Analysis of Bead-summary Data using beadarray

Mark Dunning

March 30, 2012

Introduction

The BeadArray technology involves randomly arranged arrays of beads, with beads having the same probe sequence attached colloquially known as a bead-type. BeadArrays are combined in parallel on either a rectangular chip (BeadChip) or a matrix of 8 by 12 hexagonal arrays (Sentrix Array Matrix or SAM). The BeadChip is further divided into strips on the surface known as sections, with each section giving rise to a different image when scanned by BeadScan. These images, and associated text files, comprise the raw data for a beadarray analysis. However, for BeadChips, the number of sections assigned to each biological sample may vary from 1 on HumanHT12 chips, 2 on HumanWG6 chips or sometimes ten or more for SNP chips with large numbers of SNPs being investigated.

This vignette demonstrates the analysis of bead summary data using beadarray. The recommended approach to obtain these data is to start with bead-level data and follow the steps illustrated in the vignette beadlevel.pdf distributed with beadarray. If bead-level data are not available, the output of Illumina's BeadStudio or GenomeStudio can be read by beadarray. Example code to do this is provided at the end of this vignette. However, the same object types are produced from either of these routes and the same functionality is available.

To make the most use of the code in this vignette, you will need to install the beadarrayExampleData and illuminaHumanv3.db packages from Bioconductor.

```
> source("http://www.bioconductor.org/biocLite.R")
> biocLite(c("beadarrayExampleData", "illuminaHumanv3.db"))
```

The code used to produce these example data is given in the vignette of beadarrayExampleData, which follow similar steps to those described in the beadlevel.pdf vignette of beadarray. The following commands give a basic description of the data.

```
> library("beadarray")
> require(beadarrayExampleData)
> data(exampleSummaryData)
> exampleSummaryData
ExpressionSetIllumina (storageMode: list)
assayData: 49576 features, 12 samples
    element names: exprs, se.exprs, nObservations
protocolData: none
phenoData
    rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)
    varLabels: sampleID SampleFac
    varMetadata: labelDescription
featureData
    featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1846115 (49576
```

```
        total)
    fvarLabels: ArrayAddressID IlluminaID Status
    fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Humanv3
QC Information
    Available Slots:
    QC Items: Date, Matrix, ..., SampleGroup, numBeads
    sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A
```

Summarized data are stored in an object of type ExpressionSetIllumina which is an extension of the ExpressionSet class developed by the Bioconductor team as a container for data from high-throughput assays. Objects of this type use a series of slots to store the data. For consistency with the definition of other ExpressionSet objects, we refer to the expression values as the exprs matrix (this stores the probe-specific average intensities) which can be accessed using exprs and subset in the usual manner. The se.exprs matrix, which stores the probe-specific variability can be accessed using se.exprs. You may notice that the expression values have already been transformed to the $\log _{2}$ scale, which is an option in the summarize function in beadarray. Data exported from BeadStudio or GenomeStudio will usually be un-transformed and on the scale 0 to 2^{16}.

	G:4613710017_B	G:4613710052_B	G:4613710054_B	G:4616443079_B
ILMN_1802380	8.454468	8.616796	8.523001	8.420796
ILMN_1893287	5.388161	5.419345	5.162849	5.133287
ILMN_1736104	5.268626	5.457679	5.012766	4.988511
ILMN_1792389	6.767519	7.183788	6.947624	7.168571
ILMN_1854015	5.556947	5.721614	5.595413	5.520391
G:4616443093_B				
ILMN_1802380	8.527748			
ILMN_1893287	5.221987			
ILMN_1736104	5.284026			
ILMN_1792389	7.386435			
ILMN_1854015	5.558717			
> se.exprs (exampleSummaryData) [1:5, 1:5]				
	G:4613710017_B	G:4613710052_B	G:4613710054_B	$\mathrm{G}: 4616443079$ _B
ILMN_1802380	0.2833023	0.3367157	0.2750020	0.4141796
ILMN_1893287	0.3963681	0.3882834	0.5516421	0.6761106
ILMN_1736104	0.4704854	0.4951260	0.4031143	0.5276266
ILMN_1792389	0.4038533	0.4728013	0.5032908	0.3447242
ILMN_1854015	0.5663066	0.3783570	0.5511991	0.5358812
	$\mathrm{G}: 4616443093$ _B			
ILMN_1802380	0.3581862			
ILMN_1893287	0.4448673			
ILMN_1736104	0.4864355			
ILMN_1792389	0.3951935			
ILMN_1854015	0.6748219			

