
fmcsR: Mismatch Tolerant Maximum Common Substructure Detection

for Advanced Compound Similarity Searching

Yan Wang, Tyler Backman, Kevin Horan, Thomas Girke

October 14, 2013

Contents

1 Introduction 1

2 Installation 2

3 Quick Overview 2

4 Documentation 3

5 MCS of Two Compounds 3
5.1 Data Import . 3
5.2 Compute MCS . 4
5.3 MCS Class Usage . 4

6 FMCS of Two Compounds 6

7 FMCS Search Functionality 9

8 Clustering with FMCS 9

9 Version Information 11

10 References 11

1 Introduction

Maximum common substructure (MCS) algorithms rank among the most sensitive and accurate methods for measur-
ing structural similarities among small molecules. This utility is critical for many research areas in drug discovery and
chemical genomics. The MCS problem is a graph-based similarity concept that is defined as the largest substructure
(sub-graph) shared among two compounds (Cao et al., 2008b; Wang et al., 2013). It fundamentally differs from the
structural descriptor-based strategies like fingerprints or structural keys. Another strength of the MCS approach is the
identification of the actual MCS that can be mapped back to the source compounds in order to pinpoint the common and
unique features in their structures. This output is often more intuitive to interpret and chemically more meaningful than
the purely numeric information returned by descriptor-based approaches. Because the MCS problem is NP-complete, an
efficient algorithm is essential to minimize the compute time of its extremely complex search process. The fmcsR package
implements an efficient backtracking algorithm that introduces a new flexible MCS (FMCS) matching strategy to identify
MCSs among compounds containing atom and/or bond mismatches. In contrast to this, other MCS algorithms find
only exact MCSs that are perfectly contained in two molecules. The details about the FMCS algorithm are described in
the Supplementary Materials Section of the associated publication (Wang et al., 2013). The package provides several

1

fmcsR Manual 3 Quick Overview

utilities to use the FMCS algorithm for pairwise compound comparisons, structure similarity searching and clustering. To
maximize performance, the time consuming computational steps of fmcsR are implemented in C++. Integration with
the ChemmineR package provides visualization functionalities of MCSs and consistent structure and substructure data
handling routines (Cao et al., 2008a; Backman et al., 2011). The following gives an overview of the most important
functionalities provided by fmcsR.

2 Installation

The R software for running fmcsR and ChemmineR can be downloaded from CRAN (http://cran.at.r-project.
org/). The fmcsR package can be installed from an open R session using the biocLite install command.

> source("http://bioconductor.org/biocLite.R")

> biocLite("fmcsR")

3 Quick Overview

To demo the main functionality of the fmcsR package, one can load its sample data stored as SDFset object. The generic
plot function can be used to visualize the corresponding structures.

> library(fmcsR)

> data(fmcstest)

> plot(fmcstest[1:3], print=FALSE)

Caffeine

●

● ●

●●

●

O

O N

NN

N

Viagra

●
●

●

●

●

●
●

●

●
●●

●
S

O

O

O

O

N
N

N

N
N

N

H

5866133

●

●

●

●

●

●
●

●
●

N

N

N

N

O

O
NH

O
O

Figure 1: Structures depictions of sample data.

The fmcs function computes the MCS/FMCS shared among two compounds, which can be highlighted in their structure
with the plotMCS function.

> test <- fmcs(fmcstest[1], fmcstest[2], au=2, bu=1)

> plotMCS(test)

2

http://cran.at.r-project.org/
http://cran.at.r-project.org/

fmcsR Manual 5 MCS of Two Compounds

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

Viagra

●

●

●

●

●

●

●

●

●

●
●

●

S

O

O

O

O

N

N

N

N

N
N

H

Figure 2: The red bonds highlight the MCS shared among the two compounds.

4 Documentation

> library("fmcsR") # Loads the package

> library(help="fmcsR") # Lists functions/classes provided by fmcsR

> library(help="ChemmineR") # Lists functions/classes from ChemmineR

> vignette("fmcsR") # Opens this PDF manual

> vignette("ChemmineR") # Opens ChemmineR PDF manual

The help documents for the different functions and container classes can be accessed with the standard R help syntax.

> ?fmcs

> ?"MCS-class"

> ?"SDFset-class"

5 MCS of Two Compounds

5.1 Data Import

The following loads the sample data set provided by the fmcsR package. It contains the SD file (SDF) of 3 molecules
stored in an SDFset object.

