matrix) prior of effect reporter positions in the phenotypic hierarchy prior on model graph (n x n matrix) with entries 0 <= priorPhi[i,j] <= 1 describing the probability of an edge between gene i and gene j. regularization parameter to incorporate prior assumptions.

Details

It computes the marginal likelihood of a single phenotypic hierarchy. Usually called from within the function score.

Value

mLL	marginal likelihood of a phenotypic hierarchy
pos	posterior distribution of effect positions in the hierarchy
mappos	Maximum aposteriori estimate of effect positions
LLperGene	likelihood per E-gene

Author(s)

Holger Froehlich <URL: http://www.dkfz.de/mga2/people/froehlich>, Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

References

Markowetz F, Bloch J, Spang R, Non-transcriptional pathway features reconstructed from secondary effects of RNA interference, Bioinformatics, 2005

12

mLL

moduleNetwork

See Also

nem, score, FULLmLL

Examples

```
data("BoutrosRNAi2002")
result <- nem(BoutrosRNAiDiscrete[,9:16],type="mLL",para=c(.15,.05))</pre>
```

moduleNetwork Infers a phenotypic hierarchy using the module network

Description

Function moduleNetwork estimates the hierarchy using a divide and conquer approach. In each step only a subset of nodes (called module) is involved and no exhaustive enumeration of model space is needed as in function score.

Usage

```
moduleNetwork(D,type="mLL",Pe=NULL,Pm=NULL,lambda=0,delta=1,para=NULL,hyperpara=
```

```
## S3 method for class 'ModuleNetwork':
print(x,...)
```

Arguments

D	data matrix. Columns correspond to the nodes in the silencing scheme. Rows are phenotypes.
type	see nem
Ре	prior position of effect reporters. Default: uniform over nodes in hierarchy
Pm	prior on model graph (n x n matrix) with entries 0 <= priorPhi[i,j] <= 1 describ- ing the probability of an edge between gene i and gene j.
lambda	regularization parameter to incorporate prior assumptions.
delta	regularization parameter for automated E-gene subset selection (CONTmLLRa- tio only)
para	vector with parameters a and b for "mLL", if count matrices are used
hyperpara	vector with hyperparameters a0, b0, a1, b1 for "FULLmLL"
verbose	do you want to see progress statements printed or not? Default: TRUE
х	nem object
	other arguments to pass

Details

moduleNetwork is an alternative to exhaustive search by the function score and more accurate than pairwise.posterior and triples.posterior. It uses clustering to successively split the network into smaller modules, which can then be estimated completely. Connections between modules are estimated by performing a constraint greedy hillclimbing.

nem.BN

Value

nem object

Author(s)

Holger Froehlich

References

- [1] Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T: Large Scale Statistical Inference of Signaling Pathways from RNAi and Microarray Data. BMC Bioinformatics, 2007.
- [2] Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T: Estimating Large Scale Signaling Networks through Nested Effects Models from Intervention Effects in Microarray Data. Bioinformatics, 1, 2008.

See Also

score, nem

Examples

```
data("BoutrosRNAi2002")
res <- nem(BoutrosRNAiDiscrete[,9:16],para=c(.13,.05),inference="ModuleNetwork")
# plot graph
plot(res,what="graph")
# plot posterior over effect positions
plot(res,what="pos")
# estimate of effect positions
res$mappos</pre>
```

nem.BN

Bayesian Network Nested Effects Models

Description

Uses a Bayesian network interpretation of Nested Effects Models to estimate the signals graph.

Usage

nem.BN(D, inference="greedy", mode="binary_ML", lambda=0, verbose=TRUE)

14

nem

Arguments

D	data matrix with experiments in the columns (binary or continious)
inference	exhaustive to use exhaustive enumeration; or greedy for optimizing the linking of effects to signals and the signals graph in an alternating fashion
mode	<pre>binary_ML: effects come from a binomial distribution - ML learning of pa- rameters; binary_Bayesian: effects come from a binomial distribution - Bayesian learning of parameters with beta distribution prior; continous_ML: effects come from a normal distribution - ML learning of parameters; continous_Bayesian: effects come from a normal distribution - Bayesian learning of parameters with gamma distribution prior.</pre>
lambda	regularization parameter to incorporate prior assumptions. Not used so far.
verbose	do you want to see progression statements" Default: TRUE

Details

plot.nem plots the inferred phenotypic hierarchy as a directed graph.

Value

An object of class 'nem.BN'

graph	the inferred phenotypic hierarchy
mLL	log (posterior) marginal likelihood
mappos	estimated position of effects in the phenotypic hierarchy
selected	selected E-gene subset
type	= mode in function call
lambda	see above

Author(s)

Cordula Zeller, Holger Froehlich < URL: http://www.dkfz.de/mga2/people/froehlich>

See Also

plot.nem

nem

Nested Effects Models - main function

Description

The main function to infer a phenotypic hierarchy from data

Usage

```
nem(D,inference="nem.greedy",models=NULL,type="mLL",para=NULL,hyperpara=NULL,Pe=
```

```
## S3 method for class 'nem':
print(x, ...)
```

D	data matrix with experiments in the columns (binary or continious)
inference	search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alter- nating MAP optimization using log odds or log p-value densities
models	a list of adjacency matrices for model search. If NULL, enumerate.models is used for exhaustive enumeration of all possible models.
type	mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP. CONTmLLDens and CONTmLLRatio are identical to CONTmLLBayes and CONTmLLMAP and are still supported for compatibility reasons. mLL and FULLmLL are used for binary data (see BoutrosRNAiDiscrete) and CONTmLL for a matrix of effect probabilities. CONTmLLBayes and CONTmLLMAP are used, if log- odds ratios, p-value densities or any other model specifies effect likelihoods. CONTmLLBayes refers to an inference scheme, were the linking positions of E- genes to S-Genes are integrated out, and CONTmLLMAP to an inference scheme, were a MAP estimate for the linking positions is calculated.
para	vector of length two: false positive rate and false negative rate for binary data. Used by ${\tt mLL}$
hyperpara	vector of length four: used by FULLmLL () for binary data
Pe	prior of effect reporter positions in the phenotypic hierarchy (same dimension as D)
Pm	prior over models (n x n matrix)
Pmlocal	local model prior for pairwise and triple learning. For pairwise learning gener- ated by local.model.prior according to arguments local.prior.size and local.prior.bias
local.prior.	size prior expected number of edges in the graph (for pairwise learning)
local.prior.	
10041.91101.	bias towards double-headed edges. Default: 1 (no bias; for pairwise learning)
triples.thrs	
	threshold for model averaging to combine triple models for each edge
lambda	regularization parameter to incorporate prior assumptions. Default: 0 (no regularization)
delta	regularization parameter for automated E-gene subset selection (CONTmLLMAP only)
selEGenes	automated E-gene subset selection (includes tuning of delta for CONTmLLMAP)
trans.close	Should always transitive closed graphs be computed? Default: TRUE. NOTE: This has only an impact for the nem.greedyMAP method.
verbose	do you want to see progression statements? Default: TRUE
Х	nem object
	other arguments to pass