feature and pheno data

The fData and pData functions are useful shortcuts to find more information about the features (rows) and samples (columns) in the summary object. These annotations are created automatically whenever a bead-level data is summarized (see beadlevel.pdf) or read from a BeadStudio file. The fData will be added to later, but initially contains information on whether each probe is a control or not. In this example the phenoData denotes the sample group for each array; either Brain or UHRR (Universal Human Reference RNA).

```
> head(fData(exampleSummaryData))
\begin{tabular}{lrrr} 
& ArrayAddressID & IlluminaID & Status \\
ILMN_1802380 & 10008 & ILMN_1802380 regular \\
ILMN_1893287 & 10010 & ILMN_1893287 regular \\
ILMN_1736104 & 10017 & ILMN_1736104 regular \\
ILMN_1792389 & 10019 & ILMN_1792389 regular \\
ILMN_1854015 & 10020 & ILMN_1854015 regular \\
ILMN_1904757 & 10021 & ILMN_1904757 regular
\end{tabular}
> table(fData(exampleSummaryData)[, "Status"])
\begin{tabular}{rr} 
biotin & cy3_hyb \\
2 & 2 \\
cy3_hyb,low_stringency_hyb & housekeeping \\
4 & 7 \\
labeling & low_stringency_hyb \\
2 & 4 \\
negative & regular \\
759 & 48796
\end{tabular}
> pData(exampleSummaryData)
    sampleID SampleFac
4613710017_B 4613710017_B UHRR
4613710052_B 4613710052_B UHRR
4613710054_B 4613710054_B UHRR
4616443079_B 4616443079_B UHRR
4616443093_B 4616443093_B UHRR
4616443115_B 4616443115_B UHRR
4616443081_B 4616443081_B Brain
4616443081_H 4616443081_H Brain
4616443092_B 4616443092_B Brain
4616443107_A 4616443107_A Brain
4616443136_A 4616443136_A Brain
4616494005_A 4616494005_A Brain
```


Subsetting the data

There are various way to subset an ExpressionSetIllumina object, each of which returns an ExpressionSetIllumina with the same slots, but different dimensions. When bead-level data are summarized by beadarray there is an option to apply different transformation options, and save the results as different channels in the resultant object. For instance, if summarizing two-colour data one might be interested
in summarizing the red and green channels, or some combination of the two, separately. Both $\log _{2}$ and un-logged data are stored in the exampleSummaryData object and can be accessed by using the channel function. Both the rows and columns in the resultant ExpressionSetIllumina object are kept in the same order.

```
> channelNames(exampleSummaryData)
```

```
[1] "G" "G.ul"
```

```
> exampleSummaryData.log2 <- channel(exampleSummaryData, "G")
> exampleSummaryData.unlogged <- channel(exampleSummaryData, "G.ul")
> sampleNames(exampleSummaryData.log2)
```

```
    [1] "4613710017_B" "4613710052_B" "4613710054_B" "4616443079_B" "4616443093_B"
    [6] "4616443115_B" "4616443081_B" "4616443081_H" "4616443092_B" "4616443107_A"
[11] "4616443136_A" "4616494005_A"
> sampleNames(exampleSummaryData.unlogged)
```

 [1] "4613710017_B" "4613710052_B" "4613710054_B" "4616443079_B" "4616443093_B"
 [6] "4616443115_B" "4616443081_B" "4616443081_H" "4616443092_B" "4616443107_A"
[11] "4616443136_A" "4616494005_A"
> exprs(exampleSummaryData.log2)[1:10, 1:3]

	4613710017 _B	4613710052 _B	$4613710054 _B$
ILMN_1802380	8.454468	8.616796	8.523001
ILMN_1893287	5.388161	5.419345	5.162849
ILMN_1736104	5.268626	5.457679	5.012766
ILMN_1792389	6.767519	7.183788	6.947624
ILMN_1854015	5.556947	5.721614	5.595413
ILMN_1904757	5.421553	5.320500	5.522316
ILMN_1740305	5.417821	5.623998	5.720007
ILMN_1665168	5.321087	5.155455	4.967601
ILMN_2375156	5.894207	6.076418	5.638877
ILMN_1705423	5.426463	4.806624	5.357688

> exprs(exampleSummaryData.unlogged) [1:10, 1:3]

	4613710017_B	4613710052 _B	$4613710054 _B$
ILMN_1802380	356.88235	396.46875	367.81481
ILMN_1893287	40.85000	44.29167	38.42105
ILMN_1736104	40.53333	46.50000	33.46154
ILMN_1792389	112.90909	153.17647	122.65000
ILMN_1854015	50.47059	53.26087	51.57143
ILMN_1904757	41.45833	42.10000	49.92593
ILMN_1740305	38.45455	51.50000	46.21429
ILMN_1665168	42.38889	37.95000	30.46154
ILMN_2375156	61.47368	72.73913	52.46154
ILMN_1705423	42.38889	28.14286	38.62500