> data(fmcstest)

> sdfset <- fmcstest

> sdfset

An instance of "SDFset" with 3 molecules

Custom compound data sets can be imported and exported with the read.SDFset and write.SDF functions, respectively.
The following demonstrates this by exporting the sdfset object to a file named sdfset.sdf. The latter is then reimported
into R with the read.SDFset function.

> write.SDF(sdfset, file="sdfset.sdf")

> mysdf <- read.SDFset(file="sdfset.sdf")

3

fmcsR Manual 5 MCS of Two Compounds

5.2 Compute MCS

The fmcs function accepts as input two molecules provided as SDF or SDFset objects. Its output is an S4 object of
class MCS. The default printing behavior summarizes the MCS result by providing the number of MCSs it found, the
total number of atoms in the query compound a, the total number of atoms in the target compound b, the number of
atoms in their MCS c and the corresponding Tanimoto Coefficient. The latter is a widely used similarity measure that
is defined here as c/(a+ b− c). In addition, the Overlap Coefficient is provided, which is defined as c/min(a, b). This
coefficient is often useful for detecting similarities among compounds with large size differences.

> mcsa <- fmcs(sdfset[[1]], sdfset[[2]])

> mcsa

An instance of "MCS"

Number of MCSs: 7

CMP1: 14 atoms

CMP2: 33 atoms

MCS: 8 atoms

Tanimoto Coefficient: 0.20513

Overlap Coefficient: 0.57143

> mcsb <- fmcs(sdfset[[1]], sdfset[[3]])

> mcsb

An instance of "MCS"

Number of MCSs: 1

CMP1: 14 atoms

CMP2: 25 atoms

MCS: 14 atoms

Tanimoto Coefficient: 0.56

Overlap Coefficient: 1

If fmcs is run with fast=TRUE then it returns the numeric summary information in a named vector.

> fmcs(sdfset[1], sdfset[2], fast=TRUE)

Query_Size Target_Size MCS_Size Tanimoto_Coefficient

14.0000000 33.0000000 8.0000000 0.2051282

Overlap_Coefficient

0.5714286

5.3 MCS Class Usage

The MCS class contains three components named stats, mcs1 and mcs2. The stats slot stores the numeric summary
information, while the structural MCS information for the query and target structures is stored in the mcs1 and mcs2
slots, respectively. The latter two slots each contain a list with two subcomponents: the original query/target structures
as SDFset objects as well as one or more numeric index vector(s) specifying the MCS information in form of the row
positions in the atom block of the corresponding SDFset. A call to fmcs will often return several index vectors. In those
cases the algorithm has identified alternative MCSs of equal size.

> slotNames(mcsa)

[1] "stats" "mcs1" "mcs2"

Accessor methods are provided to return the different data components of the MCS class.

> stats(mcsa) # or mcsa[["stats"]]

4

fmcsR Manual 5 MCS of Two Compounds

Query_Size Target_Size MCS_Size Tanimoto_Coefficient

14.0000000 33.0000000 8.0000000 0.2051282

Overlap_Coefficient

0.5714286

> mcsa1 <- mcs1(mcsa) # or mcsa[["mcs1"]]

> mcsa2 <- mcs2(mcsa) # or mcsa[["mcs2"]]

> mcsa1[1] # returns SDFset component

$query

An instance of "SDFset" with 1 molecules

> mcsa1[[2]][1:2] # return first two index vectors

$CMP1_fmcs_1

[1] 3 8 7 4 9 5 11 1

$CMP1_fmcs_2

[1] 3 8 7 4 9 5 1 13

The mcs2sdfset function can be used to return the substructures stored in an MCS instance as SDFset object. If
type="new" new atom numbers will be assigned to the subsetted SDF, while type="old" will maintain the atom
numbers from its source. For details consult the help documents ?mcs2sdfset and ?atomsubset.

> mcstosdfset <- mcs2sdfset(mcsa, type="new")

> plot(mcstosdfset[[1]], print=FALSE)

5

fmcsR Manual 6 FMCS of Two Compounds

CMP1_fmcs_1

●

●●

●

NH2

NHNH2

O

CMP1_fmcs_2

●

●●

●

NH2

NHNH2

O

CMP1_fmcs_3

●

●

●

NH

NH

O

CMP1_fmcs_4

●

●

●

NH

NH

O

CMP1_fmcs_5

●

●
●

NH

NH

O

CMP1_fmcs_6

●

●
●

NH

NH

O

CMP1_fmcs_7

●●

●

●

NHNH2

NH2

O

To construct an MCS object manually, one can provide the required data components in a list.

