
The Genominator User Guide

James Bullard Kasper D. Hansen

Modified: April 18, 2010, Compiled: October 2, 2012

> ## -- For Debugging / Timing

> ## require(RSQLite)

> ## source("../../R/Genominator.R")

> ## source("../../R/importAndManage.R")

> ## source("../../R/plotRegion.R")

> ## source("../../R/coverage.R")

> ## source("../../R/goodnessOfFit.R")

1 Introduction

Overview

The Genominator package provides an interface to storing and retrieving genomic data, together with some
additional functionality aimed at high-throughput sequence data. The intent is that retrieval and summa-
rization will be fast enough to enable online experimentation with the data.

We have used to package to analyze tiling arrays and (perhaps more appropriate) RNA-Seq data consisting
of more than 400 million reads.

The canonical use case at the core of the package is summarizing the data over a large number of genomic
regions. The standard example is for each annotated exon in human, count the number of reads that lands
in that exon, for all experimental samples.

Data is stored in a SQLite database, and as such the package makes it possible to work with very large
datasets in limited memory. However, working with SQLite databases is limited by I/O (disk speed), and
substantial performance gains are possible by using a fast disk.

Work using this package should cite [1].

Limitations

While data may be stored in different ways using the experimental data model described below, typically
(for sequencing data) we associate each read to a single location in the genome. This means that the package
does not currently support paired-end reads, nor dealing with reads that span exon-exon junctions. Work is
being done to include these important cases.

As mentioned above, the package uses a SQLite backend and the speed of its functionality is primarily
limited by disk speed, which is unlike many other R packages. There is no gain in having multiple cores
available and there is substantial slow down when accessing the data over a networked drive.

2 Data model

The core functionality of the package is the analysis of experimental data using genomic annotation, such
as counting the number of reads falling in annotated exons. In the following we describe what we mean by
experimental and annotation data.

1

Experimental data

The package utilizes RSQLite to store the data corresponding to an experiment. The SQL data model is:

chr INTEGER, strand INTEGER (-1,0,1), location INTEGER, [name NUMERIC]*

Specifically it means that each data unit has an associated (non-empty) genomic location triplet, namely
chr (chromosome coded as an integer), strand (one of -1, 0, or 1 representing reverse strand, no strand
information, and forward strand respectively) as well as a location. We also allow an unlimited number
of additional numeric variables. (The requirement that the additional variables be numeric is purely an
optimization.) There is no requirement that the location triplet (chr, strand, location) only occurs once in
the data.

Examples are

chr INTEGER, strand INTEGER (-1,0,1), location INTEGER, chip_1 REAL, chip_2 REAL

chr INTEGER, strand INTEGER (-1,0,1), location INTEGER, counts INTEGER

The first data model could describe data from two tiling arrays, and in that case there would typically
only be a single occurrence of each location triplet (chr, strand, location).

The second data model could describe

• data from a single sequencing experiment, each row corresponding to a read, such as

chr, strand, location, counts

1, 1, 1, 1

1, 1, 1, 1

1, 1, 2, 1

(here two reads map to the same location)

• data from a single sequencing experiment, but where the reads have been aggregated such that each
row corresponds to the number of reads mapped to that location.

chr, strand, location, counts

1, 1, 1, 2

1, 1, 1, 1

Annotation data

Unlike experimental data, which is stored in an SQLite database, we represent annotation as an R data.frame

with the following columns:

chr integer, strand integer (-1L,0L,1L), start integer, end integer, [name class]*

As in the experimental data representation, strand information is encoded as -1 for Reverse/Minus Strand,
0 for No Strand Information Available/Relevant, and 1 for Forward/Plus Strand. Each row is typically called
a region (or region of interest, abbreviated ROI).

Since each region is consecutive, a transcript with multiple exons needs to be represented by multiple
regions and one would typically have a column indicating transcript id, linking the different regions together.
This data model is very similar to the genomic feature format (GFF).

A common example is

chr integer, strand integer (-1L,0L,1L), start integer, end integer, feature factor

3 Overview

There are 3 broad classes of functions within Genominator : functions that import and transform data,
functions that retrieve and summarize data and finally functions that operate on retrieved data (focused on
analysis of next generation sequencing data).

In the next two sections we will generate experimental data and annotation data for use in later examples.

2

Creating Experimental Data

We are going to walk through a very simple example using simulated experimental data to present the data
import pipeline. This example uses a verbose setting of TRUE to illustrate activities performed in the SQLite
databases. The example data will be used later in the vignette to illustrate other aspects of the package.

For an example of importing “real” next generation sequence data, see the companion vignette on working
with the ShortRead package, which illustrates the use of importFromAlignedReads.

The data can be thought of as next generation sequencing data (N number of reads), in an organism
with 16 chromosomes and a small number of annotated regions (K regions).

> library(Genominator)

> options(verbose = TRUE) # to be used by Genominator functions.

> set.seed(123)

> N <- 100000L # the number of observations.