As we have seen, the expression matrix of the ExpressionSetIllumina object can be subset by column or row, In fact, the same subset operations can be performed on the ExpressionSetIllumina object itself. In the following code, notice how the number of samples and features changes in the output.

```
> exampleSummaryData.log2[, 1:4]
ExpressionSetIllumina (storageMode: list)
assayData: 49576 features, 4 samples
    element names: exprs, se.exprs, nObservations
protocolData: none
phenoData
    rowNames: 4613710017_B 4613710052_B 4613710054_B 4616443079_B
    varLabels: sampleID SampleFac
    varMetadata: labelDescription
featureData
    featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1846115 (49576
        total)
    fvarLabels: ArrayAddressID IlluminaID Status
    fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Humanv3
QC Information
    Available Slots:
        QC Items: Date, Matrix, ..., SampleGroup, numBeads
        sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A
> exampleSummaryData.log2[1:10, ]
ExpressionSetIllumina (storageMode: list)
assayData: 10 features, 12 samples
    element names: exprs, se.exprs, nObservations
protocolData: none
phenoData
    rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)
    varLabels: sampleID SampleFac
    varMetadata: labelDescription
featureData
    featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1705423 (10 total)
    fvarLabels: ArrayAddressID IlluminaID Status
    fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Humanv3
QC Information
    Available Slots:
        QC Items: Date, Matrix, ..., SampleGroup, numBeads
        sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A
```

The object can also be subset by a vector of characters which must correspond to the names of features (i.e. row names). Currently, no analogous functions is available to subset by sample.

```
> randIDs <- sample(featureNames(exampleSummaryData), 1000)
> exampleSummaryData[randIDs, ]
ExpressionSetIllumina (storageMode: list)
assayData: }1000\mathrm{ features, 12 samples
    element names: exprs, se.exprs, nObservations
```

```
protocolData: none
phenoData
    rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)
    varLabels: sampleID SampleFac
    varMetadata: labelDescription
featureData
    featureNames: ILMN_1885639 ILMN_1872927 ... ILMN_1669096 (1000 total)
    fvarLabels: ArrayAddressID IlluminaID Status
    fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Humanv3
QC Information
    Available Slots:
    QC Items: Date, Matrix, ..., SampleGroup, numBeads
    sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A
```


Exploratory analysis using boxplots

Boxplots of intensity levels and the number of beads are useful for quality assessment purposes. beadarray includes a modified version of the boxplot function that can take any valid ExpressionSetIllumina object and plot the expression matrix by default. For these examples we plot just a subset of the original exampleSummaryData object using random row IDs.

```
> boxplot(exampleSummaryData.log2[randIDs, ])
```


The function can also plot other assayData items, such as the number of observations.

```
> boxplot(exampleSummaryData.log2[randIDs, ], what = "nObservations")
```


The default boxplot plots a separate box for each array, but often it is beneficial for compare expression levels between different sample groups. If this information is stored in the phenoData slot it can be incorporated into the plot. The following compares the overall expression level between UHRR and Brain samples.

```
> boxplot(exampleSummaryData.log2[randIDs, ], sampleFactor = "SampleFac")
```


In a similar manner, we may wish to visualize the differences between sample groups for particular probe groups. As a simple example, we look at the difference between negative controls and regular probes for each array. You should notice that the negative controls as consistently lower (as expected) with the exception of array 4616443081_B.

```
> boxplot(exampleSummaryData.log2[randIDs, ], probeFactor = "Status")
```


Extra feature annotation is available from annotation packages in Bioconductor, and beadarray includes functionality to extract these data from the annotation packages. The annotation of the object must be set in order that the correct annotation package can be loaded. For example, the exampleSummaryData object was generated from Humanv3 data so the illuminaHumanv3.db package must be present. The addFeatureData function annotates all features of an ExpressionSetIllumina object using particular mappings from the illuminaHumanv3.db package. To see which mappings are available you can use the illuminaHumanv3() function, or equivalent from other packages.

```
> annotation(exampleSummaryData)
```

[1] "Humanv3"

```
> exampleSummaryData.log2 <- addFeatureData(exampleSummaryData.log2,
+ toAdd = c("SYMBOL", "PROBEQUALITY", "CODINGZONE", "PROBESEQUENCE",
+ "GENOMICLOCATION"))
> head(fData(exampleSummaryData.log2))
```