Details

nem is an interface to the functions score, pairwise.posterior, triple.posterior, moduleNetwork, nem.greedy and nem.greedyMAP. If Pm != NULL and lambda == 0, a Bayesian approach to include prior knowledge is used. Alternatively, the regularization parameter lambda can be tuned in a model selection step via the function nemModelSelection using the BIC criterion. If automated E-gene subset selection is used and type == CONTmLLMAP, the regularization parameter delta is tuned via the AIC model selection criterion. Otherwise, an iterative algorithm is executed, which in an alternating optimization scheme reconstructs a network given the current set of E-gene and then selects the E-genes having the highest likelihood under the given network. The procedure is run until convergence.

The function plot.nem plots the inferred phenotypic hierarchy as a directed graph, the likelihood distribution of the models (only for exhaustive search) or the posterior position of the effected genes.

Value

graph	the inferred directed graph (graphNEL object)
mLL	log posterior marginal likelihood of final model
pos	posterior over effect positions
mappos	MAP estimate of effect positions
type	as used in function call
para	as used in function call
hyperpara	as used in function call
lambda	as in function call
delta	as in function call
selected	selected E-gene subset
LLperGene	likelihood per selected E-gene

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>, Holger Froehlich <URL: http://www.dkfz.de/mga2/p

See Also

```
nemModelSelection, nem.jackknife, nem.bootstrap, nem.consensus, score,
moduleNetwork, nem.greedy, triples.posterior, pairwise.posterior, nem.greedyMAP,
local.model.prior, enumerate.models, plot.nem
```

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
p <- c(.13,.05)
res1 <- nem(D,para=p,inference="search")
res2 <- nem(D,para=p,inference="pairwise")
res3 <- nem(D,para=p,inference="triples")
res4 <- nem(D,para=p,inference="ModuleNetwork")
res5 <- nem(D,para=p,inference="nem.greedy")
res6 = nem(BoutrosRNAiLods, inference="nem.greedyMAP")
```

nem

```
par(mfrow=c(2,3))
plot(res1,main="exhaustive search")
plot(res2,main="pairs")
plot(res3,main="triples")
plot(res4,main="module network")
plot(res5,main="greedy hillclimber")
plot(res6,main="alternating MAP optimization")
```

nem.bootstrap Bootstrapping for nested effect models

Description

Performs bootstrapping (resampling with replacement) on E-genes to assess the statistical stability of networks

Usage

```
## S3 method for class 'nem.bootstrap':
print(x, ...)
```

D	data matrix with experiments in the columns (binary or continous)	
thresh	only edges appearing with a higher frequency than "thresh" are returned	
nboot	number of bootstrap samples desired	
inference	<pre>search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alter- nating MAP optimization using log odds or log p-value densities</pre>	
models	a list of adjacency matrices for model search	
type	mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP, see nem	
para	vector of length two: false positive rate and false negative rate for binary data. Used by ${\tt mLL}$ ()	
hyperpara	vector of length four: used by FULLmLL () for binary data	
Ре	prior of effect reporter positions in the phenotypic hierarchy (same dimension as D)	
Pm	prior over models (n x n matrix)	
Pmlocal	<pre>local model prior for pairwise and triple learning. For pairwise learning gener- ated by local.model.prior() according to arguments local.prior.size and local.prior.bias</pre>	
local.prior.size		
	prior expected number of edges in the graph (for pairwise learning)	
local.prior.bias		
	bias towards double-headed edges. Default: 1 (no bias; for pairwise learning)	

nem.calcSignificance

triples.thrsh	
	threshold for model averaging to combine triple models for each edge
lambda	regularization parameter to include prior assumptions
delta	regularization parameter for automated E-gene subset selection (CONTmLLRa- tio only)
selEGenes	automated E-gene subset selection (includes tuning of delta for CONTmLLRa- tio)
verbose	do you want to see progression statements? Default: TRUE
х	nem object
	other arguments to pass

Details

Calls nem or nemModelSelection internally, depending on whether or not lambda is a vector and Pm != NULL.

Value

nem object with edge weights being the bootstrap probabilities

Author(s)

Holger Froehlich

See Also

nem.jackknife,nem.consensus,nem.calcSignificance,nem

Examples

```
## Not run:
    data("BoutrosRNAi2002")
    D <- BoutrosRNAiDiscrete[,9:16]
    p <- c(.13,.05)
    nem.bootstrap(D, para=p)
## End(Not run)
```

nem.calcSignificance

Statistical significance of network hypotheses

Description

Assess statistical significance of a network hypothesis by comparing it to a null hypothesis.

Usage

nem.calcSignificance(D, x, N=1000, seed=1, Pe=NULL, Pm=NULL, selEGenes=(

Arguments

D	data matrix with experiments in the columns (binary or continious)
Х	nem object
Ν	number of random networks to sample
seed	random seed
Ре	prior of effect reporter positions in the phenotypic hierarchy (same dimension as D)
Pm	prior over models (n x n matrix)
selEGenes	automated E-gene subset selection yes/no

Details

Given data, N random network hypotheses from a null distribution are drawn as follows: For each S-gene S_k we randomly choose a number o of outgoing edges between 0 and 3. We then select o S-genes having at most 1 ingoing edge, connected S_k to them and transitively closed the graph. For all random network hypotheses it is counted, how often their likelihood is bigger than that of the given network. This yields an exact p-value.

Another way of assessing the statistical significance of the network hypothesis is to draw random permutations of the node labels. Note that in this case the node degree distribution is the same as in the given network. Again, we can obtain an exact p-value by counting, how often the likelihood of the permuted network is bigger than that of the given network.

Finally, comparison to randomly perturbed networks (insertion or deletion of 1 edge) yields an exact p-value describing the stability of the network.

Value

p.value.rnd	p-value of the network according to the null hypothesis that it is random
p.value.perm	p-value of the network according to the null hypothesis that a network with permuted node labels is at least as good
p.value.mod	p-value of the network according to the null hypothesis a randomly peturbed network is at least as good

Author(s)

Holger Froehlich

See Also

nem.consensus, nem.jackknife, nem.bootstrap, nem

Examples