> K <- 100L # the number of annotation regions, not less than 10

> df <- data.frame(chr = sample(1:16, size = N, replace = TRUE),

+ location = sample(1:1000, size = N, replace = TRUE),

+ strand = sample(c(1L,-1L), size = N, replace = TRUE))

> head(df)

chr location strand

1 5 603 -1

2 13 23 -1

3 7 821 -1

4 15 37 -1

5 16 236 1

6 1 871 -1

> eDataRaw <- importToExpData(df, "my.db", tablename = "ex_tbl", overwrite = TRUE)

Writing table:

0.168 sec

Creating index:

0.169 sec

> eDataRaw

table: ex_tbl

database file: /tmp/Rtmprq1ytG/Rbuild48b34d57a3c4/Genominator/inst/doc/my.db

index columns: chr location strand

mode: w

schema:

chr location strand

"INTEGER" "INTEGER" "INTEGER"

> head(eDataRaw)

chr location strand

1 1 1 -1

2 1 1 -1

3

3 1 1 -1

4 1 1 -1

5 1 1 -1

6 1 1 -1

The df object contains unsorted reads, which is imported using importToExpData. eDataRaw is an
example of an ExpData object, the core object in Genominator. Such an object essentially points to a
specific table in a specific database (in SQLite a database is a file). The data in eDataRaw is ordered along
the genome (unlike df), but there may be multiple rows with the same genomic location. The argument
overwrite = TRUE indicates that if the table already exists in the database, overwrite it. This can be handy
for scripts and vignettes.

The eDataRaw has a number of slots related to an internal bookkeeping of database connection. The
index columns indicates what columns of the database are indexed. For “normal” uses this will always be
(chr, location, strand). The mode indicates whether the database is in read or write mode (write implies
read).

In a normal pipeline, the first thing we do is aggregate the reads. With default settings, this means
counting the number of reads starting at each (chr, location, strand). The resulting database has only one
row with a given (chr, location, strand).

> eData <- aggregateExpData(eDataRaw, tablename = "counts_tbl",

+ deleteOriginal = FALSE, overwrite = TRUE)

Creating table: counts_tbl:

0.002 sec

inserting:

0.081 sec

creating index:

0.057 sec

> eData

table: counts_tbl

database file: /tmp/Rtmprq1ytG/Rbuild48b34d57a3c4/Genominator/inst/doc/my.db

index columns: chr location strand

mode: w

schema:

chr location strand counts

"INTEGER" "INTEGER" "INTEGER" "INTEGER"

> head(eData)

chr location strand counts

1 1 1 -1 7

2 1 1 1 2

3 1 2 -1 1

4 1 2 1 2

5 1 3 -1 3

6 1 3 1 4

4

The return object is (as always) an ExpData object pointing to the table that was created. Note the
addition of the counts column.

The input ExpData object points to table ex_tbl in database my.db. The output ExpData object
(currently) always uses the same database as the input object, possibly with a different name (in this case
counts_tbl). All functions that manipulate databases have the arguments overwrite and deleteOriginal.
If deleteOriginal = TRUE, the original table (in this case ex_tbl) is deleted. If tablename = NULL (de-
fault), the function does a destructive in-place modification of the table.

It is possible to break ExpData objects. For example, if we had used the aggregateExpData function with
deleteOriginal = TRUE, the table that eDataRaw points to would have been deleted. Or, if the function had
been used with tablename = NULL (default), both eDataRaw and eData would point to the same table in the
database, but the schema recorded in eDataRaw during instantiation would be out of date because it would
not include the counts column. While this may seem problematic, it has not been cause for much concern.
Remember, that ExpData objects are very cheap to create, so if something seems to break, delete and
recreate it. With a bit of familiarity, this problem can be avoided. In general, we highly recommend carrying
out the creation/manipulation of data in a script separate from the analysis, since creation/manipulation
requires write access, whereas analysis is read only.

Each ExpData object has a mode that indicates whether the database is in read or write, which also
implies read, mode. The eDataRaw and eData objects created above had a ’write’ mode. To prevent unwanted
modifications to the database, we will instantiate a new eData object in ’read’ only mode.

> eData <- ExpData(dbFilename = "my.db", tablename = "counts_tbl")

> eData

table: counts_tbl

database file: /tmp/Rtmprq1ytG/Rbuild48b34d57a3c4/Genominator/inst/doc/my.db

index columns: chr location strand

mode: r

schema:

chr location strand counts

"INTEGER" "INTEGER" "INTEGER" "INTEGER"

> head(eData)

chr location strand counts

1 1 1 -1 7

2 1 1 1 2

3 1 2 -1 1

4 1 2 1 2

5 1 3 -1 3

6 1 3 1 4

This used the constructor function ExpData, which is a standard way to instantiate ExpData objects in a
new session.

It is possible to use the normal [and $ operators on ExpData objects (although they do not have
rownames). This is rarely necessary, and the return objects may be massive.

> head(eData$chr)

chr

1 1

2 1

5

3 1

4 1

5 1

6 1

> eData[1:3, 1:2]

chr location

1 1 1

2 1 1

3 1 2

Creating Annotation

We now create a suitable annotation object. As described in earlier sections, annotation consists of consec-
utive genomic regions that may or may not be overlapping.