	Row.names	ArrayAddressID	IlluminaID	Status	SYMBOL
ILMN_1802380	ILMN_1802380	10008	ILMN_1802380	regular	RERE
ILMN_1893287	ILMN_1893287	10010	ILMN_1893287 regular	<NA>	
ILMN_1736104	ILMN_1736104	10017	ILMN_1736104 regular	<NA>	
ILMN_1792389	ILMN_1792389	10019	ILMN_1792389 regular RNF165		
ILMN_1854015	ILMN_1854015	10020	ILMN_1854015 regular	<NA>	
ILMN_1904757	ILMN_1904757	10021	ILMN_1904757 regular	<NA>	
	PROBEQUALITY	CODINGZONE			
ILMN_1802380	Perfect	Transcriptomic			
ILMN_1893287	Bad Transcriptomic?				
ILMN_1736104	Bad	Intergenic			
ILMN_1792389	Perfect	Transcriptomic			
ILMN_1854015	Bad	Intergenic			
ILMN_1904757	Perfect*** Transcriptomic?				

PROBESEQUENCE
ILMN_1802380 GCCCTGACCTTCATGGTGTCTTTGAAGCCCAACCACTCGGTTTCCTTCGG

```
ILMN_1904757 AGCTGTACCGTGGGGAGGCTTGGTCCTCTTGCCCCATTTGTGTGATGTCT
                    GENOMICLOCATION
ILMN_1802380 chr1:8412758:8412807:-
ILMN_1893287 chr9:42489407:42489456:+
ILMN_1736104 chr3:134572184:134572223:-
ILMN_1792389 chr18:44040244:44040293:+
ILMN_1854015 chr3:160827837:160827885:+
ILMN_1904757 chr3:197872267:197872316:+
> illuminaHumanv3()
####Mappings based on RefSeqID####
```

Quality control information for illuminaHumanv3:

This package has the following mappings:

```
illuminaHumanv3ACCNUM has 31857 mapped keys (of 49576 keys)
illuminaHumanv3ALIAS2PROBE has }76259\mathrm{ mapped keys (of 92418 keys)
illuminaHumanv3CHR has }29982\mathrm{ mapped keys (of 49576 keys)
illuminaHumanv3CHRLENGTHS has 93 mapped keys (of 93 keys)
illuminaHumanv3CHRLOC has 29002 mapped keys (of 49576 keys)
illuminaHumanv3CHRLOCEND has }29002\mathrm{ mapped keys (of 49576 keys)
illuminaHumanv3ENSEMBL has }27595\mathrm{ mapped keys (of 49576 keys)
illuminaHumanv3ENSEMBL2PROBE has }19026\mathrm{ mapped keys (of 19985 keys)
illuminaHumanv3ENTREZID has 29984 mapped keys (of 49576 keys)
illuminaHumanv3ENZYME has }3520\mathrm{ mapped keys (of 49576 keys)
illuminaHumanv3ENZYME2PROBE has 967 mapped keys (of 975 keys)
illuminaHumanv3GENENAME has 29984 mapped keys (of 49576 keys)
illuminaHumanv3GO has 26130 mapped keys (of 49576 keys)
illuminaHumanv3GO2ALLPROBES has 15198 mapped keys (of 15942 keys)
illuminaHumanv3GO2PROBE has }11701\mathrm{ mapped keys (of 12445 keys)
illuminaHumanv3MAP has 29587 mapped keys (of 49576 keys)
illuminaHumanv30MIM has 20572 mapped keys (of 49576 keys)
illuminaHumanv3PATH has }9157\mathrm{ mapped keys (of 49576 keys)
illuminaHumanv3PATH2PROBE has 229 mapped keys (of 229 keys)
illuminaHumanv3PFAM has 29107 mapped keys (of 49576 keys)
illuminaHumanv3PMID has 29321 mapped keys (of 49576 keys)
illuminaHumanv3PMID2PROBE has 309222 mapped keys (of 334784 keys)
illuminaHumanv3PROSITE has }29107\mathrm{ mapped keys (of 49576 keys)
illuminaHumanv3REFSEQ has 29984 mapped keys (of 49576 keys)
illuminaHumanv3SYMBOL has 29984 mapped keys (of 49576 keys)
illuminaHumanv3UNIGENE has }29303\mathrm{ mapped keys (of 49576 keys)
illuminaHumanv3UNIPROT has 27577 mapped keys (of 49576 keys)
```