```
## Not run:
    data("BoutrosRNAi2002")
    D <- BoutrosRNAiDiscrete[,9:16]
    p <- c(.13,.05)
    res = nem(D, para=p) # get best network
    nem.calcSignificance(D,res) # assess its statistical significance
## End(Not run)
```

nem.consensus

Description

Performs bootstrapping (resampling with replacement) on E-genes and jackknife on S-genes to assess the statistical stability of networks. Only edges appearing with a higher frequency than a predescribed threshold in both procedures are regarded as statistical stable and appear in the so-called consensus network.

Usage

```
nem.consensus(D,thresh=0.5,nboot=1000,inference="nem.greedy",models=NULL,type="m")
```

```
## S3 method for class 'nem.consensus':
print(x, ...)
```

-		
D	data matrix with experiments in the columns (binary or continous)	
thresh	only edges appearing with a higher frequency than "thresh" in both, bootstrap and jackknife procedure, are regarded as statistically stable and trust worthy	
nboot	number of bootstrap samples desired	
inference	search to use exhaustive enumeration; or triples for triple-based infer- ence; or pairwise for the pairwise heuristic; or ModuleNetwork for the module based inference; or nem.greedy for greedy hillclimbing	
models	a list of adjacency matrices for model search	
type	mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP, seenem	
para	vector of length two: false positive rate and false negative rate for binary data. Used by ${\tt mLL}$ ()	
hyperpara	vector of length four: used by FULLmLL() for binary data	
Ре	prior of effect reporter positions in the phenotypic hierarchy (same dimension as D)	
Pm	prior over models (n x n matrix)	
Pmlocal	local model prior for pairwise and triple learning. For pairwise learning gener- ated by local.model.prior() according to arguments local.prior.size and local.prior.bias	
local.prior.		
	prior expected number of edges in the graph (for pairwise learning)	
local.prior.		
	bias towards double-headed edges. Default: 1 (no bias; for pairwise learning)	
triples.thrsh		
	threshold for model averaging to combine triple models for each edge	
lambda	regularization parameter to include prior assumptions	
delta	regularization parameter for automated E-gene subset selection (CONTmLLMAP only)	

selEGenes	automated E-gene subset selection (includes tuning of delta for CONTmLLMAP)
verbose	do you want to see progression statements? Default: TRUE
х	nem object
	other arguments to pass

Details

Calls nem or nemModelSelection internally, depending on whether or not lambda is a vector and Pm != NULL.

Value

consensus network (nem object)

Author(s)

Holger Froehlich

See Also

nem.bootstrap,nem.jackknife,nem.calcSignificance,nem

Examples

```
## Not run:
    data("BoutrosRNAi2002")
    D <- BoutrosRNAiDiscrete[,9:16]
    p <- c(.13,.05)
    nem.consensus(D, para=p)
## End(Not run)
```

nem.cont.preprocess

Calculate classification probabilities of perturbation data according to control experiments

Description

Calculates probabilities of data to define effects of interventions with respect to wildtype/control measurements

Usage

```
nem.cont.preprocess(D,neg.control=NULL,pos.control=NULL,nfold=2, influencefactor
```

Arguments

D	matrix with experiments as columns and effect reporters as rows	
neg.control	either indices of columns in ${\tt D}$ or a matrix with the same number of rows as ${\tt D}$	
pos.control	either indices of columns in ${\tt D}$ or a matrix with the same number of rows as ${\tt D}$	
nfold	fold-change between neg. and pos. controls for selecting effect reporters. Default: 2	
influencefactor		
	factor multiplied onto the probabilities, so that all negative control genes are treated as influenced, usually automatically determined	
empPval	empirical p-value cutoff for effects if only one control is available	
verbose	Default: TRUE	

Details

Determines the empirical distributions of the controls and calculates the probabilities of pertubartion data to belong to the control distribution(s).

Value

dat	data matrix	
pos	positive controls [in the two-controls setting]	
neg	negative controls [in the two-controls setting]	
sel	effect reporters selected [in the two-controls setting]	
prob.influenced		
	probability of a reporter to be influenced	
influencefactor		
	factor multiplied onto the probabilities, so that all negative control genes are treated as influenced	

Note

preliminary! will be developed to be more generally applicable

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

References

Markowetz F, Bloch J, Spang R, Non-transcriptional pathway features reconstructed from secondary effects of RNA interference, Bioinformatics, 2005

See Also

BoutrosRNAi2002

Examples

```
data("BoutrosRNAi2002")
preprocessed <- nem.cont.preprocess(BoutrosRNAiExpression,neg.control=1:4,pos.control=</pre>
```

nem.discretize

Description

discretizes raw data to define effects of interventions with respect to wildtype/control measurements

Usage

nem.discretize(D,neg.control=NULL,pos.control=NULL,nfold=2,cutoff=0:10/10, pCoun

Arguments

D	matrix with experiments as columns and effect reporters as rows
neg.control	either indices of columns in ${\tt D}$ or a matrix with the same number of rows as ${\tt D}$
pos.control	either indices of columns in ${\tt D}$ or a matrix with the same number of rows as ${\tt D}$
nfold	fold-change between neg. and pos. controls for selecting effect reporters. Default: 2
cutoff	a (vector of) cutoff value(s) weighting the pos. controls versus the neg. controls. Default: 0:10/10
pCounts	pseudo-counts to guard against unreasonable low error estimates
empPval	empirical p-value cutoff for effects if only one control is available
verbose	Default: TRUE

Details

Chooses cutoff such that separation between negative and positive controls becomes optimal.

Value

dat	discretized data matrix
pos	discretized positive controls [in the two-controls setting]
neg	discretized negative controls [in the two-controls setting]
sel	effect reporters selected [in the two-controls setting]
cutoff	error rates for different cutoff values [in the two-controls setting]
para	estimated error rates [in the two-controls setting]

Note

preliminary! will be developed to be more generally applicable

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

References

Markowetz F, Bloch J, Spang R, Non-transcriptional pathway features reconstructed from secondary effects of RNA interference, Bioinformatics, 2005

nem.greedy

See Also

BoutrosRNAi2002

Examples

```
# discretize Boutros data as in
# Markowetz et al, 2005
data("BoutrosRNAi2002")
disc <- nem.discretize(BoutrosRNAiExpression,neg.control=1:4,pos.control=5:8,cutoff=.7
stopifnot(disc$dat==BoutrosRNAiDiscrete[,9:16])</pre>
```

nem.greedy

Infers a phenotypic hierarchy using a greedy search strategy

Description

Starting from an initial graph (default: no edges), this strategy successively adds those edges, which most inrease the likelihood of the data under the model.

Usage

```
nem.greedy(D,initial=NULL,type="mLL",Pe=NULL,Pm=NULL,lambda=0,delta=1,para=NULL,
```

