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1 Requirements

• Cufflinks ≥ v1.1.0 (Note: as of the release of this package, the current
version of cufflinks is 1.3.3. While this package will work with >v1.1, we
recommend updating your cufflinks prior to using cummeRbund)

• R ≥ v2.7.0

• Packages:

– RSQLite

– ggplot2

– reshape2

– plyr

2 Introduction

cummeRbund is a visualization package for Cufflinks high-throughput sequencing
data. The base class, cuffSet is a ’pointer’ to cufflinks data that are stored out-
of-memory in a sqlite database.

3 CummeRbund Classes

3.1 CuffSet Class

A pointer class to control access to the sqlite tables holding the Cufflinks data.
The primary slot is DB which contains the RSQLite connection object. This
can be accessed using the DB() accessor. The additional slots (genes, isoforms,
TSS, and CDS) are each instances of the CuffData class and are pointers to
sets of tables for each data subtype. They can be accessed with similar accessor
wrappers. This is the default class created by readCufflinks. By default, Cuff-
Data accessor methods applied to a CuffSet class will operate on the ’genes’
slot.

3.2 CuffData Class

The CuffData class is also a pointer class to the SQL backend, but each instance
is specific for a data subtype (genes, isoforms, TSS, CDS). Again, there is an
DB slot (accessible using DB()) that contains the RSQLite connection object.
There are several accessor, setter, and plotting methods that allow for global
analysis of all features within a CuffData class.Subsetting is currently being
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re-written, however, it is primarily done through the ’gene id’ field. Available
slots for the CuffData class are:

• DB: RSQLite connection object

• tables: A list of tables in the SQLite DB that contain the cufflinks data.

• filters: A list of filters for subsetting (not implemented yet).

• type: A character field describing the data (ie. ’genes’,’isoforms’,’TSS’,’CDS’,’other’)

• idField: The name of the identifying index field for this object (eg. ’gene id’
for type=’gene’, or ’isoform id’ for type=’isoform’)

Making the best use of either the CuffSet or CuffData classes will enable you
to keep the entire dataset out of memory and significantly improve performance
for large cufflinks datasets.

3.3 CuffDist Class

The CuffDist class is an pointer class that contains the results of the various
’distribution tests’ performed by cuffdiff. These include differential promoter
usage, differential splicing, and differential CDS usage. These are independent
tests from the differential analysis of gene-, isoform-, TSS-, and CDS-level fea-
tures and therefore have their own container type to distinguish them as such.
The ’promoters’, ’relCDS’, and ’splicing’ slots of a CuffSet class are all CuffDist
instances.

Available slots for the CuffDist class are:

• DB: RSQLite connection object

• tables: A list of tables in the SQLite DB that contain the distribution test
data.

• type: A character field describing the data (ie. ’promoters’,’relCDS’,’splicing’)

• idField: The name of the identifying index field for this object (eg. ’TSS group id’
for type=’promoters’, or ’CDS id’ for type=’relCDS’, etc.)

3.4 CuffFeatureSet Class

The CuffFeatureSet class is a data-storage container that holds all available data
for a pre-determined list of features. Slots for FPKM data, differential regula-
tion data, and feature-level annotation are all available. Unlike the previous
classes, this class contains no connection information to the SQL database, but
rather contains several slots with data.frame objects storing multiple-features
worth of information. There are available accessors, and plotting methods that
are designed to present multiple-features worth of information (eg. heatmaps,
scatterplots, etc) Available slots for a CuffFeatureSet object include:
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• annotation: Holds all feature-level annotation information for all features
in object.

• fpkm: A data frame of FPKM data across all samples, for all features in
object.

• diff: A data frame of differential expression/regulation data for all features
in object.

A specialized sub-class of CuffFeatureSet is the CuffGeneSet class. This
subclass adds additional slots to contain all isoforms, TSS, and CDS information
for a given set of gene ids. The CuffGeneSet class is designed to aggregate all
relevant information for a set of genes into one object for easy analysis and/or
manipulation. The CuffGeneSet object adds the following slots:

• ids: A ’character’ list of all gene ids used in object.