> mylist <- list(stats=stats(mcsa), mcs1=mcs1(mcsa), mcs2=mcs2(mcsa))

> as(mylist, "MCS")

An instance of "MCS"

Number of MCSs: 7

CMP1: 14 atoms

CMP2: 33 atoms

MCS: 8 atoms

Tanimoto Coefficient: 0.20513

Overlap Coefficient: 0.57143

6 FMCS of Two Compounds

If fmcs is run with its default paramenters then it returns the MCS of two compounds, because the mismatch parameters
are all set to zero. To identify FMCSs, one has to raise the number of upper bound atom mismates au and/or bond
mismatches bu to interger values above zero.

> plotMCS(fmcs(sdfset[1], sdfset[2], au=0, bu=0))

6

fmcsR Manual 6 FMCS of Two Compounds

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

Viagra

●

●

●

●

●

●

●

●

●

●
●

●

S

O

O

O

O

N

N

N

N

N
N

H

Figure 3: MCS for sdfset[1] and sdfset[2] with au=0 and bu=0

> plotMCS(fmcs(sdfset[1], sdfset[2], au=1, bu=1))

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

Viagra

●

●

●

●

●

●

●

●

●

●
●

●

S

O

O

O

O

N

N

N

N

N
N

H

Figure 4: FMCS for sdfset[1] and sdfset[2] with au=1 and bu=1

> plotMCS(fmcs(sdfset[1], sdfset[2], au=2, bu=2))

7

fmcsR Manual 6 FMCS of Two Compounds

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

Viagra

●

●

●

●

●

●

●

●

●

●
●

●

S

O

O

O

O

N

N

N

N

N
N

H

Figure 5: FMCS for sdfset[1] and sdfset[2] with au=2 and bu=2

> plotMCS(fmcs(sdfset[1], sdfset[3], au=0, bu=0))

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

5866133

●

●

●

●

●

●

●

●

●

N

N

N

N

O

O

NH

O

O

Figure 6: MCS for sdfset[1] and sdfset[3] with au=0 and bu=0

8

fmcsR Manual 8 Clustering with FMCS

7 FMCS Search Functionality

The fmcsBatch function provides FMCS search functionality for compound collections stored in SDFset objects.

> data(sdfsample) # Loads larger sample data set

> sdf <- sdfsample

> fmcsBatch(sdf[1], sdf[1:30], au=0, bu=0)

Query_Size Target_Size MCS_Size Tanimoto_Coefficient Overlap_Coefficient

CMP1 33 33 33 1.0000000 1.0000000

CMP2 33 26 11 0.2291667 0.4230769

CMP3 33 26 10 0.2040816 0.3846154

CMP4 33 32 9 0.1607143 0.2812500

CMP5 33 23 14 0.3333333 0.6086957

CMP6 33 19 13 0.3333333 0.6842105

CMP7 33 21 9 0.2000000 0.4285714

CMP8 33 31 8 0.1428571 0.2580645

CMP9 33 21 9 0.2000000 0.4285714

CMP10 33 21 8 0.1739130 0.3809524

CMP11 33 36 15 0.2777778 0.4545455

CMP12 33 26 12 0.2553191 0.4615385

CMP13 33 26 11 0.2291667 0.4230769

CMP14 33 16 12 0.3243243 0.7500000

CMP15 33 34 15 0.2884615 0.4545455

CMP16 33 25 8 0.1600000 0.3200000

CMP17 33 19 8 0.1818182 0.4210526

CMP18 33 24 10 0.2127660 0.4166667

CMP19 33 25 14 0.3181818 0.5600000

CMP20 33 26 10 0.2040816 0.3846154

CMP21 33 25 15 0.3488372 0.6000000

CMP22 33 21 11 0.2558140 0.5238095

CMP23 33 26 11 0.2291667 0.4230769

CMP24 33 17 6 0.1363636 0.3529412

CMP25 33 27 9 0.1764706 0.3333333

CMP26 33 24 13 0.2954545 0.5416667

CMP27 33 26 11 0.2291667 0.4230769

CMP28 33 20 10 0.2325581 0.5000000

CMP29 33 20 8 0.1777778 0.4000000

CMP30 33 18 7 0.1590909 0.3888889

8 Clustering with FMCS

The fmcsBatch function can be used to compute a similarity matrix for clustering with various algorithms available in
R. The following example uses the FMCS algorithm to compute a similarity matrix that is used for hierarchical clustering
with the hclust function and the result is plotted in form of a dendrogram.