```
## S3 method for class 'nem.greedy':
print(x, ...)
```

Arguments

D	data matrix. Columns correspond to the nodes in the silencing scheme. Rows are phenotypes.
initial	initial model to start greedy hillclimbing from (default: no edges)
type	see nem
Pe	prior position of effect reporters. Default: uniform over nodes in hierarchy
Pm	prior on model graph (n x n matrix) with entries $0 \le \text{priorPhi}[i,j] \le 1$ describing the probability of an edge between gene i and gene j.
lambda	regularization parameter to incorporate prior assumptions.
delta	regularization parameter for automated E-gene subset selection (CONTmLLRa- tio only)
para	vector with parameters a and b for "mLL", if count matrices are used
hyperpara	vector with hyperparameters a0, b0, a1, b1 for "FULLmLL"
verbose	do you want to see progress statements printed or not? Default: TRUE
Х	nem object
	other arguments to pass

Value

nem object

Author(s)

Holger Froehlich

See Also

nem

Examples

```
# Drosophila RNAi and Microarray Data from Boutros et al, 2002
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
nem(D, para=c(.13,.05), inference="nem.greedy")
```

nem.greedyMAP Infers a phenotypic hierarchy using an alternating MAP optimization

Description

Starting with an initial estimate of the linking of E-genes to S-genes from the data, this method performs an alternating MAP optimization of the S-genes graph and the linking graph until convergence. As a final step the function closest.transitive.greedy can be invoked to find a transitively closed graph most similar to the original one.

Usage

```
nem.greedyMAP(D,Pe=NULL,Pm=NULL,lambda=0,delta=1, trans.close=TRUE, verbose=TRUE
## S3 method for class 'nem.greedyMAP':
print(x, ...)
```

Arguments

D	data matrix. Columns correspond to the nodes in the silencing scheme. Rows are phenotypes.
Pe	prior position of effect reporters. Default: uniform over nodes in hierarchy
Pm	prior on model graph (n x n matrix) with entries $0 \le priorPhi[i,j] \le 1$ describing the probability of an edge between gene i and gene j.
lambda	regularization parameter to incorporate prior assumptions.
delta	regularization parameter for automated E-gene subset selection
trans.close	find a similar transitively closed graph
verbose	do you want to see progress statements printed or not? Default: TRUE
х	nem object
	other arguments to pass

Value

nem object

26

nem.jackknife

Author(s)

Holger Froehlich

See Also

nem, closest.transitive.greedy

Examples

```
data("BoutrosRNAi2002")
res <- nem(BoutrosRNAiLods, inference="nem.greedyMAP", delta=0)
# plot graph
plot (res,what="graph")
# plot posterior over effect positions
plot(res,what="pos")
# estimate of effect positions
res$mappos</pre>
```

nem.jackknife Jackknife for nested effect models

Description

Assesses the statistical stability of a network via a jackknife procedure: Each S-gene is left out once and the network reconstructed on the remaining ones. The relative frequency of each edge to appear in n-1 jackknife samples is returned.

Usage

```
nem.jackknife(D,thresh=0.5, inference="nem.greedy",models=NULL,type="mLL",para=N
```

```
## S3 method for class 'nem.jackknife':
print(x, ...)
```

D	data matrix with experiments in the columns (binary or continious)
thresh	only edges appearing with a higher frequency than "thresh" are returned
inference	search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alternating MAP optimization using log odds or log p-value densities
models	a list of adjacency matrices for model search. If NULL, enumerate.models is used for exhaustive enumeration of all possible models.
type	mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP, see nem

para	vector of length two: false positive rate and false negative rate for binary data. Used by ${\tt mLL}$	
hyperpara	vector of length four: used by FULLmLL() for binary data	
Pe	prior of effect reporter positions in the phenotypic hierarchy (same dimension as D)	
Pm	prior over models (n x n matrix)	
Pmlocal	<pre>local model prior for pairwise and triplets learning. For pairwise learning gener- ated by local.model.prior() according to arguments local.prior.size and local.prior.bias</pre>	
local.prior.s	size	
	prior expected number of edges in the graph (for pairwise learning)	
local.prior.k	Dias	
	bias towards double-headed edges. Default: 1 (no bias; for pairwise learning)	
triples.thrsh		
	threshold for model averaging to combine triple models for each edge	
lambda	regularization parameter to incorporate prior assumptions. Default: 0 (no regularization)	
delta	regularization parameter for automated E-gene subset selection (CONTmLLRa- tio only)	
selEGenes	automated E-gene subset selection (includes tuning of delta for CONTmLLRa- tio)	
verbose	do you want to see progression statements? Default: TRUE	
х	nem object	
	other arguments to pass	

Details

Calls nem or nemModelSelection internally, depending on whether or not lambda is a vector and Pm != NULL.

Value

nem object with edge weights being the jackknife probabilities

Author(s)

Holger Froehlich

See Also

nem.bootstrap,nem.consensus,nem,nemModelSelection

Examples

```
## Not run:
    data("BoutrosRNAi2002")
    D <- BoutrosRNAiDiscrete[,9:16]
    p <- c(.13,.05)
    nem.jackknife(D, para=p)
## End(Not run)
```

nemModelSelection model selection for nested effect models

Description

Infers models with different regularization constants, compares them via the AIC criterion and returns the highest scoring one

Usage

```
nemModelSelection(lambdas,D,inference="nem.greedy",models=NULL,type="mLL",para=N
```

lambdas	vector of regularization constants
D	data matrix with experiments in the columns (binary or continious)
inference	search to use exhaustive enumeration; or triples for triple-based infer- ence; or pairwise for the pairwise heuristic; or ModuleNetwork for the module based inference; or nem.greedy for the greedy hillclimbing
models	a list of adjacency matrices for model search. If NULL, enumerate.models is used for exhaustive enumeration of all possible models.
type	mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP, see nem
para	vector of length two: false positive rate and false negative rate for binary data. Used by ${\tt mLL}$
hyperpara	vector of length four: used by FULLmLL for binary data
Ре	prior of effect reporter positions in the phenotypic hierarchy (same dimension as D)
Pm	prior over models (n x n matrix)
Pmlocal	local model prior for pairwise and triple learning. For pairwise learning gener- ated by local.model.prior according to arguments local.prior.size and local.prior.bias
local.prior.	size
	prior expected number of edges in the graph (for pairwise learning)
local.prior.	
triples.thrs	bias towards double-headed edges. Default: 1 (no bias; for pairwise learning)
cripies.cms	threshold for model averaging to combine triple models for each edge
delta	regularization parameter for automated E-gene subset selection (CONTmLLMAP only)
selEGenes	automated E-gene subset selection (includes tuning of delta for CONTmLLMAP)
trans.close	Should always transitive closed graphs be computed? Default: TRUE. NOTE: This has only an impact for the nem.greedyMAP method.
verbose	do you want to see progression statements? Default: TRUE
•••	other arguments to pass to function nem or network.AIC

Details

nemModelSelection internally calls nem to infer a model with a given regularization constant. The comparison between models is based on the BIC or AIC criterion, depending on the parameters passed to network.AIC.

Value

nem object

Author(s)

Holger Froehlich

See Also

nem, network.AIC

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
p <- c(.13,.05)
res <- nemModelSelection(c(0.1,1,10),D, para=p, Pm=matrix(0,ncol=4,nrow=4))</pre>
```

plot(res,main="highest scoring model")

network.AIC AIC criterion for network graph

Description

Calclate AIC for a given network graph (should be transitively closed). The number of free parameters equals the number of unknown edges in the network graph.