• isoforms: A CuffFeatureSet object for all isoforms of genes in object.

• TSS: A CuffFeatureSet object for all TSS of genes in object.

• CDS: A CuffFeatureSet object for all CDS of genes in object.

3.5 CuffFeature Class

The CuffFeature class is designed for single-feature-level data analysis and plot-
ting. The methods available for this object are designed to analyze or visualize
information about a specific feature. This is a ’data’ object, as opposed to a
’pointer’ object to the database backend. There is a validity requirement that a
CuffFeature object only point to data from a single feature. Available slots for
a CuffFeature object include:

• annotation: Holds feature-level annotation information for a given feature.

• fpkm: A data frame of FPKM data across all samples for a given feature.

• diff: A data frame of differential expression/regulation data for a given
feature.

A specialized sub-class of CuffFeature is the CuffGene class. This subclass
adds additional slots to contain all isoform, TSS, and CDS information for a
given gene. The CuffGene object adds the following slots:

• id: The common ’gene id’ for all data in object

• isoforms: A CuffFeature object for all isoforms of a given gene.

• TSS: A CuffFeature object for all TSS of a given gene.

• CDS: A CuffFeature object for all CDS of a given gene.
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4 Reading cuffdiff output

cummeRbund was designed to process the multi-file output format for a ’cuffdiff’
differential expression analysis. In this type of analysis, a user will use a reference
.gtf file (either known annotation or a .gtf file created from a cufflinks assembly
or merge of assemblies) and quantitate the expression values and differential
regulation of the annotation(s) in the .gtf file across two or more SAM/BAM
files. By design, cuffdiff produces a number of output files that contain test
results for changes in expression at the level of transcripts, primary transcripts,
and genes. It also tracks changes in the relative abundance of transcripts shar-
ing a common transcription start site, and in the relative abundances of the
primary transcripts of each gene. Tracking the former allows one to see changes
in splicing, and the latter lets one see changes in relative promoter use within a
gene.

Note:Early versions of Cuffdiff required that transcripts in the input GTF
be annotated with certain attributes in order to look for changes in primary
transcript expression, splicing, coding output, and promoter use. This is no
longer the case with >=v1.1.1 of cummeRbund, however we still recommend the
use of both the following attributes in your GTF file to enable all downstream
features of cummeRbund.

These attributes are:

• tss id: The ID of this transcript’s inferred start site. Determines which
primary transcript this processed transcript is believed to come from. Cuf-
fcompare appends this attribute to every transcript reported in the .com-
bined.gtf file.

• p id The ID of the coding sequence this transcript contains. This attribute
is attached by Cuffcompare to the .combined.gtf records only when it
is run with a reference annotation that include CDS records. Further,
differential CDS analysis is only performed when all isoforms of a gene
have p id attributes, because neither Cufflinks nor Cuffcompare attempt
to assign an open reading frame to transcripts.

cuffdiff calculates the FPKM of each transcript, primary transcript, and gene
in each sample. Primary transcript and gene FPKMs are computed by summing
the FPKMs of transcripts in each primary transcript group or gene group. The
results are output in FPKM tracking files, the structure of which can be found
in the cufflinks manual.

There are four FPKM tracking files:

• isoforms.fpkm tracking Transcript FPKMs

• genes.fpkm tracking Gene FPKMs. Tracks the summed FPKM of tran-
scripts sharing each gene id
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• cds.fpkm tracking Coding sequence FPKMs. Tracks the summed FPKM
of transcripts sharing each p id, independent of tss id

• tss groups.fpkm tracking Primary transcript FPKMs. Tracks the summed
FPKM of transcripts sharing each tss id

cuffdiff also performs differential expression tests between supplied condi-
tions. This tab delimited file lists the results of differential expression testing
between samples for spliced transcripts, primary transcripts, genes, and coding
sequences. For detailed file structure see cufflinks manual.

Four .diff files are created:

• isoform exp.diff Transcript differential FPKM.