> annoData <- data.frame(chr = sample(1:16, size = K, replace = TRUE),

+ strand = sample(c(1L, -1L), size = K, replace = TRUE),

+ start = (st <- sample(1:1000, size = K, replace = TRUE)),

+ end = st + rpois(K, 75),

+ feature = c("gene", "intergenic")[sample(1:2, size = K, replace = TRUE)])

> rownames(annoData) <- paste("elt", 1:K, sep = ".")

> head(annoData)

chr strand start end feature

elt.1 13 -1 460 521 gene

elt.2 4 -1 332 405 gene

elt.3 13 1 177 236 gene

elt.4 3 1 390 472 gene

elt.5 15 1 130 203 gene

elt.6 1 1 885 964 intergenic

In this example, the annoData object needs to have distinct row names in order to maintain the link between
annotation and returned data structures from the Genominator API.

Also the strand column needs to have values in {−1, 0, 1}, and the chr column needs to have integer
values. When you access “real” annotation, you will often need a post-processing step where the annotation
gets massaged into this format. See the additional vignette on working with the ShortRead package for a
real-life example.

4 Creating and managing data

For illustrative purposes, we generate another set of data:

> df2 <- data.frame(chr = sample(1:16, size = N, replace = TRUE),

+ location = sample(1:1000, size = N, replace = TRUE),

+ strand = sample(c(1L,-1L), size = N, replace = TRUE))

> eData2 <- aggregateExpData(importToExpData(df2, dbFilename = "my.db", tablename = "ex2",

+ overwrite = TRUE))

Writing table:

0.179 sec

Creating index:

0.178 sec

6

Creating table: __tmp_9508:

0.002 sec

inserting:

0.083 sec

droping original table:

0.009 sec

renaming table:

0.002 sec

creating index:

0.053 sec

as well as re-doing the aggregation performed previously (with a new tablename)

> eData1 <- aggregateExpData(importToExpData(df, dbFilename = "my.db", tablename = "ex1",

+ overwrite = TRUE))

Writing table:

0.17 sec

Creating index:

0.175 sec

Creating table: __tmp_7215:

0.002 sec

inserting:

0.089 sec

droping original table:

0.009 sec

renaming table:

0.002 sec

creating index:

0.063 sec

Aggregation

Aggregation refers to aggregation over rows of the database. This is typically used for sequencing data and is
typically employed in order to go from a “one row, one read” type representation to a “one row, one genomic
location with an associated number of reads”. The default arguments creates a new column counts using an
“aggregator” that is the number of times a genomic location occurs in the data. Aggregation has also been
discussed in an earlier section.

Merging

It is natural to store a number of experimental replicates in columns of a table. However, it is often the case
that we receive the data in chunks over time, and that merging new values with old values is not trivial. For
this reason we provide a joinExpData function to bind two tables together.

7

Essentially, merging consists of placing two (or more) columns next to each other. It is (somewhat)
clear that (in general) it makes the most sense to merge two datasets when each dataset has only a single
occurrence of each genomic location. Otherwise, how would we deal with/interpret the case where a genomic
location occurs multiple times in each dataset? For that reason, joining two datasets typically happens after
they have been aggregated.

It is possible to merge/join the datasets in R and then subsequently use the import facility to store the
resulting object in a database. In general, that approach is less desirable because 1) it is slow(er) and 2) it
requires all datasets to be present in memory.

> ## eData1 <- aggregateExpData(importToExpData(df2, dbFilename = "my.db", tablename = "ex1",

> ## overwrite = TRUE))

> ## eData2 <- aggregateExpData(importToExpData(df, dbFilename = "my.db", tablename = "ex2",

> ## overwrite = TRUE))

> eDataJoin <- joinExpData(list(eData1, eData2), fields =

+ list(ex1 = c(counts = "counts_1"), ex2 = c(counts = "counts_2")),

+ tablename = "allcounts")

Creating union:

0.048 sec

Left outer join with table ex1:

0.095 sec

Left outer join with table ex2:

0.099 sec

Indexing:

0.055 sec

> head(eDataJoin)

chr location strand counts_1 counts_2

1 1 1 -1 7 2

2 1 1 1 2 3

3 1 2 -1 1 2

4 1 2 1 2 5

5 1 3 -1 3 3

6 1 3 1 4 3

In this example both eData1 and eData2 have a column named counts that we rename in the resulting
object using the fields argument. Also missing values are introduced when the locations in one object
are not present in the other. Finally, the joinExpData function supports joining an arbitrary number of
ExpData objects.

We can examine the result using summarizeExpData (described later)

> summarizeExpData(eDataJoin, fxs = c("total", "avg", "count"))

fetching summary:

0.021 sec

total(counts_1) total(counts_2) avg(counts_1) avg(counts_2) count(counts_1)

1.000000e+05 1.000000e+05 3.267760e+00 3.267547e+00 3.060200e+04

count(counts_2)

3.060400e+04

Because of the way we store the data, the “total” column will be the total number of read, the “count” column
will be the number of bases where a read starts, and the “avg” column will be average number of reads at a
given genomic location (removing the genomic locations that were not sequenced).