Usage

```
network.AIC(network,Pm=NULL,k=2,verbose=TRUE)
```

Arguments

network	a nem object (e.g. 'pairwise')
Pm	prior over models (n x n matrix). If NULL, then a matrix of 0s is assumed
k	penalty per parameter in the AIC calculation. Default = 2 for classical AIC
verbose	print out the result

Details

For k = log(n) the BIC (Schwarz criterion) is computed. Usually this function is not called directly but from nemModelSelection

30

pairwise.posterior

Value

AIC value

Author(s)

Holger Froehlich

See Also

nemModelSelection

Examples

```
data("BoutrosRNAi2002")
res1 <- nem.greedy(BoutrosRNAiDiscrete[,9:16],para=c(.13,.05))
network.AIC(res1)
res2 <- nem.greedy(BoutrosRNAiDiscrete[,9:16],para=c(.13,.05),lambda=10)
network.AIC(res2)</pre>
```

pairwise.posterior Infers a phenotypic hierarchy edge by edge

Description

Function pairwise.posterior estimates the hierarchy edge by edge. In each step only a pair of nodes is involved and no exhaustive enumeration of model space is needed as in function score.

Usage

```
pairwise.posterior(D, type = "mLL", para = NULL, hyperpara = NULL,
        Pe = NULL, Pmlocal = NULL, Pm = NULL, lambda = 0, delta=1, verbose = TRUE)
## S3 method for class 'pairwise':
print(x,...)
```

D	data matrix. Columns correspond to the nodes in the silencing scheme. Rows are phenotypes.
type	see nem
para	vector with parameters a and b for "mLL", if count matrices are used
hyperpara	vector with hyperparameters a0, b0, a1, b1 for "FULLmLL"
Pe	prior position of effect reporters. Default: uniform over nodes in hierarchy
Pmlocal	local model prior for the four models tested at each node: a vector of length 4 with positive entries summing to one
Pm	prior on model graph (n x n matrix) with entries $0 \le \text{priorPhi}[i,j] \le 1$ describing the probability of an edge between gene i and gene j.
lambda	regularization parameter to incorporate prior assumptions.

plot.nem

delta	regularization parameter for automated E-gene subset selection (CONTmLLRa- tio only)
verbose	do you want to see progress statements printed or not? Default: TRUE
х	nem object
	other arguments to pass

Details

pairwise.posterior is a fast(er) heuristic alternative to exhaustive search by the function score. For each pair (A,B) of perturbed genes it chooses between four possible models: A..B (unconnected), $A \rightarrow B$ (superset), A < -B (subset), or A < ->B (indistinguishable). The result is the graph built from the maximum aposteriori models for each edge.

print.pairwise gives an overview over the 'pairwise' object.

Value

nem object

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

See Also

score, nem

Examples

```
data("BoutrosRNAi2002")
res <- nem(BoutrosRNAiDiscrete[,9:16],para=c(.13,.05),inference="pairwise")</pre>
```

plot graph
plot(res,what="graph")

```
# plot posterior over effect positions
plot(res,what="pos")
```

```
# estimate of effect positions
res$mappos
```

plot.nem

plot nested effect model

Description

plot graph of nested effects model, the marginal likelihood distribution or the posterior position of the effected genes

Usage

```
## S3 method for class 'nem':
plot(x, what="graph", remove.singletons=FALSE, PDF=FALSE, filename="nemp
```

plotEffects

Arguments

Х	nem object to plot
what	(i), "graph", (ii) "mLL" = likelihood distribution, (iii) "pos" = posterior position of effected genes
remove.single	etons
	remove unconnected nodes from the graph plot
PDF	output as PDF-file
filename	filename of PDF-file
thresh	if x has a real valued adjacency matrix (weight matrix), don't plot edges with weight <= thresh
transitiveRed	duction
	plot a transitively reduced graph
plot.probs	plot edge weights/probabilities. If regulation directions have been inferred (see infer.edge.type), upregulated edges are drawn red and downregulated edges blue. Edges, were no clear direction could be inferred, are drawn in black.
SCC	plot the strongly connected components graph
D	Visualize the nested subset structure of the dataset via <code>plotEffects</code> along with the graph and show the linking of E-genes to S-genes in the dataset. Should only be used for small networks. Default: Just plot the graph
draw.lines	If the nested subset structure is shown, should additionally lines connecting S- genes and their associated E-genes be drawn? WARNING: For larger datasets than e.g. 5 S-genes this most probably does not work, because the nested subset structure picture then partially overlaps with the graph picture. Default: Do not draw these lines
•••	other arguments to be passed to the Rgraphviz plot function or to the graphics 'image' function.

Value

none

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>, Holger Froehlich <URL: http://www.dkfz.de/mga2/

See Also

nem,plotEffects,infer.edge.type

plotEffects

Plots data according to a phenotypic hierarchy

Description

plotEffects visualizes the subset structure in the data by reordering rows and columns according to the topological order given by a phenotypic hierarchy.

Usage

```
plotEffects(D,nem,border=TRUE,legend=TRUE,order=NULL,orderSCC=TRUE,...)
```

Arguments

D	data matrix
nem	phenotypic hierarchy (object of class 'score' or 'pairwise')
border	draw red lines to indicate gene-specific effect reporters. Default: TRUE
legend	plot a legend. Default: TRUE
order	pre-define an order of the S-genes instead of the topological order to visualize the subset structure. Default: Use topological order.
orderSCC	Is the pre-defined order given on strongly connected components rather than on individual nodes?
•••	additional parameters for the graphics function 'image'

Details

The experiments in the columns are reordered according to the topological order given by a phenotypic hierarchy. The effect reporters in the rows are grouped together by their position in the hierarchy. The groups are then arranged by topological order. Within each group the rows are hierarchically clustered.

Value

ordering of the E-genes according to the hierarchy (vector of indices)

Note

This function was formerly named plot.effects. This naming is not possible any more, since S3 classes were used for the function plot.nem.

