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1 Abstract

The BitSeq package is targeted for transcript expression analysis and differ-
ential expression analysis of RNA-seq data in two stage process. In the first
stage it uses Bayesian inference methodology to infer expression of individual
transcripts from individual RNA-seq experiments. The second stage of BitSeq
embraces the differential expression analysis of transcript expression. Providing
expression estimates from replicates of multiple conditions, Log-Normal model
of the estimates is used for inferring the condition mean transcript expression
and ranking the transcripts based on the likelihood of differential expression.

2 Citing BitSeq

The BitSeq package is based on probabilistic models and inference methods
described in the manuscript [1]. For citing BitSeq in publications please refer
to the manuscript above and to the source of the software.

3 Installing the BitSeq package

The recommended way to install BitSeq is to use the biocLite function available
from the bioconductor website.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("BitSeq")

To load the package start R and run

> library(BitSeq)

4 Preparing data

The size of data normally analysed by BitSeq and results represented by samples
from posterior distribution usually ranges in Gigabytes. Keeping this kind of
datasets in memory within R environment would be rather inefficient and in
most cases unnecessary, thus most of the data used within BitSeq is loaded and
saved directly to the local hard drive.

The input for BitSeq package can be either SAM or BAM file containing
aligned reads, as well as reference Fasta file. These files do not need to be loaded
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into the environment as BitSeq will read the data from disk space. The transcrip-
tome Fasta file can be either downloaded from Ensembl website 1 or constructed
by UCSC genome browser at http://genome.ucsc.edu/cgi-bin/hgTables.
In this example we will use file ensSelect1.fasta which contains sequence of all
transcripts for five genes from the Ensembl homo sapiens, release 65 annotation.

For the alignment of reads to transcriptome we recommend using software
bowtie, which is able to report all valid alignments for all the reads. The
following bash commands can be used to create the SAM file with alignments:

# create bowtie reference index for the annotation

$ bowtie-build -f --ntoa ensSelect1.fasta ensSelect1-index

# align reads in data-c0b0.fastq against index

$ bowtie -q -v 3 -3 0 -p 4 -a -m 100 --sam ensSelect1-index \

data-c0b0.fastq data-c0b0.sam

In the following examples we will be using the data-c0b0.sam file provided
with the package. To make the life easier we set our current directory to the
extdata directory.

> # save the current directory

> # (we move back to old_directory at the end of vignette)

> old_directory = getwd();

> on.exit(setwd(old_directory))

> # move to directory with the data

> setwd(system.file("extdata",package="BitSeq"));

5 Basic use

5.1 Estimating expression

To estimate expression we use the function getExpression, which takes as an
input the SAM file with alignments as well as reference Fasta file that was used
for the alignment. The function returns a list in which the first item exp is
a DataFrame with expression mean and standard deviation of each transcript.
The second item fn is a file name of a file containing all the expression samples,
which are used in the later DE analysis. The last two items are counts, vector
containing estimated read counts per transcript, and trInfo, DataFrame with
information about transcripts.

The log option tells the function to return mean and standard deviation of
logged samples and the last three options, which are parameters for the sampling
algorithm, are passed to the estimateExpression function used for expression
inference.

> res1 <- getExpression("data-c0b0.sam",

+ "ensSelect1.fasta",

+ log = TRUE,

+ MCMC_burnIn=200,

+ MCMC_samplesN=200,

+ MCMC_samplesSave=50,

+ seed=47)

1link for homo sapiens, release 66: ftp://ftp.ensembl.org/pub/release-66/fasta/homo_
sapiens/cdna/Homo_sapiens.GRCh37.66.cdna.all.fa.gz
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[time: +0.000000 m]

Reads: all(Ntotal): 4817 mapped(Nmap): 4663

[time: +0.000000 m]

[time: +0.000000 m]

Alignments: 21259.

[time: +0.000000 m]

N mapped: 4663

N total: 4817

All alignments: 25910

Isoforms: 56

Burn in: 200 DONE. [time: +0.000000 m]

Sampling DONE. [time: +0.000000 m]

rHat (for 200 samples)

rHat (rH theta| tid | mean theta)

1.2451 ( 1.2527 | 15 | 0.08371)

1.2394 ( 1.2936 | 14 | 0.02992)

1.1827 ( 1.1530 | 31 | 0.00660)

Mean rHat of worst 10 transcripts: 1.137175

Mean C0: (0 0 0 0 ). Nunmap: 154

Producing 915 final samples from each chain.