• gene exp.diff Gene differential FPKM. Tests difference sin the summed
FPKM of transcripts sharing each gene id

• tss group exp.diff Primary transcript differential FPKM. Tests differences
in the summed FPKM of transcripts sharing each tss id

• cds exp.diff Coding sequence differential FPKM. Tests differences in the
summed FPKM of transcripts sharing each p id independent of tss id

In addition, cuffdiff also performs differential splicing, CDS usage, and pro-
moter usage tests for each gene across conditions:

• splicing.diff Differential splicing tests.

• CDS.diff Differential coding output.

• promoters.diff Differential promoter use.

All of these output files are related to each other through their various track-
ing ids, but parsing through individual files to query for important result infor-
mation requires both a good deal of patience and a strong grasp of command-line
text manipulation. Enter cummeRbund, an R solution to aggregate, organize,
and help visualize this multi-layered dataset.
One of the principle benefits of using cummeRbund is that data are stored in
a SQLite database. This allows for out-of-memory analysis of data, quick re-
trieval, and only a one-time cost to setup the tables. By default, cummeRbund
assumes that all output files from cuffdiff are in the current working directory.
To read these files, populate the ’cuffData.db’ database backend, and return the
CuffSet pointer object, you can do the following.

> library(cummeRbund)

> cuff <- readCufflinks(dir=system.file("extdata", package="cummeRbund"))

> cuff
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CuffSet instance with:

3 samples

400 genes

1203 isoforms

575 TSS

545 CDS

960 promoters

1725 splicing

696 relCDS

Again, by default dir is assumed to be the current working directory and cuff<-

readCufflinks() should work if all appropriate files are in the current working
directory. Should you need to rebuild the SQLite backend for any reason, you
can add the option rebuild=T to readCufflinks. Once the database is created,
readCufflinks will default to using the SQL backend and should not need to
rebuild this database. Each R session should begin with a call to readCufflinks so
as to initialize the database connection and create an object with the appropriate
RSQLite connection information.

4.1 Adding additional feature annotation

Gene- or feature-level annotation can be permanently added to the database
tables for future querying. If you have a data.frame where the first column
contains the ’tracking id’ (eg. ’gene id’ for genes, ’isoform id’ for isoforms, etc).
You can easily add feature level annotation using the addFeatures() function:

> #annot<-read.table("gene_annotation.tab",sep="\t",header=T,na.string="-")

> #addFeatures(cuff,annot,level="genes")

By default, features added to a CuffSet object are assumed to be gene-level
annotations, but the level can selected using the argument level . Features added
to a CuffData object are assumed to be of the same type as the ’type’ value for
that given object (e.g. gene-level features for ’genes’, isoform-level features for
isoforms, etc.)

5 Global statistics

Several plotting methods are available that allow for quality-control or global
analysis of cufflinks data. For example, to assess the distributions of FPKM
scores across samples, you can use the csDensity plot (Figure 1).

> dens<-csDensity(genes(cuff))

> dens
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Boxplots can be visualized using the csBoxplot method (Figure 2).

> b<-csBoxplot(genes(cuff))

> b
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Pairwise comparisons can be made by using csScatter . You must specify the
sample names to use for the x and y axes:

> s<-csScatter(genes(cuff),"hESC","Fibroblasts",smooth=T)

> s
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MvsA plots can be useful to determine any systematic bias that may be
present between conditions. The CuffData method MAplot() can be used to
examine these intensity vs fold-change plots. You must specify the sample names
to use for the pairwise comparison with x and y:

> m<-MAplot(genes(cuff),"hESC","Fibroblasts")

> m
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Volcano plots are also available for the CuffData objects. Again, you must
specify the comparisons by sample name.