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>, Holger Froehlich <URL: http://www.dkfz.de/mga2/p

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
res <- nem(D,para=c(.13,.05))
plotEffects(D,res)</pre>
```

34

prune.graph

Description

A heuristic to prune spurious edges in a pehnotypic hierarchy

Usage

```
prune.graph(g,cutIN=NULL,cutOUT=NULL,quant=.95,verbose=TRUE)
```

Arguments

g	an adjacency matrix or a 'graphNEL' object
cutIN	minimum number of missing in-edges required to cut all in-edges. Default
cutOUT	minimum number of missing out-edges required to cut all out-edges
quant	if 'cutIN' or 'cutOUT' are not assigned, a quantile 'quant' of the distribution of missing in- or out-edges for all nodes is used
verbose	Default: TRUE

Details

prune.graph provides a heuristic approach to prune surious edges. prune.graph compares the input graph to its transitive closure, and counts for each node how many incoming and outgoing edges are missing. If the number is bigger than a user-defined cutoff, all incoming (outgoing) edges are removed.

Value

graph	the pruned phenotypic hierarchy (a 'graphNEL' object)
removed	number of removed edges
missing.in	number of missing in-edges for each node
missing.out	number of missing out-edges for each node

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

Examples

```
# a transitively closed core with two spurious edges
g <- matrix(0,5,5)
g[1,2] <- 1
g[2,c(3,4)] <- 1
g[3,4] <- 1
g[4,5] <- 1
dimnames(g) <- list(LETTERS[1:5], LETTERS[1:5])
g <- as(g, "graphNEL")
# prune graph</pre>
```

```
gP <- prune.graph(g)
# plot
par(mfrow=c(1,2))
plot(g,main="two spurious edges")
plot(gP$graph,main="pruned")</pre>
```

```
score
```

```
Computes the marginal likelihood of phenotypic hierarchies
```

Description

Function to compute the marginal likelihood of a set of phenotypic hierarchies.

Usage

```
score(models, D, type="mLL", para=NULL, hyperpara=NULL, Pe=NULL, Pm=NULL, lambda
## S3 method for class 'score':
print(x, ...)
PhiDistr(Phi, Pm, a=1, b=0.5)
```

models	a list of adjacency matrices with unit main diagonal	
D	data matrix. Columns correspond to the nodes in the silencing scheme. Rows are effect reporters.	
tуре	mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP. CONTmLLDens and CONTmLLRatio are identical to CONTmLLBayes and CONTmLLMAP and are still supported for compatibility reasons. mLL and FULLmLL are used for binary data (see BoutrosRNAiDiscrete) and CONTmLL for a matrix of effect probabilities. CONTmLLBayes and CONTmLLMAP are used, if log- odds ratios, p-value densities or any other model specifies effect likelihoods. CONTmLLBayes refers to an inference scheme, were the linking positions of E- genes to S-Genes are integrated out, and CONTmLLMAP to an inference scheme, were a MAP estimate for the linking positions is calculated.	
para	Vector with parameters a and b (for "mLL" with count data)	
hyperpara	Vector with hyperparameters a0, b0, a1, b1 for "FULLmLL"	
Ре	prior position of effect reporters. Default: uniform over nodes in silencing scheme	
Pm	prior on model graph (n x n matrix) with entries $0 \le priorPhi[i,j] \le 1$ describing the probability of an edge between gene i and gene j.	
lambda	regularization parameter to incorporate prior assumptions.	
delta	regularization parameter for automated E-gene subset selection (CONTmLLRa- tio only)	
verbose	output while running or not	

score

graphClass	output inferred graph either as graphNEL or matrix
х	nem object
	other arguments to pass
Phi	adjacency matrix
a	parameter of the inverse gamma prior for v=1/lambda
b	parameter of the inverse gamma prior for v=1/lambda

Details

Scoring models by marginal log-likelihood is implemented in function score. Input consists of models and data, the type of the score ("mLL", "FULLmLL", "CONTmLL" or "CONTmLLBayes" or "CONTmLLMAP"), the corresponding paramters (para) or hyperparameters (hyperpara), a prior for phenotype positions (Pe) and model structures Pm with regularization parameter lambda. If a structure prior Pm is provided, but no regularization parameter lambda, Bayesian model averaging with an inverse gamma prior on 1/lambda is performed. With type "CONTmLLMAP" usually an automated selection of most relevant E-genes is performed by introducing a "null" S-gene. The corresponding prior probability of leaving out an E-gene is set to delta/no. S-genes.

score is usually called within function nem.

Value

nem object

Author(s)

Holger Froehlich <URL: http://www.dkfz.de/mga2/people/froehlich>, Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

References

- [1] Markowetz F, Bloch J, Spang R, Non-transcriptional pathway features reconstructed from secondary effects of RNA interference, Bioinformatics, 2005.
- [2] Markowetz F, Probabilistic Models for Gene Silencing Data, PhD thesis, Free University Berlin, 2006.
- [3] Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T: Estimating Large Scale Signaling Networks through Nested Effects Models from Intervention Effects in Microarray Data. Bioinformatics, 1, 2008.
- [4] Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T: Large Scale Statistical Inference of Signaling Pathways from RNAi and Microarray Data, BMC Bioinformatics, 8:386, 2007.

See Also

nem, mLL, FULLmLL, enumerate.models

Examples

```
# Drosophila RNAi and Microarray Data from Boutros et al, 2002
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
# enumerate all possible models for 4 genes
models <- enumerate.models(unique(colnames(D)))
# score models with marginal likelihood
result <- score(models,D,type="mLL",para=c(.13,.05))
# plot graph of the best model
plot(result,what="graph")
# plot scores
plot(result,what="mLL")
# plot posterior of E-gene positions according to best model
plot(result,what="pos")
# MAP estimate of effect positions for the best model
result$mappos
```

getRelevantEGenes Automatic selection of most relevant E-genes

Description

1. A-priori filtering of E-genes: Select E-genes, which show a pattern of differential expression across experiments that is expected to be non-random. 2. Automated E-gene subset selection: Select those E-genes, which have the highest likelihood under the given network hypothesis.

Usage