Additional Information about this package:

```
DB schema: HUMANCHIP_DB
```

DB schema version: 2.1

```
Organism: Homo sapiens
Date for NCBI data: 2011-Sep14
Date for GO data: 20110910
Date for KEGG data: 2011-Mar15
Date for Golden Path data: 2010-Mar22
Date for IPI data: 2011-Jul29
Date for Ensembl data: 2011-Jun30
####Custom Mappings based on probe sequence####
illuminaHumanv3ARRAYADDRESS()
illuminaHumanv3NUID()
illuminaHumanv3PROBEQUALITY()
illuminaHumanv3CODINGZONE()
illuminaHumanv3PROBESEQUENCE()
illuminaHumanv3SECONDMATCHES()
illuminaHumanv30THERGENOMICMATCHES()
illuminaHumanv3REPEATMASK()
illuminaHumanv30VERLAPPINGSNP()
illuminaHumanv3ENTREZREANNOTATED()
illuminaHumanv3GENOMICLOCATION()
illuminaHumanv3SYMBOLREANNOTATED()
illuminaHumanv3REPORTERGROUPNAME()
illuminaHumanv3REPORTERGROUPID()
```

If we suspect that a particular gene may be differentially expressed between conditions, we can subset the ExpressionSetIllumina object to just include probes that target the gene, and plot the response of these probes against the sample groups. Furthermore, the different probes can be distinguished using the probeFactor parameter.

```
> ids <- which(fData(exampleSummaryData.log2)[, "SYMBOL"] == "ALB")
> boxplot(exampleSummaryData.log2[ids, ], sampleFactor = "SampleFac",
+ probeFactor = "IlluminaID")
```


A note about ggplot2

The boxplot function in beadarray creates graphics using the ggplot2 package rather than the R base graphics system. Therefore, the standard way of manipulating graphics using par and mfrow etc will not work with the output of boxplot. However, the ggplot2 package has equivalent functionality and is a more powerful and flexible system. There are numerous tutorials on how to use the ggplot2 package, which is beyond the scope of this vignette. In the below code, we assign the results of boxplot to objects that we combine using viewports (a concept from the grid graphics system). The code also demonstrates how aspects of the plot can be altered programatically.

```
> require("gridExtra")
> bp1 <- boxplot(exampleSummaryData.log2[ids, ], sampleFactor = "SampleFac",
+ probeFactor = "IlluminaID") + opts(title = "ALB expression level comparison") +
+ xlab("Illumina Probe") + ylab("Log2 Intensity")
> bp2 <- boxplot(exampleSummaryData.log2[randIDs, ], probeFactor = "Status") +
+ opts(title = "Control Probe Comparison")
> print(bp1, vp = viewport(width = 0.5, height = 1, x = 0.25, y = 0.5))
> print(bp2, vp = viewport(width = 0.5, height = 1, x = 0.75, y = 0.5))
```


Other exploratory analysis

Replicate samples can also be compared using the plotMAXY.

```
> plotMAXY(exprs(exampleSummaryData), arrays = 1:3, pch = 16, log = FALSE)
```


In the top right corner we see the MA plots for all pairwise comparisons involving the 3 arrays. On an MA plot, for each probe we plot the average of the log2 -intensities from the two arrays on the x-axis and the difference in intensities (log -ratios) on the y-axis. For replicate arrays we would expect all probes to be unchanged between the two samples and hence most points on the plot should lie along
the line $\mathrm{y}=0$. In the lower left corner of the MAXY plot we see the XY plot and for replicate arrays we would expect to see most points along the diagonal $y=x$. From this MAXY plot it is obvious that the second array is systematically different to the other replicates and may benefit from normalisation. Both XY and MA plots are available separately for a particular comparison of arrays using plotXY and plotMA.

Normalisation

To correct for differences in expression level across a chip and between chips we need to normalise the signal to make the arrays comparable. The normalisation methods available in the affy package, or variance-stabilising transformation from the lumi package may be applied using the normaliseIllumina function. Below we quantile normalise the $\log _{2}$ transformed data.

```
> exampleSummaryData.norm <- normaliseIllumina(exampleSummaryData.log2,
+ method = "quantile", transform = "none")
```

An alternative approach is to combine normal-exponential background correction with quantile normalisation as suggested in the limma package. However, this requires data that have not been log-transformed. Note that the control probes are removed from the output object

```
> exampleSummaryData.norm2 <- normaliseIllumina(channel(exampleSummaryData,
+ "G.ul"), method = "neqc", transform = "none")
```