> v<-csVolcano(genes(cuff),"hESC","Fibroblasts")

> v
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6 Accessing Data

Feature-level information can be accessed directly from a CuffData object using
the fpkm, diffData, or features methods:

> gene.features<-features(genes(cuff))

> head(gene.features)

gene_id class_code nearest_ref_id gene_short_name

1 XLOC_000001 <NA> <NA> <NA>

2 XLOC_000002 <NA> <NA> OR4F5

3 XLOC_000003 <NA> <NA> <NA>

4 XLOC_000004 <NA> <NA> <NA>

5 XLOC_000005 <NA> <NA> <NA>

6 XLOC_000006 <NA> <NA> OR4F16

locus length coverage gene_id

1 chr1:11873-29961 NA NA <NA>

2 chr1:69090-70008 NA NA <NA>

3 chr1:321083-321114 NA NA <NA>

4 chr1:321145-321223 NA NA <NA>

5 chr1:322036-328580 NA NA <NA>

6 chr1:367658-368595 NA NA <NA>

> gene.fpkm<-fpkm(genes(cuff))

> head(gene.fpkm)

gene_id sample_name fpkm conf_hi conf_lo

1 XLOC_000001 Fibroblasts 16.401100 428.14700 0

2 XLOC_000001 hESC 0.723836 3.01108 0

3 XLOC_000001 iPS 54.067200 1402.31000 0

4 XLOC_000002 Fibroblasts 0.000000 0.00000 0

5 XLOC_000002 hESC 0.000000 0.00000 0

6 XLOC_000002 iPS 0.000000 0.00000 0

quant_status

1 LOWDATA

2 OK

3 LOWDATA

4 OK

5 OK

6 OK

> isoform.fpkm<-fpkm(isoforms(cuff))

> head(isoform.fpkm)

isoform_id sample_name fpkm conf_hi conf_lo

1 TCONS_00000001 Fibroblasts 11.910700 19.96650 3.85498

2 TCONS_00000001 hESC 0.000000 0.00000 0.00000
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3 TCONS_00000001 iPS 9.563700 23.68410 0.00000

4 TCONS_00000002 Fibroblasts 0.000000 8.55378 0.00000

5 TCONS_00000002 hESC 0.723836 3.01108 0.00000

6 TCONS_00000002 iPS 32.934400 47.93760 17.93130

quant_status

1 OK

2 OK

3 LOWDATA

4 OK

5 OK

6 OK

> gene.diff<-diffData(genes(cuff))

> head(gene.diff)

gene_id sample_1 sample_2 status value_1 value_2

1 XLOC_000001 hESC Fibroblasts OK 7.23836e-01 16.4011

2 XLOC_000002 hESC Fibroblasts NOTEST 0.00000e+00 0.0000

3 XLOC_000003 hESC Fibroblasts NOTEST 0.00000e+00 0.0000

4 XLOC_000004 hESC Fibroblasts OK 1.20000e+06 22616.4000

5 XLOC_000005 hESC Fibroblasts OK 1.13903e+03 41.1644

6 XLOC_000006 hESC Fibroblasts NOTEST 0.00000e+00 0.0000

log2_fold_change test_stat p_value q_value significant

1 4.50198 -0.246654 0.805176 0.893616 no

2 0.00000 0.000000 1.000000 1.000000 no

3 0.00000 0.000000 1.000000 1.000000 no

4 -5.72952 1.310270 0.190105 0.300329 no

5 -4.79027 10.857600 0.000000 0.000000 yes

6 0.00000 0.000000 1.000000 1.000000 no

Vectors of sample names and feature names are available by using the samples
and featureNames methods:

> sample.names<-samples(genes(cuff))

> head(sample.names)

[1] "hESC" "Fibroblasts" "iPS"

> gene.featurenames<-featureNames(genes(cuff))

> head(gene.featurenames)

[1] "XLOC_000001" "XLOC_000002" "XLOC_000003" "XLOC_000004"

[5] "XLOC_000005" "XLOC_000006"

To facilitate Bioconductor-like operations, an ’FPKM-matrix’ can be re-
turned easily using the fpkmMatrix method:

> gene.matrix<-fpkmMatrix(genes(cuff))

> head(gene.matrix)
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hESC Fibroblasts iPS