8

Collapsing

Another common operation is collapsing data across columns. One use would be to join to experiments
where the same sample was sequenced. One advantage of collapsing the data in this case is speed.

Collapsing is most often done using summation (the default):

> head(collapseExpData(eDataJoin, tablename = "collapsed", collapse = "sum", overwrite = TRUE))

SQL query: CREATE TABLE collapsed (chr INTEGER, location INTEGER, strand

INTEGER, COL)

creating table:

0.003 sec

SQL query: INSERT INTO collapsed SELECT chr, location, strand,

CAST(TOTAL(counts_1)AS INTEGER)+CAST(TOTAL(counts_2)AS INTEGER) FROM allcounts

GROUP BY chr,location,strand

inserting data:

0.087 sec

creating index:

0.075 sec

chr location strand COL

1 1 1 -1 9

2 1 1 1 5

3 1 2 -1 3

4 1 2 1 7

5 1 3 -1 6

6 1 3 1 7

But it could also be done using an “average” or a “weighted average” (weighted according to sequencing
effort).

> head(collapseExpData(eDataJoin, tablename = "collapsed", collapse = "weighted.avg", overwrite = TRUE))

fetching summary:

0.011 sec

SQL query: CREATE TABLE collapsed (chr INTEGER, location INTEGER, strand

INTEGER, COL)

creating table:

0.002 sec

SQL query: INSERT INTO collapsed SELECT chr, location, strand, TOTAL(counts_1)

* 0.5+TOTAL(counts_2) * 0.5 FROM allcounts GROUP BY chr,location,strand

inserting data:

0.074 sec

creating index:

0.056 sec

chr location strand COL

9

1 1 1 -1 4.5

2 1 1 1 2.5

3 1 2 -1 1.5

4 1 2 1 3.5

5 1 3 -1 3.0

6 1 3 1 3.5

> head(collapseExpData(eDataJoin, tablename = "collapsed", collapse = "avg", overwrite = TRUE))

SQL query: CREATE TABLE collapsed (chr INTEGER, location INTEGER, strand

INTEGER, COL)

creating table:

0.002 sec

SQL query: INSERT INTO collapsed SELECT chr, location, strand,

(TOTAL(counts_1)+TOTAL(counts_2))/2 FROM allcounts GROUP BY chr,location,strand

inserting data:

0.075 sec

creating index:

0.055 sec

chr location strand COL

1 1 1 -1 4.5

2 1 1 1 2.5

3 1 2 -1 1.5

4 1 2 1 3.5

5 1 3 -1 3.0

6 1 3 1 3.5

In this case setting collapse = "avg" or collapse = "weighted.avg" respectively yields the exact
same result, since the two experiments have the same number of reads.

5 Interface

In this section we describe the core functionality of the Genominator package.
We will use two examples: one ExpData consisting of a single (aggregated) experiment and one ExpData

consisting of two aggregated, joined experiments.

> eData <- ExpData("my.db", tablename = "counts_tbl", mode = "r")

> eDataJoin <- ExpData("my.db", tablename = "allcounts", mode = "r")

Summarizing experimental data

We can use the function summarizeExpData to summarize ExpData objects. This function does not utilize
annotation, so the summarization is in some sense “global”. The call to generate the total number of counts,
i.e. the number of reads, in column “counts” is

> ss <- summarizeExpData(eData, what = "counts")

fetching summary:

0.008 sec

10

> ss

[1] 1e+05

The what argument is present in many of the following functions. It refers to which columns are being
used, and in general the default depends on the type of function. If the function summarizes data, the default
is “all columns, except the genomic location columns”, whereas if the function retrieves data, the default is
“all columns”.

We can customize the summary by specifying the name of any SQLite function (www.sqlite.org/lang_
aggfunc.html) in the fxs argument

> summarizeExpData(eData, what = "counts", fxs = c("MIN", "MAX"))

fetching summary:

0.01 sec

MIN(counts) MAX(counts)

1 14

This yields the maximum/minimum number of reads mapped to a single location. The minimum number
of reads is not zero because we only store locations associated with reads.

Selecting a region

We can access genomic data in a single genomic region using the function getRegion.

> reg <- getRegion(eData, chr = 2L, strand = -1L, start = 100L, end = 105L)

SQL query: SELECT * FROM counts_tbl WHERE chr = 2 AND (strand IN (-1) OR strand

= 0) AND location between 100 AND 105 ORDER BY chr,location,strand

fetching region query:

0.003 sec

> class(reg)

[1] "data.frame"

> reg

chr location strand counts

1 2 100 -1 3

2 2 101 -1 5

3 2 102 -1 4

4 2 103 -1 6

5 2 104 -1 3

6 2 105 -1 4

It is possible exclude either start or end in which case the default values are 0 and 1e12.