Sampling DONE. [time: +0.016667 m]

rHat (for 915 samples)

rHat (rH theta| tid | mean theta)

1.0312 ( 1.0183 | 2 | 0.01813)

1.0220 ( 1.0216 | 32 | 0.00756)

1.0211 ( 1.0119 | 43 | 0.01082)

Mean rHat of worst 10 transcripts: 1.013715

Mean C0: (0 0 0 0 ). Nunmap: 154

Total samples: 4460

The data being processed in this vignette is a small, example dataset, thus it
is safe to use lower values for MCMC_burnIn, MCMC_samplesN, MCMC_samplesSave.
For normal sized dataset, you can use default values of these parameters (all
three parameters have default value 1000).

To view histogram of log RPKM expression use:

> hist(res1$exp$mean)

We can load the expression samples using function loadSamples, which re-
turns DataFrame containing all expression samples.

> samples1 <- loadSamples(res1$fn)

Following command produces plot showing correlation between two transcript
expression estimates:

> plot( unlist(s2["ENST00000436661",]),

+ unlist(s2["ENST00000373501",]))
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The getExpression function first computes probabilities for every alignment
and then uses this data in Markov chain Monte Carlo algorithm which samples
from the posterior distribution of transcript expression. Both these steps are
computationally very expensive and can take several hours to finish. In case of
MCMC sampling, which has to converge to the correct posterior distribution
this can take more than day for extensive data.

5.2 Identifying differentially expressed transcripts

In the differential expression analysis we will use the expression samples pro-
duced in first step as well as expression samples from other experiments provided
with the package. It is essential to use biological replicates in both conditions
in order to account for biological variation which could otherwise cause false
positive DE calls.

> cond1Files = c(res1$fn,"data-c0b1.rpkm")

> cond2Files = c("data-c1b1.rpkm","data-c1b1.rpkm")

We use the function getDE to infer the Probability of Positive Log Ratio for
each transcript. The function again returns list with first item pplr containing
DataFrame with PPLR and other information. The second item fn contains list
of filenames with the names of produced files. Using the optionsamples=TRUE,
the function creates also files containing the condition mean expression samples.

> de1 <- getDE(list(cond1Files, cond2Files),

+ samples=TRUE)

[time: +0.000000 s]

# 5 done. [time: +0.000000 s]

# 10 done. [time: +0.000000 s]

# 15 done. [time: +0.000000 s]

# 20 done. [time: +0.000000 s]

# 25 done. [time: +0.000000 s]

# 30 done. [time: +0.000000 s]

# 35 done. [time: +0.000000 s]

# 40 done. [time: +0.000000 s]

# 45 done. [time: +0.000000 s]

# 50 done. [time: +0.000000 s]

> print(de1$fn)

$pplr

[1] "/tmp/RtmpV3XUCL/dataBS-DE-9d6b6a5de0.pplr"

$samplesFiles

[1] "/tmp/RtmpV3XUCL/dataBS-DE-9d6b6a5de0-C0.est"

[2] "/tmp/RtmpV3XUCL/dataBS-DE-9d6b6a5de0-C1.est"

Now we can rank the transcripts based on the PPLR value to identify the
ones with the highest probability of being differentially expressed:

> head( de1$pplr[ order(abs(0.5-de1$pplr$pplr), decreasing=TRUE ), ], 5)
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DataFrame with 5 rows and 6 columns

pplr 1~2 log2FC 1~2

<numeric> <numeric>

ENST00000370994 0.0384615 -1.064300

ENST00000465588 0.8269230 0.751832

ENST00000476493 0.8076920 0.585900

ENST00000341885 0.8076920 0.688918

ENST00000480542 0.2115380 -0.828343

ciLow ciHigh

<numeric> <numeric>

ENST00000370994 -2.205720 0.0200106

ENST00000465588 -0.606606 2.1576800

ENST00000476493 -0.931446 2.0943900

ENST00000341885 -1.494350 2.2835900

ENST00000480542 -3.086030 1.2886800

mean 1 mean 2

<numeric> <numeric>

ENST00000370994 9.54548 8.80776

ENST00000465588 8.89123 9.41236

ENST00000476493 8.19708 8.60320

ENST00000341885 8.29343 8.77095

ENST00000480542 7.44695 6.87278

6 Advanced use

Both expression estimation and identification of differentially expressed tran-
scripts involves multiple steps which are independent. Computing these steps
independently might be useful for keeping intermediate results in case of crash
or error. As BitSeq makes extensive use of local files, it is essential to set path
to working directory containing alignment files and which will be used for stor-
ing results of individual steps. In this example we use the extdata directory
provided with the package:

> setwd(system.file("extdata",package="BitSeq"))

6.1 Stage 1 - Transcript expression analysis

6.1.1 Pre-processing alignments

In the pre-processing step, the parseAlignment function reads the SAM file
and assigns a probability to every valid alignment. These probabilities are saved
into .prob file and are the direct input for the expression estimation. We have
to specify the reference file which is used for identifying base mismatches and
we use uniform model for the read distribution along transcript:

> parseAlignment( "data-c0b0.sam",

+ outFile = "data-c0b0.prob",

+ trSeqFile = "ensSelect1.fasta",

+ trInfoFile = "data.tr",

+ verbose = TRUE )
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Assuming alignment file in 'sam' format.