XLOC_000001 7.23836e-01 16.4011 54.06720

XLOC_000002 0.00000e+00 0.0000 0.00000

XLOC_000003 0.00000e+00 0.0000 0.00000

XLOC_000004 1.20000e+06 22616.4000 0.00000

XLOC_000005 1.13903e+03 41.1644 944.30800

XLOC_000006 0.00000e+00 0.0000 9.00455

6.1 Writing your own SQL accessors

Since the cuffData.db is a SQLite database backend, if you are familiar with
SQL and/or RSQLite query construction, you can simply design your own SQL
queries to access the data that you are after.
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7 Creating Gene Sets

Gene Sets (stored in a CuffGeneSet object) can be created using the getGenes
method on a CuffSet object. You must first create a vector of ’gene id’ or
’gene short name’ values to identify the genes you wish to select:

> data(sampleData)

> myGeneIds<-sampleIDs

> myGeneIds

[1] "XLOC_001363" "XLOC_001297" "XLOC_001339" "XLOC_000132"

[5] "XLOC_001265" "XLOC_000151" "XLOC_001359" "XLOC_000069"

[9] "XLOC_000170" "XLOC_000105" "XLOC_001262" "XLOC_001348"

[13] "XLOC_001411" "XLOC_001369" "XLOC_000158" "XLOC_001370"

[17] "XLOC_001263" "XLOC_000115" "XLOC_000089" "XLOC_001240"

> myGenes<-getGenes(cuff,myGeneIds)

> myGenes

CuffGeneSet instance for 20 genes

Slots:

annotation

fpkm

diff

isoforms CuffFeatureSet instance of size 45

TSS CuffFeatureSet instance of size 18

CDS CuffFeatureSet instance of size 31

promoters CuffFeatureSet instance of size 20

splicing CuffFeatureSet instance of size 18

relCDS CuffFeatureSet instance of size 20

The same fpkm, fpkmMatrix , features, diffData, samples, and featureNames are
available for instances of the CuffGeneSet class, but additional accessor methods
are available for the promoters,relCDS , and splicing slot data as well.

7.1 Geneset level plots

There are several plotting functions available for gene-set-level visualization:
The csHeatmap() function is a plotting wrapper that takes as input either a

CuffGeneSet or a CuffFeatureSet object (essentially a collection of genes and/or
features) and produces a heatmap of FPKM expression values. The ’cluster’
argument can be used to re-order either ’row’, ’column’, or ’both’ dimensions of
this matrix. By default, the Jensen-Shannon distance is used as the clustering
metric, however, any function that produces a dist object can be passed to the
’cluster’ argument as well.
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> h<-csHeatmap(myGenes,cluster='both')
> h

SPATA21|XLOC_001348

PRAMEF1|XLOC_000115

TAS1R2|XLOC_001363

SLC2A7|XLOC_001297

FAM43B|XLOC_000170

ESPN|XLOC_000069

NA|XLOC_000158

C1orf86|XLOC_001263

PGD|XLOC_000089

AKR7A2|XLOC_001370

EFHD2|XLOC_000132

SDHB|XLOC_001359

MFN2|XLOC_000105

UBE2J2|XLOC_001240

NA|XLOC_001265

NA|XLOC_001262

AKR7A3|XLOC_001369

NA|XLOC_001339

IL22RA1|XLOC_001411

PADI1|XLOC_000151

F
ibroblasts
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iP
S

log10 FPKM + 1

0

1

2

3

4

If you prefer barplots over heatmaps for genesets (although this is not nec-
essarily recommended for large gene sets). You can use the expressionBarplot()
method on a CuffFeatureSet or a CuffGeneSet object.

> b<-expressionBarplot(myGenes)

> b
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The csScatter() method can be used to produce scatter plot comparisons
between any two conditions.

> s<-csScatter(myGenes,"Fibroblasts","hESC",smooth=T)

> s
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The volcano plot is a useful visualization to compare fold change between
any two conditions and significance (-log P-values).

> v<-csVolcano(myGenes,"Fibroblasts","hESC")

> v
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Similar plots can be made for all sub-level features of a CuffGeneSet class by
specifying which slot you would like to plot (eg. isoforms(myGenes),TSS(myGenes),CDS(myGenes)).