Using annotation with experimental data

The two previous sections show useful functions, but in general we want to summarize data over many
genomic regions simultaneously, in order to

• Summarize regions (means, lengths, sums, etc)

• Fit models on each region

11

www.sqlite.org/lang_aggfunc.html
www.sqlite.org/lang_aggfunc.html

• Perform operations over classes of regions (genes, intergenic regions, ncRNAs)

There are essentially two different strategies for this: retrieve the data as a big object and then use R
functions to operate on the data (e.g. splitByAnnotation) or perform some operation on the different
regions in the database (e.g. summarizeByAnnotation). The first approach is more flexible, but also slower
and requires more memory. The second approach is faster, but limited to operations that can be expressed
in SQL.

First, we demonstrate how to summarize over regions of interest. Here we are going to compute the SUM
and COUNT of each region, which tell us the total number of sequencing reads at each location and the
number of unique locations that were read respectively.

> head(summarizeByAnnotation(eData, annoData, what = "counts", fxs = c("COUNT", "TOTAL"),

+ bindAnno = TRUE))

writing regions table:

0.011 sec

SQL query: SELECT __regions__.id, COUNT(counts), TOTAL(counts) FROM __regions__

LEFT OUTER JOIN counts_tbl ON __regions__.chr = counts_tbl.chr AND

counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND

(counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR

counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table:

0.024 sec

chr strand start end feature COUNT(counts) TOTAL(counts)

elt.1 13 -1 460 521 gene 58 193

elt.2 4 -1 332 405 gene 69 219

elt.3 13 1 177 236 gene 57 190

elt.4 3 1 390 472 gene 82 258

elt.5 15 1 130 203 gene 70 235

elt.6 1 1 885 964 intergenic 78 241

The result of summarizeByAnnotation is a data.frame. We use bindAnno = TRUE in order to keep the
annotation as part of the result, which is often very useful.

The fxs argument takes the names of SQLite functions, see www.sqlite.org/lang_aggfunc.html. One
important note regarding summation: the standard SQL function SUM handles the sum of only missing values,
which in R is expressed as sum(NA), differently from the SQLite specific function TOTAL. In particular, the SUM
function returns a missing value and the TOTAL function returns a zero. This is relevant when summarizing
over a genomic region containing no reads in one experiment, but reads in another experiment.

This next example computes, the number of reads mapping to the region for each annotated region, ig-
noring strand. Ignoring strand might be the right approach if the protocol does not retain strand information
(e.g. the current standard protocol for Illumina RNA-Seq).

> head(summarizeByAnnotation(eDataJoin, annoData, , fxs = c("SUM"),

+ bindAnno = TRUE, preserveColnames = TRUE, ignoreStrand = TRUE))

writing regions table:

0.01 sec

SQL query: SELECT __regions__.id, SUM(counts_1), SUM(counts_2) FROM __regions__

LEFT OUTER JOIN allcounts ON __regions__.chr = allcounts.chr AND

allcounts.location BETWEEN __regions__.start AND __regions__.end GROUP BY

__regions__.id ORDER BY __regions__.id

12

www.sqlite.org/lang_aggfunc.html

fetching summary table:

0.033 sec

chr strand start end feature counts_1 counts_2

elt.1 13 -1 460 521 gene 417 390

elt.2 4 -1 332 405 gene 469 434

elt.3 13 1 177 236 gene 367 367

elt.4 3 1 390 472 gene 519 518

elt.5 15 1 130 203 gene 463 489

elt.6 1 1 885 964 intergenic 501 484

Essentially, this output is the input to a simple differential expression analysis.
Note that if two regions in the annotation overlap, data falling in the overlap will be part of the end

result for each region.
We can produce summarizes by category using the splitBy argument.

> res <- summarizeByAnnotation(eData, annoData, what = "counts", fxs = c("TOTAL", "COUNT"),

+ splitBy = "feature")

writing regions table:

0.01 sec

SQL query: SELECT __regions__.id, TOTAL(counts), COUNT(counts) FROM __regions__

LEFT OUTER JOIN counts_tbl ON __regions__.chr = counts_tbl.chr AND

counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND

(counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR

counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table:

0.023 sec

> class(res)

[1] "list"

> lapply(res, head)

$gene

TOTAL(counts) COUNT(counts)

elt.1 193 58

elt.2 219 69

elt.3 190 57

elt.4 258 82

elt.5 235 70

elt.7 301 86

$intergenic

TOTAL(counts) COUNT(counts)

elt.6 241 78

elt.8 283 86

elt.9 221 68

elt.11 206 62

elt.13 228 82

elt.16 235 72

Finally, we might want to join the relevant annotation to the summaries using the bindAnno argument.