```
filterEGenes(Porig, D, Padj=NULL, ntop=100, fpr=0.05, adjmethod="bonferroni", cu
getRelevantEGenes(Phi, D, para=NULL, hyperpara=NULL, Pe=NULL, Pm=NULL, lambda=0, de
```

Arguments

For method filterEGenes:

Porig	matrix of raw p-values, typically from the complete array
D	data matrix. Columns correspond to the nodes in the silencing scheme. Rows are effect reporters.
Padj	matrix of false positive rates. If not, provided Benjamini-Hochbergs method for false positive rate computation is used.
ntop	number of top genes to consider from each knock-down experiment
fpr	significance cutoff for the FDR
adjmethod	adjustment method for pattern p-values

38

getRelevantEGenes

cutoff	significance cutoff for patterns	
Phi	adjacency matrix with unit main diagonal	
type	mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP. CONTmLLDens and CONTmLLRatio are identical to CONTmLLBayes and CONTmLLMAP and are still supported for compatibility reasons, see nem.	
para	Vector with parameters a and b (for "mLL" with count data)	
hyperpara	Vector with hyperparameters a0, b0, a1, b1 for "FULLmLL"	
Pe	prior position of effect reporters. Default: uniform over nodes in silencing scheme	
Pm	prior on model graph (n x n matrix) with entries $0 \le \text{priorPhi}[i,j] \le 1$ describing the probability of an edge between gene i and gene j.	
lambda	regularization parameter to incorporate prior assumptions.	
delta	regularization parameter for automated E-gene subset selection (CONTmLLMAP only)	
nEgenes	no. of E-genes to select	

Details

The method filterEGenes performs an a-priori filtering of the complete microarray. It determines how often E-genes are expected to be differentially expressed across experiments just randomly. According to this only E-genes are chosen, which show a pattern of differential expression more often than can be expected by chance.

The method getRelevantEGenes looks for the E-genes, which have the highest likelihood under the given network hypothesis. In case of the scoring type "CONTmLLBayes" these are all E-genes which have a positive contribution to the total log-likelihood. In case of type "CONTmLLMAP" all E-genes not assigned to the "null" S-gene are returned. This involves the prior probability delta/no. S-genes for leaving out an E-gene. For all other cases ("CONTmLL", "FULLmLL", "mLL") the nEgenes E-genes with the highest likelihood under the given network hypothesis are returned.

Value

I	index of selected E-genes
dat	subset of original data according to I
patterns	significant patterns
nobserved	no. of cases per observed pattern
selected	selected E-genes
mLL	marginal likelihood of a phenotypic hierarchy
pos	posterior distribution of effect positions in the hierarchy
mappos	Maximum a posteriori estimate of effect positions
LLperGene	likelihood per selected E-gene

Author(s)

Holger Froehlich

See Also

nem, score, mLL, FULLmLL

Examples

```
# Drosophila RNAi and Microarray Data from Boutros et al, 2002
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
# enumerate all possible models for 4 genes
models <- enumerate.models(unique(colnames(D)))
getRelevantEGenes(models[[64]], D, para=c(.13,.05), type="mLL")
```

subsets

Subsets

Description

subsets

Usage

subsets (n, r, v = 1:n, set = TRUE)

Arguments

n	bli
r	bla
V	blo
set	blu

Details

taken from the programmers corner of some R-News issue by Dennis

Value

n	bli
r	bla
V	blo

Author(s)

Dennis Kostka <URL: http://www.molgen.mpg.de/~kostka>

Examples

bla

40

transitive.closure Computes the transitive closure of a directed graph

Description

Computes the transitive closure of a graph. Introduces a direct edge whenever there is a path between two nodes in a digraph.

Usage

transitive.closure(g, mat=FALSE, loops=TRUE)

Arguments

à	graphNEL object or adjacency matrix.
mat	convert result to adjacency matrix.
loops	Add loops from each node to itself?

Details

This function calculates the transitive closure of a given graph. We use the matrix exponential to find the transitive closure.

Value

returns a graphNEL object or adjacency matrix

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

See Also

transitive.reduction

Examples

```
V <- LETTERS[1:3]
edL <- list(A=list(edges="B"),B=list(edges="C"),C=list(edges=NULL))
g <- new("graphNEL",nodes=V,edgeL=edL,edgemode="directed")
gc <- transitive.closure(g,loops=FALSE)
par(mfrow=c(1,2))
plot(g,main="NOT transitively closed")
plot(gc,main="transitively closed")
```

transitive.projections

Computes the transitive approximation of a directed graph

Description

Computes the transitive approximation of a graph. The transitive approximation of a graph is a graph that is "almost" transitively closed and has minimal distance to the input graph.

Usage

```
transitive.projections(adjmat)
```

Arguments

adjmat graphNEL object or adjacency matrix.

Value

returns adjacency matrices and having minimal graph distance to the input graph matrix

Author(s)

Juby Jacob

See Also

transitive.projections

```
transitive.reduction
```

Computes the transitive reduction of a graph

Description

transitive.reduction removes direct edges, which can be explained by another path in the graph. Regulation directions inferred via infer.edge.type are taken into account.

Usage

```
transitive.reduction(g)
```

Arguments

g adjacency matrix

Details

transitive.reduction uses a modification of the classical algorithm from the Sedgewick book for computing transitive closures. The so-called "transitive reduction" is neither necessarily unique (only for DAGs) nor minimal in the number of edges (this could be improved).

```
triples.posterior
```

Value

returns an adjacency matrix with shortcuts removed

Author(s)

Holger Froehlich

References

R. Sedgewick, Algorithms, Pearson, 2002.

See Also

transitive.closure, infer.edge.type

Examples

```
V <- LETTERS[1:3]
edL <- list(A=list(edges=c("B", "C")),B=list(edges="C"),C=list(edges=NULL))
gc <- new("graphNEL",nodes=V,edgeL=edL,edgemode="directed")
g <- transitive.reduction(gc)</pre>
```

```
par(mfrow=c(1,2))
plot(gc,main="shortcut A->C")
plot(as(g,"graphNEL"),main="shortcut removed")
```

triples.posterior Infers a phenotypic hierarchy from triples

Description

Function triples.posterior estimates the hierarchy triple-wise. In each step only a triple of nodes is involved and no exhaustive enumeration of model space is needed as in function score.

Usage

```
triples.posterior(D, type="mLL",para=NULL, hyperpara=NULL,Pe=NULL,Pmlocal=NULL,P
```

```
## S3 method for class 'triples':
print(x,...)
```

D	data matrix. Columns correspond to the nodes in the silencing scheme. Rows are phenotypes.
type	see nem
para	vector with parameters a and b for "mLL", if count matrices are used
hyperpara	vector with hyperparameters a0, b0, a1, b1 for "FULLmLL"
Pe	prior position of effect reporters. Default: uniform over nodes in hierarchy
Pmlocal	local model prior for the four models tested at each node: a vector of length 4 with positive entries summing to one

threshold used when combining tripel models for each edge. Default: only edges appearing in more than half of triples are included in the final graph.
Pmprior on model graph (n x n matrix) with entries 0 <= priorPhi[i,j] <= 1 describ- ing the probability of an edge between gene i and gene j.
lambda regularization parameter to incorporate prior assumptions.
delta regularization parameter for automated E-gene subset selection (CONTmLLRatio only)
verbose do you want to see progress statements printed or not? Default: TRUE
x nem object
other arguments to pass

Details

triples.posterior is an alternative to exhaustive search by the function score and more accurate than pairwise.posterior. For each triple of perturbed genes it chooses between the 29 possible models. It then uses model averaging to combine the triple-models into a final graph.

print.triples gives an overview over the 'triples' object.

Value

nem object

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

References

Markowetz F, Kostka D, Troyanskaya OG, Spang R: Nested effects models for high-dimensional phenotyping screens. Bioinformatics. 2007; 23(13):i305-12.

See Also

score, nem

Examples