> ih<-csHeatmap(isoforms(myGenes),cluster='both',labRow=F)
> ih
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Dendrograms can provide insight into the relationships between conditions
for various genesets (e.g. significant genes used to draw relationships between
conditions). As of v1.1.3 the method csDendro() can be used to plot a den-
drogram based on Jensen-Shannon distances between conditions for a given
CuffFeatureSet or CuffGeneSet .

> den<-csDendro(myGenes)
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8 Individual Genes

An individual CuffGene object can be created by using the getGene function
for a given ’gene id’ or ’gene short name’.

> myGeneId<-"PINK1"

> myGene<-getGene(cuff,myGeneId)

> myGene

CuffGene instance for gene PINK1

Short name: PINK1

Slots:

annotation

fpkm

diff

isoforms CuffFeature instance of size 2

TSS CuffFeature instance of size 2

CDS CuffFeature instance of size 2

> head(fpkm(myGene))

gene_id sample_name fpkm conf_hi conf_lo

1 XLOC_000172 Fibroblasts 2919.340 4002.960 1835.730

2 XLOC_000172 hESC 693.465 813.869 573.062

3 XLOC_000172 iPS 1598.040 2282.380 913.710

quant_status

1 OK

2 OK

3 OK

> head(fpkm(isoforms(myGene)))

isoform_id sample_name fpkm conf_hi conf_lo

1 TCONS_00000480 Fibroblasts 2101.640 3111.330 1091.9400

2 TCONS_00000480 hESC 573.512 668.688 478.3370

3 TCONS_00000480 iPS 1598.040 2282.380 913.7100

4 TCONS_00000481 Fibroblasts 817.704 1391.700 243.7120

5 TCONS_00000481 hESC 119.953 152.675 87.2311

6 TCONS_00000481 iPS 0.000 0.000 0.0000

quant_status

1 OK

2 OK

3 OK

4 OK

5 OK

6 OK
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8.1 Gene-level plots

> gl<-expressionPlot(myGene)

> gl
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> gb<-expressionBarplot(myGene)

> gb
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> igb<-expressionBarplot(isoforms(myGene))

> igb
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9 Data Exploration

The cummeRbund package is more than just a visualization tool as well. We are
working to implement several different means of data exploration from gene and
condition clustering, finding features with similar expression profiles, as well as
incorporating Gene Ontology analysis.

9.1 Creating gene sets from significantly regulated genes

One of the primary roles of a differential expression analysis is to conduct sig-
nificance tests on each feature (genes, isoforms, TSS, and CDS) for appropriate
pairwise comparisons of conditions. The results of these tests (after multiple
testing correction of course) can be used to determine which genes are differen-
tially regulated. cummeRbund makes accessing the results of these significance
tests simple via getSig(). This function takes a CuffSet object and will scan at
various feature levels (’genes’ by default) to produce a vector of feature IDs. By
default getSig() outputs a vector of tracking IDs corresponding to all genes that
reject the null hypothesis in any condition tested. The default feature type can
be changed by adjusting the ’level’ argument to getSig(). In addition, a alpha
value can be provided on which to filter the resulting list (the default is 0.05 to
match the default of cuffdiff).

> mySigGenes<-getSig(cuff,alpha=0.05,level='genes')
> head(mySigGenes)

[1] "XLOC_000005" "XLOC_000014" "XLOC_000015" "XLOC_000016"

[5] "XLOC_000018" "XLOC_000025"

> length(mySigGenes)

[1] 220

By default getSig() outputs a vector of tracking IDs corresponding to all genes
that reject the null hypothesis in any condition tested. The default feature type
can be changed by adjusting the ’level’ argument to getSig(). In addition, a
alpha value can be provided on which to filter the resulting list (the default is
0.05 to match the default of cuffdiff). Significance results for specific pairwise
comparisons can be retrieved as well by specifying the two conditions as ’x’ and
’y’. In this case, p-values are adjusted to reduce the impact of multiple-testing
correction when only one set of tests is being conducted.