Using alignments' header for transcript information.

Initializing fasta sequence reader.

Found gene names in sequence file, updating transcript information.

[time: +0.000000 m]

Using uniform read distribution.

Reads: all(Ntotal): 4817 mapped(Nmap): 4663

491 reads were used to estimate empirical distributions.

[time: +0.000000 m]

Writing alignment probabilities.

# 481 done. [time: +0.000000 m]

# 962 done. [time: +0.000000 m]

# 1443 done. [time: +0.000000 m]

# 1924 done. [time: +0.000000 m]

# 2405 done. [time: +0.000000 m]

# 2886 done. [time: +0.000000 m]

# 3367 done. [time: +0.000000 m]

# 3848 done. [time: +0.000000 m]

# 4329 done. [time: +0.000000 m]

# 4810 done. [time: +0.000000 m]

[time: +0.000000 m]

Analyzed 4817 reads:

154 had no alignments

The rest had 21259 alignments:

21259 single-read alignments

Computing effective lengths.

Transcript information saved into data.tr.

[time: +0.000000 m]

DONE. [time: +0.000000 m]

The program passes the SAM file twice and produces the data-c0b0.prob file
with the alignment probabilities as well as transcript information file data.tr
which contains transcript names and lengths extracted from the SAM file.

6.1.2 Estimating transcript expression

The estimateExpression function implements a generative model of RNA-
seq data and infers the transcript expression using Markov chain Monte Carlo
algorithm. The default MCMC algorithm is the Collapsed Gibbs sampling which
converges faster than regular Gibbs sampling (selectable by option gibbs=TRUE.
It is the most time consuming part of the BitSeq analysis process as it uses
multiple independent chains to sample the expression values and it iterates until
the chains converge to the same distribution.

The following example runs the sampler using the .prob file from previous
step, produces expression in RPKM measure and produces files with the prefix
data-c0b0 . It will produce two files, file data-c0b0.rpkm will contain a row for
each transcript with MCMC_samplesSave RPKM expression samples. The second
file data-c0b0.thetaMeans will contain the mean relative expression values for
every transcript.

> estimateExpression("data-c0b0.prob",
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+ outFile = "data-c0b0", outputType = "RPKM",

+ trInfoFile = "data.tr", MCMC_burnIn = 200,

+ MCMC_samplesN = 200, MCMC_samplesSave = 100,

+ MCMC_chainsN = 2)

N mapped: 4663

N total: 4817

All alignments: 25910

Isoforms: 56

Burn in: 200 DONE. [time: +0.016667 m]

Sampling DONE. [time: +0.000000 m]

rHat (for 200 samples)

rHat (rH theta| tid | mean theta)

1.1290 ( 1.0756 | 31 | 0.00766)

1.0522 ( 1.0556 | 22 | 0.00547)

1.0461 ( 1.0382 | 14 | 0.03055)

Mean rHat of worst 10 transcripts: 1.035270

Mean C0: (0 0 ). Nunmap: 154

Producing 1012 final samples from each chain.

Sampling DONE. [time: +0.016667 m]

rHat (for 1012 samples)

rHat (rH theta| tid | mean theta)

1.0157 ( 1.0067 | 14 | 0.02152)

1.0122 ( 1.0105 | 27 | 0.00214)

1.0074 ( 1.0042 | 43 | 0.01179)

Mean rHat of worst 10 transcripts: 1.006950

Mean C0: (0 0 ). Nunmap: 154

Total samples: 2424

The behavior of the sampling algorithm can be adjusted by optional argu-
ments, such as MCMC_chainsN which selects the number of chains. After produc-
ing MCMC_burnIn burn-in samples, the algorithm produces first MCMC_samplesN
samples from each chain in the first iteration. These are used to estimate the
number of samples needed for recording MCMC_samplesSave effective samples,
in the second, final, iteration.