13

> res <- summarizeByAnnotation(eData, annoData, what = "counts", fxs = c("TOTAL", "COUNT"),

+ splitBy = "feature", bindAnno = TRUE)

writing regions table:

0.01 sec

SQL query: SELECT __regions__.id, TOTAL(counts), COUNT(counts) FROM __regions__

LEFT OUTER JOIN counts_tbl ON __regions__.chr = counts_tbl.chr AND

counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND

(counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR

counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table:

0.023 sec

> lapply(res, head)

$gene

chr strand start end feature TOTAL(counts) COUNT(counts)

elt.1 13 -1 460 521 gene 193 58

elt.2 4 -1 332 405 gene 219 69

elt.3 13 1 177 236 gene 190 57

elt.4 3 1 390 472 gene 258 82

elt.5 15 1 130 203 gene 235 70

elt.7 2 1 24 109 gene 301 86

$intergenic

chr strand start end feature TOTAL(counts) COUNT(counts)

elt.6 1 1 885 964 intergenic 241 78

elt.8 16 -1 729 820 intergenic 283 86

elt.9 6 1 656 726 intergenic 221 68

elt.11 14 -1 550 612 intergenic 206 62

elt.13 1 -1 116 201 intergenic 228 82

elt.16 8 -1 419 492 intergenic 235 72

(Both of these example might require ignoreStrand = TRUE in a real world application.)
Unfortunately, the summarizeByAnnotation function is only able to utilize the very small set of SQLite

functions, essentially limiting the function to computing very simple summaries.
We also mention the groupBy argument to summarizeByAnnotation. This argument allows for an ad-

ditional summarization level, used in the following way: assume that the annoData object has rows corre-
sponding to exons and that there is an additional column (say gene_id) describing how exons are grouped
into genes. If groupBy = "gene_id" the final object will have one line per gene, containing the summarized
data over each set of exons.

We will now examine the splitByAnnotation function that splits the data according to annotation and
returns the “raw” data. The return object of this function may be massive depending on the size of the data
and the size of the annotation. In general we advise to do as much computation as possible using SQLite
(essentially using summarizeByAnnotation), but sometimes it is necessary to access the raw data. Leaving
aside the problems with the size of the return object, splitByAnnotation is reasonably fast.

We start by only splitting on the annotated regions of type “gene”.

> dim(annoData[annoData$feature %in% "gene",])

[1] 51 5

> a <- splitByAnnotation(eData, annoData[annoData$feature %in% "gene",])

14

writing region table:

0.009 sec

SQL query: SELECT counts_tbl.* , __regions__.id FROM counts_tbl INNER JOIN

__regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN

__regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) ORDER BY

__regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table:

0.017 sec

SQL query: SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER

JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location

BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY

__regions__.id ORDER BY __regions__.id

count query:

0.009 sec

performing split:

0.004 sec

> class(a)

[1] "list"

> length(a)

[1] 51

> names(a)[1:10]

[1] "elt.1" "elt.2" "elt.3" "elt.4" "elt.5" "elt.7" "elt.10" "elt.12"

[9] "elt.14" "elt.15"

> head(a[[1]])

chr location strand counts

1 13 460 -1 4

2 13 461 -1 5

3 13 462 -1 2

4 13 463 -1 3

5 13 464 -1 4

6 13 465 -1 2

There are several notes here. For starters, the return object is named according to the rownames of the
annotation data. Also, only annotated regions with data are represented in the return object, so in general
the return object does not have an element for each annotated region. We provide several convenience
functions for operating on the results of splitByAnnotation, which are discussed later.

Now we wish to compute a trivial function over the counts, such as a quantile.

> sapply(a, function(x) { quantile(x[,"counts"], .9) })[1:10]

elt.1.90% elt.2.90% elt.3.90% elt.4.90% elt.5.90% elt.7.90% elt.10.90%

5 5 6 5 5 6 6

elt.12.90% elt.14.90% elt.15.90%

5 5 5

15

Often we wish to use the annotation information when operating on the data in each region. The
applyMapped function makes this easy by appropriately matching up the annotation and the data. Es-
sentially, this function ensures that you are applying the right bit of annotation to the correct chunk of
data.

> applyMapped(a, annoData, FUN = function(region, anno) {

+ counts <- sum(region[,"counts"])

+ length <- anno$end - anno$start + 1

+ counts/length

+ })[1:10]

$elt.1

[1] 3.112903

$elt.2

[1] 2.959459

$elt.3

[1] 3.166667

$elt.4

[1] 3.108434

$elt.5

[1] 3.175676

$elt.7

[1] 3.5

$elt.10

[1] 3.405063

$elt.12

[1] 2.207317

$elt.14

[1] 3.068493

$elt.15

[1] 3.090909

This example computes the average number of reads per base, taking into account that bases without data
exists. Note that FUN needs to be a function of two arguments.

What we see is that some of our regions are not present. This is a byproduct of the fact that some of our
regions have no data within their bounds. One can successfully argue that the result of the example above
ought to include such regions with a value of zero (see below for this).

When our data sets are large, it is often more convenient and significantly faster to return only some
columns.