Filtering

Filtering non-responding probes from further analysis can improve the power to detect differential expression. One way of achieving this is to remove probes whose probe sequence has undesirable properties. Four basic annotation quality categories ('Perfect', 'Good', 'Bad' and 'No match') are defined and have been shown to correlate with expression level and measures of differential expression. We recommend removing probes assigned a 'Bad' or 'No match' quality score after normalization. This approach is similar to the common practice of removing lowly-expressed probes, but with the additional benefit of discarding probes with a high expression level caused by non-specific hybridization. You can verify the relationship between probe quality and intensity by using the boxplot function.

```
> library(illuminaHumanv3.db)
> ids <- as.character(featureNames(exampleSummaryData.norm))
> qual <- unlist(mget(ids, illuminaHumanv3PROBEQUALITY, ifnotfound = NA))
> table(qual)
qual
\begin{tabular}{rrrrrr} 
Bad & Good & Good*** & Good**** & No match & Perfect \\
13475 & 925 & 148 & 358 & 1739 & 24687 \\
Perfect*** & Perfect**** & & & \\
6269 & 1975 & \\
> rem <- qual == "No match" | qual == "Bad" | is.na(qual) \\
> exampleSummaryData.filt <- exampleSummaryData.norm[!rem, ] \\
> dim (exampleSummaryData.filt)
\end{tabular}
Features Samples Channels
    34362 12 1
```

```
> boxplot(exampleSummaryData.norm, probeFactor = "PROBEQUALITY",
+ sampleFactor = "SampleFac") + opts(axis.text.x = theme_text(angle = 45,
+ hjust = 1)) + xlab("Probe Quality") + ylab("Log2 Intensity")
```


Differential expression

The differential expression methods available in the limma package can be used to identify differentially expressed genes. The functions lmFit and eBayes can be applied to the normalised data. In the example below, we set up a design matrix for the example experiment and fit a linear model to summaries the data from the UHRR and Brain replicates to give one value per condition. We then define contrasts comparing the Brain sample to the UHRR and calculate moderated t-statistics with empirical Bayes shrinkage of the sample variances. In this particular experiment, the Brain and UHRR samples are very different and we would expect to see many differentially expressed genes.

Empirical array quality weights can be used to measure the relative reliability of each array. A variance is estimated for each array by the arrayWeights function which measures how well the expression values from each array follow the linear model. These variances are converted to relative weights which can then be used in the linear model to down-weight observations from less reliable arrays which improves power to detect differential expression. You should notice that some arrays have very low weight consistent with their poor QC.

We then define a contrast comparing UHRR to Brain Reference and calculate moderated t-statistics with empirical Bayes' shrinkage of the sample variances.

```
> library(limma)
> rna <- factor(pData(exampleSummaryData)[, "SampleFac"])
> design <- model.matrix(~0 + rna)
> colnames(design) <- levels(rna)
> aw <- arrayWeights(exprs(exampleSummaryData.filt), design)
> aw
\begin{tabular}{rrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2.09018696 & 2.52678943 & 1.45410355 & 1.77470959 & 2.13405097 & 1.85777235 & 0.01233139 \\
8 & 9 & 10 & 11 & 12 &
\end{tabular}
\begin{tabular}{llrrrrr} 
& ID & logFC & AveExpr & t & P.Value & adj.P.Val \\
22053 & ILMN_1651358 & 7.344613 & 9.202611 & 87.76990 & \(5.296571 \mathrm{e}-34\) & \(1.660766 \mathrm{e}-29\) \\
2046 & ILMN_1796678 & 7.320711 & 9.608215 & 85.77897 & \(9.666297 \mathrm{e}-34\) & \(1.660766 \mathrm{e}-29\) \\
31865 & ILMN_1713458 & 6.419033 & 8.954098 & 78.22104 & \(1.084133 \mathrm{e}-32\) & \(1.210370 \mathrm{e}-28\) \\
34021 & ILMN_1783832 & 5.972782 & 8.323385 & 77.44244 & \(1.408963 \mathrm{e}-32\) & \(1.210370 \mathrm{e}-28\) \\
3180 & ILMN_1782939 & 6.822151 & 9.310045 & 76.19989 & \(2.152332 \mathrm{e}-32\) & \(1.479169 \mathrm{e}-28\) \\
28964 & ILMN_1688543 & 6.708307 & 9.032077 & 73.23368 & \(6.088138 \mathrm{e}-32\) & \(3.123578 \mathrm{e}-28\) \\
3885 & ILMN_1795679 & -7.150689 & 9.069547 & -73.11021 & \(6.363148 \mathrm{e}-32\) & \(3.123578 \mathrm{e}-28\) \\
17902 & ILMN_2084825 & 7.980186 & 9.899318 & 72.67719 & \(7.433974 \mathrm{e}-32\) & \(3.193078 \mathrm{e}-28\) \\
9205 & ILMN_1782204 & 6.275340 & 8.666149 & 69.87028 & \(2.084422 \mathrm{e}-31\) & \(7.958322 \mathrm{e}-28\) \\
10401 & ILMN_1665994 & 6.693724 & 8.725046 & 67.50738 & \(5.127974 \mathrm{e}-31\) & \(1.762074 \mathrm{e}-27\)
\end{tabular}
            B
22053 67.02204
2046 66.49238
31865 64.32882
3402164.09107
3180 63.70543
28964 62.75274
3885 62.71207
1790262.56876
9205 61.61410
1040160.77415
```