6.1.3 Convergence checking via possible scale reduction estimation

The estimateExpressionLegacy uses different convergence checking mecha-
nism which mostly results in multiple iterations, producing more samples in
total. After each iteration, the possible scale reduction of marginal posterior
variance R̂ is computed for each transcript expression and the ten highest val-
ues are reported. If the average of ten highest possible scale reductions is less
than the MCMC_scaleReduction parameter, then the sampler produces one last
iteration during which subset of MCMC_samplesSave samples is recorded. Oth-
erwise the program continues with next iteration in which it produces twice as
many samples. The program terminates either after reaching the target scale
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reduction or after iteration which produces MCMC_samplesNmax samples. All
these parameters can be set also within a parameters file specified by the option
parFile with the advantage that the parameters such as MCMC_scaleReduction
or MCMC_samplesNmax can be adjusted while the sampler is running, example of
the parameters file parameters1.txt is provided in the extdata directory.

> estimateExpressionLegacy("data-c0b0.prob",

+ outFile = "data-c0b0", outputType = "RPKM",

+ trInfoFile = "data.tr", MCMC_burnIn = 200,

+ MCMC_samplesN = 200, MCMC_samplesSave = 100,

+ MCMC_scaleReduction = 1.1,

+ MCMC_chainsN = 2)

N mapped: 4663

N total: 4817

All alignments: 25910

Isoforms: 56

Burn in: 200 DONE. [time: +0.000000 m]

Sampling DONE. [time: +0.000000 m]

rHat (for 200 samples)

rHat (rH theta| tid | mean theta)

1.2504 ( 1.2013 | 14 | 0.02072)

1.1355 ( 1.2120 | 2 | 0.01588)

1.1330 ( 1.1361 | 15 | 0.09134)

Mean rHat of worst 10 transcripts: 1.072867

(target: 1.100)

Mean C0: (0 0 ). Nunmap: 154

Producing 200 final samples from each chain.

Sampling DONE. [time: +0.000000 m]

rHat (for 200 samples)

rHat (rH theta| tid | mean theta)

1.0823 ( 1.0665 | 16 | 0.00659)

1.0632 ( 1.0196 | 43 | 0.01089)

1.0624 ( 1.0747 | 12 | 0.00198)

Mean rHat of worst 10 transcripts: 1.037506

(target: 1.100)

Mean C0: (0 0 ). Nunmap: 154

Total samples: 800

6.1.4 Examining the samples

Again, we can view the resulting file (data-c0b0.rpkm in this case) using the
function loadSamples.

> loadSamples("data-c0b0.rpkm")
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6.1.5 Estimating transcript expression with Variational Bayes algo-
rithm

Variational Bayes is an alternative inference algorithm for estimating transcript
expression. While it accurately estimates mean expression, it underestimates
the variance. The algorithm is implemented in the function estimateVBEx-

pression which takes the same input as estimateExpression, the .prob file
and optionally the .tr file.

The default output is the mean θ and parameters of Dirichlet distribution
reported in data-c0b0-vb.m alphas. The θ can be multiplied by total number of
reads to produce the estimated read counts per transcript. The first row of the
data corresponds to noise transcript and should be discarded.

> estimateVBExpression("data-c0b0.prob",

+ outFile = "data-c0b0-vb", outputType = "RPKM",

+ trInfoFile = "data.tr")

N mapped: 4663

N total: 4817

All alignments: 25910

Isoforms: 56

End: bound decrease

iter(s): 39 bound: -58549.089 grad: 0.0001168 beta: 0.7105955

The function can also produce also samples from the posterior distribution
in form of RPKM, θ or counts when option samples is used.

6.2 Stage 2 - Differential expression analysis

6.2.1 Preparing for Differential Expression analysis

In the differential expression analysis we are comparing samples from two dif-
ferent conditions. Also in order to estimate biological variance of transcript
expression, we have to use data from at least one extra biological replicates. We
first specify the files containing expression samples from the Stage 1, using file
data-c0b0.rpkm computed in previous example and three other files provided
with the package:

> allConditions = list(c("data-c0b0.rpkm","data-c0b1.rpkm"),

+ c("data-c1b1.rpkm","data-c1b1.rpkm"))

The estimation of expression specific hyperparameters for the DE model requires
pre computing joint mean expression over all experiments using the getMean-

Variance function. As the DE model uses logged expression samples, we have
to compute the mean and variance of logged expression samples:

> getMeanVariance(allConditions,

+ outFile = "data.means",

+ log = TRUE )
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6.2.2 Estimating model hyperparameters

The hyperparameters for the model are estimated from the entire data using
Metropolis-Hastings MCMC algorithm. The values are smoothed afterwards
using the non-parametric Lowess smoothing algorithm:

> estimateHyperPar( outFile = "data.par",

+ conditions = allConditions,

+ meanFile = "data.means",

+ verbose = TRUE )

Transcripts in expression file: 55

Samples are not logged. (will log for you)

Using -100 as minimum instead of log(0).