> sapply(splitByAnnotation(eData, annoData, what = "counts"), median)[1:10]

writing region table:

0.01 sec

SQL query: SELECT counts_tbl.counts , __regions__.id FROM counts_tbl INNER JOIN

16

__regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN

__regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) ORDER BY

__regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table:

0.024 sec

SQL query: SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER

JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location

BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY

__regions__.id ORDER BY __regions__.id

count query:

0.014 sec

performing split:

0.005 sec

elt.1 elt.2 elt.3 elt.4 elt.5 elt.6 elt.7 elt.8 elt.9 elt.10

3 3 3 3 3 3 3 3 3 3

Often we wish to “fill” in missing regions. In the case of a coding sequence there may be bases that have
no reads, and so these bases will not appear in our resulting object. We can “expand” a region to include
these bases by filling in 0 reads for them. There are different ways to do this expansion. For convenience,
data are stratified by strand. Therefore expansion will produce a list-of-lists, where each sublist has possibly
two elements corresponding to each strand. If the original annotation query is stranded, then expansion
will produce a list, where each sublist only has one element. Finally, we provide a feature to collapse across
strand for the common use case of combining reads occurring on either strand within the region. In this case
the return value is a list, where each element is an expanded matrix representing the reads that occurred on
either strand.

> ## This returns a list-of-lists

> x1 <- splitByAnnotation(eData, annoData, expand = TRUE, ignoreStrand = TRUE)

writing region table:

0.01 sec

SQL query: SELECT counts_tbl.chr, counts_tbl.location, counts_tbl.strand,

counts_tbl.* , __regions__.id FROM counts_tbl INNER JOIN __regions__ ON

__regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN

__regions__.start AND __regions__.end ORDER BY __regions__.id, counts_tbl.chr,

counts_tbl.location, counts_tbl.strand

fetching splits table:

0.051 sec

SQL query: SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER

JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location

BETWEEN __regions__.start AND __regions__.end GROUP BY __regions__.id ORDER BY

__regions__.id

count query:

0.017 sec

17

performing split:

0.006 sec

> names(x1[[1]])

[1] "-1" "1"

> ## this returns a list-of-lists, however they are of length 1

> x2 <- splitByAnnotation(eData, annoData, expand = TRUE)

writing region table:

0.011 sec

SQL query: SELECT counts_tbl.chr, counts_tbl.location, counts_tbl.strand,

counts_tbl.* , __regions__.id FROM counts_tbl INNER JOIN __regions__ ON

__regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN

__regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) ORDER BY

__regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table:

0.031 sec

SQL query: SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER

JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location

BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY

__regions__.id ORDER BY __regions__.id

count query:

0.014 sec

performing split:

0.005 sec

> names(x2[[1]])

[1] "-1"

> ## this returns a list where we have combined the two sublists

> x3 <- splitByAnnotation(eData, annoData, expand = TRUE, addOverStrand = TRUE)

writing region table:

0.01 sec

SQL query: SELECT counts_tbl.chr, counts_tbl.location, counts_tbl.strand,

counts_tbl.* , __regions__.id FROM counts_tbl INNER JOIN __regions__ ON

__regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN

__regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) ORDER BY

__regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table:

0.036 sec

18

SQL query: SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER

JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location

BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY

__regions__.id ORDER BY __regions__.id

count query:

0.015 sec

performing split:

0.007 sec

> head(x3[[1]])

chr location counts

[1,] 13 460 4

[2,] 13 461 5

[3,] 13 462 2

[4,] 13 463 3

[5,] 13 464 4

[6,] 13 465 2

Leaving the splitByAnnotation function, sometimes we want to compute summaries of higher level
entities, such as genes, pseudogenes, and intergenic regions. We can label each genomic location with its
annotation using the mergeWithAnnotation convenience function.

> mergeWithAnnotation(eData, annoData)[1:3,]

writing regions table:

0.011 sec

SQL query: SELECT * FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr =

counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND

__regions__.end AND (counts_tbl.strand = __regions__.strand OR

__regions__.strand = 0 OR counts_tbl.strand = 0)

fetching merge table:

0.023 sec

chr location strand counts id chr start end strand feature

1 13 460 -1 4 1 13 460 521 -1 gene

2 13 461 -1 5 1 13 460 521 -1 gene

3 13 462 -1 2 1 13 460 521 -1 gene

This will result in duplicated genomic locations in case a genomic location is annotated multiple times.
There are a number of parameters that can make this more natural.

> par(mfrow=c(1,2))

> x <- lapply(mergeWithAnnotation(eData, annoData, splitBy = "feature", what = "counts"),

+ function(x) {

+ plot(density(x))

+ })

writing regions table:

0.01 sec

19

SQL query: SELECT counts,feature FROM counts_tbl INNER JOIN __regions__ ON

__regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN

__regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0)

fetching merge table:

0.016 sec

splitting by: feature:

0.002 sec

0 5 10 15

0.
0

0.
1

0.
2

0.
3

density.default(x = x)

N = 3598 Bandwidth = 0.2612

D
en

si
ty

0 2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

density.default(x = x)

N = 3372 Bandwidth = 0.2646

D
en

si
ty

6 Annotation

Annotation has been defined earlier as a data.frame satisfying certain requirements. This may be checked
using validAnnotation which return TRUE or FALSE.