> sdf <- sdf[1:7]

> d <- sapply(cid(sdf), function(x)

+ fmcsBatch(sdf[x], sdf, au=0, bu=0,

+ matching.mode="aromatic")[,"Overlap_Coefficient"])

> d

CMP1 CMP2 CMP3 CMP4 CMP5 CMP6 CMP7

CMP1 1.0000000 0.2307692 0.2307692 0.2812500 0.5217391 0.6842105 0.2857143

CMP2 0.2307692 1.0000000 0.4230769 0.5384615 0.2173913 0.4736842 0.2857143

9

fmcsR Manual 8 Clustering with FMCS

CMP3 0.2307692 0.4230769 1.0000000 0.3076923 0.2173913 0.4736842 0.9047619

CMP4 0.2812500 0.5384615 0.3076923 1.0000000 0.3043478 0.5263158 0.2857143

CMP5 0.5217391 0.2173913 0.2173913 0.3043478 1.0000000 0.5789474 0.2380952

CMP6 0.6842105 0.4736842 0.4736842 0.5263158 0.5789474 1.0000000 0.3157895

CMP7 0.2857143 0.2857143 0.9047619 0.2857143 0.2380952 0.3157895 1.0000000

> hc <- hclust(as.dist(1-d), method="complete")

> plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)

0.8 0.6 0.4 0.2 0.0

CMP5

CMP1

CMP6

CMP3

CMP7

CMP2

CMP4

Figure 7: Hierarchical clustering result.

The FMCS shared among compound pairs of interest can be visualized with plotMCS, here for the two most similar
compounds from the previous tree:

> plotMCS(fmcs(sdf[3], sdf[7], au=0, bu=0, matching.mode="aromatic"))

CMP3

●

● ●

●

●

●

●
●

●

●

S

O O

O

N

N

N

N

H

H

CMP7

●

●

●

●

●

●

● ●

S

O

O

O

N

N

N
H

Figure 8: Most similar compounds from previous tree.

10

fmcsR Manual 10 References

9 Version Information

> toLatex(sessionInfo())

� R version 3.0.2 (2013-09-25), x86_64-unknown-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils
� Other packages: ChemmineR 2.14.0, fmcsR 1.4.0
� Loaded via a namespace (and not attached): BiocStyle 1.0.0, DBI 0.2-7, RCurl 1.95-4.1, RPostgreSQL 0.4,

digest 0.6.3, tools 3.0.2

10 References

T W Backman, Y Cao, and T Girke. ChemMine tools: an online service for analyzing and clustering small molecules.
Nucleic Acids Res, 39(Web Server issue):486–491, Jul 2011. doi: 10.1093/nar/gkr320. URL http://www.hubmed.

org/display.cgi?uids=21576229.

Y Cao, A Charisi, L C Cheng, T Jiang, and T Girke. ChemmineR: a compound mining framework for R. Bioinformatics, 24
(15):1733–1734, Aug 2008a. doi: 10.1093/bioinformatics/btn307. URL http://www.hubmed.org/display.cgi?

uids=18596077.

Y Cao, T Jiang, and T Girke. A maximum common substructure-based algorithm for searching and predicting drug-
like compounds. Bioinformatics, 24(13):366–374, Jul 2008b. doi: 10.1093/bioinformatics/btn186. URL http:

//www.hubmed.org/display.cgi?uids=18586736.

Y Wang, T W Backman, K Horan, and T Girke. fmcsR: Mismatch Tolerant Maximum Common Substructure Searching
in R. Bioinformatics, Aug 2013. doi: 10.1093/bioinformatics/btt475. URL http://www.hubmed.org/display.

cgi?uids=23962615.

11

http://www.hubmed.org/display.cgi?uids=21576229
http://www.hubmed.org/display.cgi?uids=21576229
http://www.hubmed.org/display.cgi?uids=18596077
http://www.hubmed.org/display.cgi?uids=18596077
http://www.hubmed.org/display.cgi?uids=18586736
http://www.hubmed.org/display.cgi?uids=18586736
http://www.hubmed.org/display.cgi?uids=23962615
http://www.hubmed.org/display.cgi?uids=23962615

	1 Introduction
	2 Installation
	3 Quick Overview
	4 Documentation
	5 MCS of Two Compounds
	5.1 Data Import
	5.2 Compute MCS
	5.3 MCS Class Usage

	6 FMCS of Two Compounds
	7 FMCS Search Functionality
	8 Clustering with FMCS
	9 Version Information
	10 References

