\name{rma.para} \alias{rma.para} \title{Fitting a RMA model} \description{ Obtain reference quantiles and reference probe effects based on reference set Train, and calculate the gene expression } \usage{ rma.para(Train, bg = TRUE, exp = FALSE) } \arguments{ \item{Train}{ An \code{AffyBatch} object of the reference set microarrays.} \item{bg}{ A logical flag. If \code{True}(by default), background correct \code{Train} using default \code{bg.correct.rma}. } \item{exp}{ A logical flag. If \code{True}, calculate the RMA measurements of \code{Train}. If \code{False}, return 0.} } \value{ \item{Reference.Quantiles}{Reference quantiles derived from \code{Train}.} \item{probe.effects}{Estimated probe effects derived from \code{Train}.} \item{expression}{RMA measurements of \code{Train}.} } \references{Chang,K.M., Harbron,C., South,M.C. (2006) An Exploration of Extensions to the RMA Algorithm. Available with the RefPlus package.} \author{ Kai-Ming Chang(kaiming@gmail.com) } \note{ The RMA procedure requires a lot of computer memory. } \seealso{\code{\link{rmaplus}},\code{\link{rmaref.predict}}} \examples{ if (require(affydata)) { ## Use Dilution in affydata package data(Dilution) ## Background correct, estimate the probe effects, and calculate the ## RMA intensities using rma.para function. Ex<-rma.para(Dilution, bg=TRUE,exp=TRUE) ## Calculate the rma intensities using rma function. Ex0<-exprs(rma(Dilution)) plot(Ex$express[,1],Ex0[,1]) } } \keyword{manip}