Genominator has a very useful function for dealing with annotation, makeGeneRepresentation. The
input is a data.frame not unlike the result of a query to Ensembl or UCSC (using the biomaRt package
of the rtracklayer package). The output of this function is a new set of gene models satisfying certain
requirements detailed in the following. The typical output from such a query is an object where each row
correspond to an exon and there are additional columns describing how exons are grouped into transcripts
or genes.

An Ugene model (“Union gene”) consists of all bases annotated as belonging to a certain gene. Bases that
are annotated as belonging to other genes as well, are removed.

An UIgene model (“Union-intersection”) is an approach to summarize a gene protecting against different
splice forms. It consists of the bases that are annotated as belonging to every transcript of the gene. Bases
that are annotated as belonging to other genes as well, are removed.

An ROCE model (“Region of Constant Expression”) are maximal intervals such that every base in the
interval belongs to the same set of transcripts from the same gene. Bases that are annotated as belonging
to other genes as well, are removed.

Finally Background models consists of the bases that are not annotated as belonging to any gene. Note:
this function does not require chromosome lengths, so you may have to add an additional interval (row) for
each chromosome, consisting of the interval from the last annotated base to the end of the chromosome.

7 Analysis tools

In the case of short read sequencing, the Genominator package offers a number of specific useful tools. They
are presented in no particular order.

20

Coverage

The computeCoverage function can be used to assess the sequencing depth.

> coverage <- computeCoverage(eData, annoData, effort = seq(100, 1000, by = 5),

+ cutoff = function(e, anno, group) {e > 1})

writing regions table:

0.01 sec

SQL query: SELECT __regions__.id, TOTAL(counts) FROM __regions__ LEFT OUTER

JOIN counts_tbl ON __regions__.chr = counts_tbl.chr AND counts_tbl.location

BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand =

__regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY

__regions__.id ORDER BY __regions__.id

fetching summary table:

0.023 sec

fetching summary:

0.007 sec

> plot(coverage, draw.legend = FALSE)

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x$effort

x$
co

ve
ra

ge

21

Statistical Functions: Goodness of Fit

You can conduct a goodness of fit analysis to the Poisson model across lanes using the following function.
The result is assessed by a QQ-plot against the theoretical distribution (of either the p-values or the statistic).

> plot(regionGoodnessOfFit(eDataJoin, annoData))

writing regions table:

0.011 sec

SQL query: SELECT __regions__.id, TOTAL(counts_1), TOTAL(counts_2) FROM

__regions__ LEFT OUTER JOIN allcounts ON __regions__.chr = allcounts.chr AND

allcounts.location BETWEEN __regions__.start AND __regions__.end AND

(allcounts.strand = __regions__.strand OR __regions__.strand = 0 OR

allcounts.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table:

0.025 sec

●
●
●●●

●●
●●

●●●
●●●

●●●●●●
●●

●●●●
●●●

●
●●●●

●●●
●●●●

●
●●●

●●
●●

●●●
●●●

●
●●●

●●●
●●●●●●

●●●
●●●●●●

●●●
●●●

●●●●
●●●●●

●●
●●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

group

theoretical quantiles

ob
se

rv
ed

 q
ua

nt
ile

s

We can also do this for subsets of the data, for example within condition.

> plot(regionGoodnessOfFit(as.data.frame(matrix(rpois(1000, 100), ncol = 10)),

+ groups = rep(c("A", "B"), 5), denominator = rep(1, 10)))

22

REFERENCES

●●
●●

●●●●
●●

●
●●●

●●●
●
●●

●●●●●●
●
●●●

●●●
●●●

●●●●●
●●●

●●
●●●●

●●●
●●●

●●
●●●

●
●●

●●
●●

●●●●
●●●●

●●●●
●●

●●
●●

●
●●●

●●
●●●●

●●●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A

theoretical quantiles

ob
se

rv
ed

 q
ua

nt
ile

s

●●●
●
●

●
●●●●

●●●●●
●
●●●●

●●●●
●●

●●
●●●●●●●

●●●
●●●

●●
●●●

●●●●
●
●●●

●●
●●●●

●●●●●
●●●

●●
●
●●●●

●●
●●●

●●●
●●

●●●
●●●●●

●●●
●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B

theoretical quantiles

ob
se

rv
ed

 q
ua

nt
ile

s

SessionInfo

• R version 2.15.1 (2012-06-22), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

• Other packages: BiocGenerics 0.4.0, DBI 0.2-5, GenomeGraphs 1.18.0, Genominator 1.12.0,
IRanges 1.16.2, RSQLite 0.11.2, biomaRt 2.14.0

• Loaded via a namespace (and not attached): RCurl 1.95-0.1.2, XML 3.95-0.1, parallel 2.15.1,
stats4 2.15.1, tools 2.15.1

References

[1] Bullard,J.H., Purdom,E.A., Hansen,K.D., and Dudoit,S. (2010) Evaluation of statistical methods for
normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94.

23

	Introduction
	Data model
	Overview
	Creating and managing data
	Interface
	Annotation
	Analysis tools