> hESC_vs_iPS.sigIsoforms<-getSig(cuff,x='hESC',y='iPS',alpha=0.05,level='isoforms')
> head(hESC_vs_iPS.sigIsoforms)

[1] "TCONS_00000006" "TCONS_00000018" "TCONS_00000034"

[4] "TCONS_00000041" "TCONS_00000043" "TCONS_00000048"

> length(hESC_vs_iPS.sigIsoforms)
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[1] 247

The values returned for each level of this list can be used as an argument to
getGenes, to create a CuffGeneSet object of significantly regulated genes (or
features).

Alternatively, you can use the getSigTable() method to return a full test-table
of ’significant features’ x ’pairwise tests’ for all comparisons. Only features in
which the null hypothesis can be rejected in at least one test are reported.

> mySigTable<-getSigTable(cuff,alpha=0.01,level='genes')
> head(mySigTable,20)

FibroblastsvsiPS hESCvsFibroblasts hESCvsiPS

XLOC_000005 1 1 0

XLOC_000014 1 1 0

XLOC_000015 1 0 1

XLOC_000016 0 1 1

XLOC_000019 1 0 1

XLOC_000025 0 1 1

XLOC_000026 0 1 0

XLOC_000029 0 1 0

XLOC_000032 NA 1 0

XLOC_000034 0 1 1

XLOC_000035 0 1 0

XLOC_000043 0 1 0

XLOC_000044 1 1 0

XLOC_000048 0 1 0

XLOC_000050 1 1 0

XLOC_000054 1 1 0

XLOC_000055 0 1 0

XLOC_000060 0 1 0

XLOC_000063 1 1 0

XLOC_000064 1 1 1

9.2 Partitioning

K-means clustering is a useful tool that can be helpful in identifying clusters of
genes with similar expression profiles. In fact, these profiles are learned from
the data during the clustering. csCluster() uses the pam() method from the
clustering package to perform the partitioning around medoids. In this case
however, the distance metric used by default is the Jensen-Shannon distance
instead of the default Euclidean distance. Prior to performing this particular
partitioning, the user must choose the number of clusters (K) into which the
expression profiles should be divided.

> ic<-csCluster(myGenes,k=4)

> head(ic$cluster)
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XLOC_000069 XLOC_000089 XLOC_000105 XLOC_000115 XLOC_000132

1 2 2 3 2

XLOC_000151

4

> icp<-csClusterPlot(ic)

> icp

As of v1.1.1 of cummeRbund, the output of csCluster is a modified pam object.
This replaces the default plotting behavior of the original csCluster plot to allow
for further analysis of the clustering results. The original plotting behavior has
been recapitulated in the csClusterPlot() method.
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9.3 Specificity

In some cases, a researcher may be interested in identifying features that are
’condition-specific’. Or, more likely, producing an ordered list of genes based on
their specificity for a given condition. We define a specificity score (S) as the
following:

Sg,i = 1 − JSD(pg, q̂i) (1)

Where JSD is the Jensen-Shannon distance, pg is the expression profile of
a given gene g expressed as a density (probability) of log10FPKM + 1, and q̂i
is the unit vector of ’perfect expression’ in a particular condition i.

We have created a method, csSpecificity() that outputs a matrix (with iden-
tical shape to that produced by fpkmMatrix()) of specificity scores (S) across
all conditions for all features in a CuffFeatureSet or CuffGeneSet .

> myGenes.spec<-csSpecificity(myGenes)

> head(myGenes.spec)

hESC_spec Fibroblasts_spec iPS_spec

XLOC_000069 0.7235320 0.4762355 0.6539797

XLOC_000089 0.6339018 0.6338870 0.6167502

XLOC_000105 0.6246540 0.6337900 0.6261973

XLOC_000115 0.4513380 0.4513380 1.0000000

XLOC_000132 0.6216916 0.6390527 0.6238131

XLOC_000151 0.6233090 0.5276278 0.7208011

S = 1.0 if the feature is expressed exclusively in that condition. The findSim-
ilar() method outlined below is another method that can be used to identify
genes based on specificity but has the added feature that you can determine
similarity to a more complex q expression profile.
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9.4 Finding similar genes