Files with samples loaded.

Number of all replicates: 4

seed: 1384494708

Expression step: 0.0437299

[time: +0.000000 s]

Running sampler.

.....

Sampling done.

Have 10 parameters to smooth.

# alphaSmooth f: 0.2 nSteps: 5

# betaSmooth f: 0.2 nSteps: 5

DONE.

[time: +0.066667 m]

6.2.3 Inferring condition mean expression and calculating Probabil-
ity of Positive Log Ratio

The model for Differential Expression analysis uses the posterior samples from
expression analysis to infer samples of the mean expression for each transcript
in every condition. Function estimateDE computes the samples and uses them
to compute the Probability of Positive Log Ratio, which is the probability of a
transcript being up-regulated in the first condition as well as inverse probability
of transcript being down-regulated in the first condition. The PPLR, mean log2

fold change with confidence intervals and mean condition mean expression are
saved into the final output file with extension .pplr and prefix specified by the
option outFile:

> estimateDE(allConditions,

+ outFile = "data",

+ parFile = "data.par" )

# 5 done. [time: +0.000000 s]

# 10 done. [time: +0.000000 s]

# 15 done. [time: +0.000000 s]

# 20 done. [time: +0.000000 s]

# 25 done. [time: +0.000000 s]

# 30 done. [time: +0.000000 s]

# 35 done. [time: +0.000000 s]

10



# 40 done. [time: +0.000000 s]

# 45 done. [time: +0.000000 s]

# 50 done. [time: +0.000000 s]

> ##

> ## pretend run with three conditions and normalization constants

> ##

> cond3Files = c("data-c2b0.rpkm","data-c2b1.rpkm", "data-c2b2.rpkm")

> estimateDE(list( allConditions[[1]], allConditions[[2]], cond3Files),

+ outFile="mydata",

+ parFile="mydata.par",

+ norm=c(1.0, 0.999, 1.0017, 0.9998, 1.0, 0.99, 0.97),

+ pretend=TRUE)

estimateDE data-c0b0.rpkm data-c0b1.rpkm C data-c1b1.rpkm data-c1b1.rpkm C\

data-c2b0.rpkm data-c2b1.rpkm data-c2b2.rpkm --outPrefix mydata\

--parameters mydata.par --norm 1,0.999,1.0017,0.9998,1,0.99,0.97

In case one is interested in the condition mean expression samples as well,
they can be obtained by using the samples flag:

> estimateDE(allConditions,

+ outFile = "data",

+ parFile = "data.par",

+ samples = TRUE )

# 5 done. [time: +0.000000 s]

# 10 done. [time: +0.000000 s]

# 15 done. [time: +0.000000 s]

# 20 done. [time: +0.000000 s]

# 25 done. [time: +0.000000 s]

# 30 done. [time: +0.000000 s]

# 35 done. [time: +0.000000 s]

# 40 done. [time: +0.000000 s]

# 45 done. [time: +0.000000 s]

# 50 done. [time: +0.000000 s]

This produces three extra files, the first two data-C0.est , data-C1.est containing
the condition means for each condition and the third file data.estVar containing
samples of inferred variance for the first condition.

7 External use of BitSeq

All major computation in BitSeq is executed by running C++ libraries, and
there is also a C++ only implementation of BitSeq package available at http:

//code.google.com/p/bitseq/. The standalone package can be particularly
useful for clusters without support for R or Bioconductor.

In order to facilitate the use of C++ version of the package, the relevant func-
tions in R interface provide pretend option. Using this option, the computation
will not be executed, instead the function will print out one or more command
line commands which can be directly used with the C++ implementation.
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> res1 <- getExpression("data-c0b0.sam",

+ "ensSelect1.fasta",

+ outPrefix="localDir/data-c0b0",

+ log = TRUE,

+ MCMC_burnIn=200,

+ MCMC_samplesN=200,

+ pretend=TRUE)

parseAlignment data-c0b0.sam --outFile localDir/data-c0b0.prob --trSeqFile\

ensSelect1.fasta --trInfoFile localDir/data-c0b0.tr --uniform

estimateExpression localDir/data-c0b0.prob --outPrefix localDir/data-c0b0\

--outType rpkm --trInfoFile localDir/data-c0b0.tr --MCMC_burnIn 200\

--MCMC_samplesN 200

getVariance localDir/data-c0b0.rpkm --outFile localDir/data-c0b0.mean --log
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