Annotation of results

The topTable function displays the results of the empirical Bayes analysis alongside the annotation assigned by Illumina to each probe in the linear model fit. Often this will not provide sufficient information to infer biological meaning from the results. Within Bioconductor, annotation packages are available for each of the major Illumina expression array platforms that map the probe sequences designed by Illumina to functional information useful for downstream analysis. As before, the illuminaHumanv3.db package can be used for the arrays in this example dataset.

```
> ids2 <- featureNames(exampleSummaryData.filt)
> chr <- mget(ids2, illuminaHumanv3CHR, ifnotfound = NA)
> cytoband <- mget(ids2, illuminaHumanv3MAP, ifnotfound = NA)
> refseq <- mget(ids2, illuminaHumanv3REFSEQ, ifnotfound = NA)
> entrezid <- mget(ids2, illuminaHumanv3ENTREZID, ifnotfound = NA)
> symbol <- mget(ids2, illuminaHumanv3SYMBOL, ifnotfound = NA)
> genename <- mget(ids2, illuminaHumanv3GENENAME, ifnotfound = NA)
> anno <- data.frame(Ill_ID = ids2, Chr = as.character(chr), Cytoband = as.character(cytoband),
+ RefSeq = as.character(refseq), EntrezID = as.numeric(entrezid),
+ Symbol = as.character(symbol), Name = as.character(genename))
> contr.fit$genes <- anno
> topTable(contr.fit)
\begin{tabular}{llrr} 
& Ill_ID & Chr & Cytoband \\
22053 & ILMN_1651358 & 11 & 11 p 15.5 \\
2046 & ILMN_1796678 & 11 & 11 p 15.5 \\
31865 & ILMN_1713458 & 16 & 16 p 13.3 \\
34021 & ILMN_1783832 & X Xp11. 4 -p11.2 \\
3180 & ILMN_1782939 & 4 & \(4 q 13.3\) \\
28964 & ILMN_1688543 & 1 & \(1 q 21-q 23\) \\
3885 & ILMN_1795679 & 8 & \(8 q 21.13\) \\
17902 & ILMN_2084825 & 11 & \(11 p 15.5\) \\
9205 & ILMN_1782204 & 4 & 4q11-q13 \\
10401 & ILMN_1665994 & 12 & 12q13-q14
\end{tabular}
RefSeq
22053
2046
31865
34021
3180
28964
3885
17902
10401 c("NM_001200053", "NM_001200054", "NM_006928", "NP_001186982", "NP_001186983", "NP_008859")
\begin{tabular}{lrrrrrr} 
& EntrezID Symbol & & Name & logFC & AveExpr & t \\
22053 & 3046 & HBE1 & hemoglobin, epsilon 1 & 7.344613 & 9.202611 & 87.76990 \\
2046 & 3047 & HBG1 & hemoglobin, gamma A & 7.320711 & 9.608215 & 85.77897 \\
31865 & 3050 & HBZ & hemoglobin, zeta & 6.419033 & 8.954098 & 78.22104 \\
34021 & 2578 & GAGE6 & G antigen 6 & 5.972782 & 8.323385 & 77.44244 \\
3180 & 213 & ALB & albumin & 6.822151 & 9.310045 & 76.19989 \\
28964 & 336 & APOA2 & apolipoprotein A-II & 6.708307 & 9.032077 & 73.23368 \\
3885 & 11075 & STMN2 & stathmin-like 2 & -7.150689 & 9.069547 & -73.11021 \\
17902 & 3048 & HBG2 & hemoglobin, gamma G & 7.980186 & 9.899318 & 72.67719 \\
9205 & 174 & AFP & alpha-fetoprotein & 6.275340 & 8.666149 & 69.87028 \\
10401 & 6490 & PMEL premelanosome protein & 6.693724 & 8.725046 & 67.50738
\end{tabular}
            P.Value adj.P.Val B
22053 5.296571e-34 1.660766e-29 67.02204
2046 9.666297e-34 1.660766e-29 66.49238
31865 1.084133e-32 1.210370e-28 64.32882
34021 1.408963e-32 1.210370e-28 64.09107
```

```
3180 2.152332e-32 1.479169e-28 63.70543
28964 6.088138e-32 3.123578e-28 62.75274
3885 6.363148e-32 3.123578e-28 62.71207
17902 7.433974e-32 3.193078e-28 62.56876
9205 2.084422e-31 7.958322e-28 61.61410
10401 5.127974e-31 1.762074e-27 60.77415
```


Reading bead summary data into beadarray

BeadStudio/GenomeStudio is Illumina's proprietary software for analyzing data output by the scanning system (BeadScan/iScan). It contains different modules for analyzing data from different platforms. For further information on the software and how to export summarized data, refer to the user's manual. In this section we consider how to read in and analyze output from the gene expression module of BeadStudio/GenomeStudio.