```
data("BoutrosRNAi2002")
res <- nem(BoutrosRNAiDiscrete[,9:16],para=c(.13,.05),inference="triples")</pre>
```

plot graph
plot(res,what="graph")

```
# plot posterior over effect positions
plot(res,what="pos")
```

```
# estimate of effect positions
res$mappos
```

Index

*Topic **datasets** BoutrosRNAi2002,2 *Topic graphs BFSlevel, 1 enumerate.models, 6generateNetwork, 7 moduleNetwork, 13 nem, 15 nem.BN, 14 nem.bootstrap, 18 nem.consensus, 21 nem.cont.preprocess, 22 nem.discretize, 24 nemModelSelection, 29 network.AIC, 30 pairwise.posterior, 31 plotEffects, 33 prune.graph, 35 SCCgraph, 4 subsets, 40transitive.closure,41 transitive.projections, 42 transitive.reduction, 42 triples.posterior, 43 *Topic **models** closest.transitive.greedy, 5 FULLmLL, 3 generateNetwork, 7 getDensityMatrix,8 getRelevantEGenes, 38 infer.edge.type,9 internal, 10 local.model.prior, 11 mLL, 12 nem, 15 nem.BN, 14 nem.bootstrap, 18 nem.calcSignificance, 19 nem.consensus, 21 nem.cont.preprocess, 22 nem.discretize, 24 nem.greedy, 25 nem.greedyMAP, 26

nem.jackknife,27 nemModelSelection, 29 plot.nem, 32 score, 36 BFSlevel, 1 binom.test,10 BoutrosRNAi2002, 2, 23, 25 BoutrosRNAiDens (BoutrosRNAi2002), 2 BoutrosRNAiDiscrete (BoutrosRNAi2002), 2 BoutrosRNAiExpression (BoutrosRNAi2002), 2 BoutrosRNAiLods (BoutrosRNAi2002), 2 BoutrosRNAiLogFC (BoutrosRNAi2002), 2 bum.dalt(internal), 10 bum.EM(internal), 10 bum.histogram(internal), 10 bum.mle(internal), 10 bum.negLogLik(internal), 10 bum.palt(internal), 10 bum.qalt(internal), 10 bum.ralt(internal), 10 CheckEdge (transitive.projections), 42 closest.transitive.greedy, 5, 27 connectModules (internal), 10 createBN (internal), 10 dbum (internal), 10 distdecrease (transitive.projections), 42 distincrease (transitive.projections), 42 distincrease1 (transitive.projections), 42

distsame (transitive.projections), 42 EdgeEk (transitive.projections), 42 enumerate.models, 6, 17, 37 exhaustive_BN(internal), 10 filterEGenes (getRelevantEGenes), 38 fit.BN (internal), 10 fitBUM (internal), 10 FourNeighborhood (transitive.projections), 42 FULLmLL, 3, 13, 37, 39 generateNetwork, 7 getComponent (internal), 10 getDensityMatrix, 8,8 getRelevantEGenes, 38 graychange (internal), 10 infer.edge.type, 9, 33, 43 ingreed_BN (internal), 10 internal, 10 inv.logit(internal), 10 is.dag(internal), 10 is.transitive (transitive.projections), 42 local.model.prior, 11, 17 logit (internal), 10 mLL, 4, 12, 37, 39 moduleNetwork, 13, 17 moduleNetwork.aux(internal), 10 nem, 4, 6, 11, 13, 14, 15, 19, 20, 22, 26-28, 30, 32, 33, 37, 39, 44 nem.BN,14 nem.bootstrap, 17, 18, 20, 22, 28 nem.calcSignificance, 19, 19, 22 nem.consensus, 17, 19, 20, 21, 28 nem.cont.preprocess, 22 nem.discretize, 2, 24 nem.featureselection (internal), 10 nem.greedy, 17, 25 nem.greedyMAP, 17, 26 nem.jackknife, 17, 19, 20, 22, 27

nemModelSelection, 17, 19, 22, 28, 29, 31 network.AIC, 30, 30 OneNeighborhood (transitive.projections), 42 optimizecoregraph (internal), 10 optimizemarginal (internal), 10 pairwise.posterior, 11, 17, 31 parameters_continuous_Bayesian (internal), 10 parameters_continuous_ML (internal), 10 parameters_discrete_Bayesian (internal), 10 parameters_discrete_ML (internal), 10 pbum (internal), 10 PhiDistr (score), 36 plot.ModuleNetwork (plot.nem), 32 plot.nem, 17, 32 plot.pairwise(plot.nem), 32 plot.score (plot.nem), 32 plot.triples(plot.nem), 32 plotEffects, 33, 33 plotnem (plot.nem), 32 print.ModuleNetwork (moduleNetwork), 13 print.nem(nem), 15 print.nem.BN (nem.BN), 14 print.nem.bootstrap (nem.bootstrap), 18 print.nem.consensus (nem.consensus), 21 print.nem.greedy (nem.greedy), 25 print.nem.greedyMAP (nem.greedyMAP), 26 print.nem.jackknife (nem.jackknife), 27 print.pairwise (pairwise.posterior), 31 print.score(score), 36 print.triples (triples.posterior), 43 prune.graph, 5, 35 qbum (internal), 10 qqbum(internal), 10 rbum (internal), 10

46

INDEX

```
remTwoEdges
       (transitive.projections),
       42
sampleData(generateNetwork),7
sampleRndNetwork
       (generateNetwork), 7
SCCgraph, 4
score, 4, 6, 13, 14, 17, 32, 36, 39, 44
score_continuous_Bayesian
       (internal), 10
score_continuous_ML(internal), 10
score_discrete_Bayesian
      (internal), 10
score_discrete_ML(internal), 10
selectEGenes (getRelevantEGenes),
       38
subsets, 40
ThreeNeighborhood
       (transitive.projections),
       42
transitive.closure, 41, 43
transitive.projections, 42, 42
transitive.reduction, 4, 41, 42
transSubGr
       (transitive.projections),
       42
triples.posterior, 17, 43
TwoNeighborhood
       (transitive.projections),
       42
VecToMat
       (transitive.projections),
```

42

which.is.max(internal), 10