Another common question in large-scale gene expression analyses is ’How can I
find genes with similar expression profiles to gene x?’. We have implemented a
method, findSimilar to allow you to identify a fixed number of the most similar
genes to a given gene of interest. For example, if you wanted to find the 20
genes most similar to ”PINK1”, you could do the following:

> mySimilar<-findSimilar(cuff,"PINK1",n=20)

> mySimilar.expression<-expressionPlot(mySimilar,logMode=T,showErrorbars=F)
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You are also able to provide your own expression profile in lieu of a ’gene id’.
The vector provided must match the order and length of samples().

> myProfile<-c(500,0,400)

> mySimilar2<-findSimilar(cuff,myProfile,n=10)

> mySimilar2.expression<-expressionPlot(mySimilar2,logMode=T,showErrorbars=F)
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findSimilar() also uses the Jensen-Shannon distance between the probability
distributions of each gene across conditions to determine the similarity. We have
found this to be a more robust way to determine distance between genes using
the high dynamic range of FPKM data. Future versions may allow for other
dissimilarity measures to be used instead.
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10 Miscellaneous

• As of v1.1.3 we attempt to provide new visual cues in most plots that will
indicate the quantification status for a particular feature in each given
condition. We have enabled this feature by default for most plots to sug-
gest a measure of reliability for each feature in a particular condition. In
most cases, this feature can be disabled by setting ’showStatus=FALSE’.

• All plotting functions return ggplot objects and the resulting objects can
be manipulated/faceted/altered using standard ggplot2 methods.

• There are occasional DB connectivity issues that arise. Not entirely sure
why yet. If necessary, just readCufflinks again and this should solve
connectivity issues with a new RSQLite connection object. If connectivity
continues to be a problem, try cuff<-readCufflinks(rebuild=T)

• I am still working on fully documenting each of the methods. There are a
good number of arguments that exist, but might be hard to find without
looking at the source.
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11 Known Issues

• Large cuffdiff runs (e.g. ≥10 conditions) produce very large results files.
These will take some time to parse and populate the cuffData.db sqlite
database. While this is only a one time cost, the process can take a while.
We are working on making the table writes and indexing significantly
faster.

• Cuffdiff does not ’require’ that gene ids, isoform ids, TSS group ids, or
CDS ids be unique in your reference gtf file. In fact, duplicate IDs will
be aggregated by cummeRbund in the indexing phase and will produce
undesireable effects. Please ensure that all of your IDs are unique prior to
running cuffdiff (see cuffmerge for help) to avoid this issue.
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12 Session info

> sessionInfo()

R version 2.15.0 (2012-03-30)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] splines stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] Hmisc_3.9-3 survival_2.36-12 cluster_1.14.2

[4] cummeRbund_1.2.0 reshape2_1.2.1 ggplot2_0.9.0

[7] RSQLite_0.11.1 DBI_0.2-5

loaded via a namespace (and not attached):

[1] MASS_7.3-17 RColorBrewer_1.0-5 colorspace_1.1-1

[4] dichromat_1.2-4 digest_0.5.2 grid_2.15.0

[7] lattice_0.20-6 memoise_0.1 munsell_0.3

[10] plyr_1.7.1 proto_0.3-9.2 scales_0.2.0

[13] stringr_0.6 tools_2.15.0

36


	Requirements
	Introduction
	CummeRbund Classes
	CuffSet Class
	CuffData Class
	CuffDist Class
	CuffFeatureSet Class
	CuffFeature Class

	Reading cuffdiff output
	Adding additional feature annotation

	Global statistics
	Accessing Data
	Writing your own SQL accessors

	Creating Gene Sets
	Geneset level plots

	Individual Genes
	Gene-level plots

	Data Exploration
	Creating gene sets from significantly regulated genes
	Partitioning
	Specificity
	Finding similar genes

	Miscellaneous
	Known Issues
	Session info