The example dataset used in this section consists of an experiment with one Human WG-6 version 2 BeadChip. These arrays were hybridized with the control RNA samples used in the MAQC project (3 replicates of UHRR and 3 replicates of Brain Reference RNA).

The non-normalized data for regular and control probes was output by BeadStudio/GenomeStudio.
The example BeadStudio output used in this section is available in the file
AsuragenMAQC_BeadStudioOutput.zip which can be downloaded from
tt http://www.switchtoi.com/datasets.ilmn.
You will need to download and unzip the contents of this file to the current R working directory. Inside this zip file you will find several files including summarized, non-normalized data and a file containing control information. We give a more detailed description of each of the particular files we will make use of below.

- Sample probe profile (AsuragenMAQC-probe-raw.txt) (required) - text file which contains the nonnormalized summary values as output by BeadStudio. Inside the file is a data matrix with some 48,000 rows. In newer versions of the software, these data are preceded by several lines of header information. Each row is a different probe in the experiment and the columns give different measurements for the gene. For each array, we record the summarized expression level (AVG_Signal), standard error of the bead replicates (BEAD_STDERR), number of beads (Avg_NBEADS) and a detection p-value (Detection Pval) which estimates the probability of a gene being detected above the background level. When exporting this file from BeadStudio, the user is able to choose which columns to export.
- Control probe profile (AsuragenMAQC-controls.txt) (recommended) - text file which contains the summarized data for each of the controls on each array, which may be useful for diagnostic and calibration purposes. Refer to the Illumina documentation for information on what each control measures.
- targets file (optional) - text file created by the user specifying which sample is hybridized to each array. No such file is provided for this dataset, however we can extract sample annotation information from the column headings in the sample probe profile.

Files with normalized intensities (those with avg in the name), as well as files with one intensity value per gene (files with gene in the name) instead of separate intensities for different probes targeting the same transcript, are also available in this download. We recommend users work with the nonnormalized probe-specific data in their analysis where possible. Illumina's background correction step, which subtracts the intensities of the negative control probes from the intensities of the regular probes, should also be avoided.

```
> library(beadarray)
> dataFile = "AsuragenMAQC-probe-raw.txt"
> qcFile = "AsuragenMAQC-controls.txt"
> BSData = readBeadSummaryData(dataFile = dataFile, qcFile = qcFile,
+ controlID = "ProbeID", skip = 0, qc.skip = 0, qc.columns = list(exprs = "AVG_Signal",
+ Detection = "Detection Pval"))
```

The arguments of readBeadSummaryData can be modified to suit data from versions 1,2 or 3 of BeadStudio. The current default settings should work for version 3 output. Users may need to change the argument sep, which specifies if the dataFile is comma or tab delimited and the skip argument which specifies the number of lines of header information at the top of the file. Possible skip arguments of 0,7 and 8 have been observed, depending on the version of BeadStudio or way in which the data was exported. The columns argument is used to specify which column headings to read from dataFile and store in various matrices. Note that the naming of the columns containing the standard errors changed between versions of BeadStudio (earlier versions used BEAD STDEV in place of BEAD STDERR - be sure to check that the columns argument is appropriate for your data). Equivalent arguments (qc.sep, qc.skip and qc.columns) are used to read the data from qcFile. See the help page (?readBeadSummaryData) for a complete description of each argument to the function.

Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning MJ, Smith ML, Ritchie ME, Tavaré S, beadarray: R classes and methods for Illumina bead-based data, Bioinformatics, 23(16):2183-2184

1 Asking for help on beadarray

Wherever possible, questions about beadarray should be sent to the Bioconductor mailing list ${ }^{1}$. This way, all problems and solutions will be kept in a searchable archive. When posting to this mailing list, please first consult the posting guide. In particular, state the version of beadarray and R that you are $u^{2} \operatorname{sing}^{2}$, and try to provide a reproducible example of your problem. This will help us to diagnose the problem.

This vignette was built with the following versions of R and

```
> sessionInfo()
R version 2.15.0 (2012-03-30)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
    [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
    [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
    [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
    [7] LC_PAPER=C LC_NAME=C
    [9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
```

attached base packages:

[^0]

[^0]: ${ }^{1}$ http://www.bioconductor.org
 ${ }^{2}$ This can be done by pasting the output of running the function sessionInfo().

