% geneFlowT.Rd %-------------------------------------------------------------------------- % What: Create gene and gamete flow matrices % $Id: TDT.Rd 1168 2007-04-03 14:03:43Z ggorjan $ % Time-stamp: <2007-04-01 23:11:34 ggorjan> %-------------------------------------------------------------------------- \name{geneFlowT} \alias{geneFlowT} \alias{geneFlowTinv} \alias{gameteFlowM} \alias{mendelianSamplingD} \concept{relationship} \concept{relatedness} \concept{genetic covariance} \title{Gene and gamete flow matrices} \description{ \code{geneFlowT} and \code{geneFlowTinv} creates gene flow matrix (T) and its inverse (Tinv), while \code{gameteFlowM} creates gamete flow matrix (M). \code{mendelianSamplingD} creates a mendelian sampling covariance matrix (D). } \usage{ geneFlowT(x, sort=TRUE, names=TRUE, \ldots) geneFlowTinv(x, sort=TRUE, names=TRUE, \ldots) gameteFlowM(x, sort=TRUE, names=TRUE, \ldots) mendelianSamplingD(x, matrix=TRUE, names=TRUE, \ldots) } \arguments{ \item{x}{Pedigree} \item{sort}{logical, for the computation the pedigree needs to be sorted, but results are sorted back to original sorting (sort=TRUE) or not (sort=FALSE)} \item{names}{logical, should returned matrix have row/colnames; this can be used to get leaner matrix} \item{matrix}{logical, should returned value be a diagonal matrix or a vector} \item{\ldots}{arguments for other methods} } \details{ \code{geneFlowT} returns a matrix with coefficients that show the flow of genes from one generation to the next one etc. \code{geneFlowTinv} is simply the inverse of \code{geneFlowT}, but calculated as \eqn{I - M}, where \eqn{M} is gamete flow matrix with coefficients that represent parent gamete contribution to their offspring. \code{mendelianSamplingD} is another matrix (\eqn{D}) for construction of relationship additive matrix via decomposition i.e. \eqn{A=TDT'} (Henderson, 1976). Mrode (2005) has a very nice introduction to these concepts. Take care with \code{sort=FALSE, names=FALSE}. It is your own responsibility to assure proper handling in this case. } \value{Matrices of \eqn{n * n} dimension, with coeficients as described in the details, where \eqn{n} is number of subjects in \code{x}} \references{ Henderson, C. R. (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. \emph{Biometrics} \bold{32}(1):69-83 Mrode, R. A. (2005) Linear models for the prediction of animal breeding values. 2nd edition. CAB International. ISBN 0-85199-000-2 \url{http://www.amazon.com/gp/product/0851990002} } \author{Gregor Gorjanc} \seealso{\code{\link{Pedigree}}, \code{\link{relationshipAdditive}}, \code{\link{kinship}} and \code{\link{inbreeding}}} \examples{ data(Mrode2.1) Mrode2.1$dtB <- as.Date(Mrode2.1$dtB) x2.1 <- Pedigree(x=Mrode2.1, subject="sub", ascendant=c("fat", "mot"), ascendantSex=c("M", "F"), family="fam", sex="sex", generation="gen", dtBirth="dtB") fractions(geneFlowT(x2.1)) fractions(geneFlowTinv(x2.1)) fractions(gameteFlowM(x2.1)) mendelianSamplingD(x2.1) } \keyword{array} \keyword{misc} %-------------------------------------------------------------------------- % geneFlowT.Rd ends here