
Description of exonmap: simple analysis and
annotation tools for Affymetrix exon arrays

Micha lJ Okoniewski, Tim Yates, Crispin J Miller

June 11, 2007

Contents

1 Introduction 1

2 Initial processing of exon array data 2

3 Reading in data and generating expression calls 2

4 Pairwise comparison of expression data 4

5 Translation routines for genes, transcripts, exons and probesets 4

6 More details 5

7 Probeset filtering 5

8 Plotting genes of interest 5

9 Splicing index and splicing ANOVA 7

1 Introduction

The package exonmap is intended to support various forms of data analysis for Affymetrix
Exon microarrays. It includes a variety of routines for translating between probesets,
exons, genes and transcripts, and makes use of a relational database (X:MAP) to define
these relationships for the current genome assembly. X:MAP is built using Ensembl and
Affymetrix annotation data, along with custom probeset to genome mappings.

Genome mappings were generated by searching probe sequences against the entire
human (or mouse) genome and building database tables representing their hit locations
and hit specificity. These are placed alongside data describing exon, transcript and gene

1

relationships. Most of this is hidden from the user; the package uses a series of functions
(e.g. probeset.to.exon) that manage the underlying database queries.

The package provides graphics routines for plotting individual genes, and for colour-
ing them by expression level or fold-change, and functions are also provided to link to
the X:MAP web-based front end, at http://xmap.picr.man.ac.uk.

2 Initial processing of exon array data

Exonmap makes use of the affy package; a basic understanding of the library and its
vignette is a good idea. We also assume that the reader knows how the Affymetrix system
works. If not, a brief introduction can be found at http://bioinf.picr.man.ac.uk/; a more
detailed description is in the Affymetrix MAS manual at http://www.affymetrix.com.

Although this package is primarily to support annotation, it does contain some basic
utility functions to make it easy to load and begin to explore exon array data. The
following section exists simply to provide a quick route to a list of differentially expressed
probesets; alternative strategies are of course possible, and you may choose to skip this
section and use your own approach.

3 Reading in data and generating expression calls

The first thing you need to do is to get R to use the exonmap package by telling it to
load the library:

> library(exonmap)

> library(affy)

R needs to know about the replicates in your experiment, so we must also load some
descriptive data that says which arrays were replicates and also something about the
different experimental conditions you were testing. This means that exonmap needs two
things:

1. your .CEL files, and

2. a white-space delimited file describing the samples that went on them.

By default, this file is called covdesc. The first column should have no header, and
contains the names of the .CEL files you want to process. Each remaining column is
used to describe something in the experiment you want to study. For example you might
have a set of chips produced by treating a cell line with two drugs. Your covdesc file
might look like something like this:

2

http://xmap.picr.man.ac.uk
h

treatment
ctrl1.cel n
ctrl2.cel n
ctrl3.cel n

a1.cel a
a2.cel a
a3.cel a
b1.cel b
b2.cel b
b3.cel b

ab1.cel a.b
ab2.cel a.b

This is similar to the approach taken by simpleaffy .
The easiest way to get going is to:

1. Create a directory, move all the relevant CEL files to that directory

2. Create a covdesc file and put it in the same directory

3. If using linux/unix, start R in that directory.

4. If using the Rgui for Microsoft Windows make sure your working directory contains
the Cel files (use “File -> Change Dir” menu item).

5. Load the library.

Exon array CEL files may be read using the function read.exon. In all cases an
experiment description file (covdesc) must be present.

In addition, a CDF metadata package must be specified. Versions of CDF metadata
for mouse and human exon arrays can be downloaded from http://xmap.picr.man.ac.uk.
The CDF metadata cannot include control or backround probesets if you are going to
process it with RMA or plier.

For example, to get started, you might run something like:

> raw.data <- read.exon()

> if (exists(raw.data)) {

+ raw.data@cdfName <- "exon.pmcdf"

+ x.rma <- rma(raw.data)

+ }

The CDF files, exon.pmcdf for Human Exon 1.0ST array and mouseexonpmcdf for
Mouse Exon 1.0 ST arrays, available from http://bioinformatics.picr.man.ac.uk have
been prepared by processing the ASCII CDF files from Affymetrix, using the (makecdfenv)
and (altcdfenvs). They include PM probes only. Probesets representing genomic and
antigenomic background and control probesets have also been removed.

3

h

4 Pairwise comparison of expression data

The function pc provides fast pairwise comparisons for exprSet objects.

> data(exonmap)

> pc.exonmap <- pc(x.rma, "group", c("a", "b"))

pc produces an object of class PC that has two slots: fc, for the log2 fold change and
tt containing a t-test p-value. For the purpose of this vignette, we use these to select
significant probesets, although other more in-depth approaches are of course possible.
For example:

> sigs <- names(fc(pc.exonmap))[abs(fc(pc.exonmap)) > 1 & tt(pc.exonmap) <

+ 1e-04]

> length(sigs)

[1] 31

5 Translation routines for genes, transcripts, exons

and probesets

The X:MAP database can be queried in a number of ways using translation functions.
All of them have the form X.to.Y, where X and Y may be a vector of gene, transcript,
exon or probeset identifiers. See, for example, ?probeset.to.gene for more details. All
the functions produce, by default, a vector of the identifiers resulting from the specified
mapping. More information can be generated by setting the parameter vector.out to
FALSE , in which case, a data frame is returned. If unique is true, duplicates are removed
before the result is returned.

> xmapDatabase("Human")

Switching to human database... done.

> sig.exons <- probeset.to.exon(sigs)

> length(sig.exons)

[1] 21

> sig.genes <- probeset.to.gene(sigs)

> length(sig.genes)

[1] 7 (These numbers are so small because there are only 7 genes represented in the
example dataset).

4

6 More details

probeset.details,exon.details,transcript.details and gene.details can all be
used to extract detailed annotation, given the appropriate set of identifiers.

7 Probeset filtering

Probesets can be filtered according to the number and quality of their matches to the
genome. Match statistics can be displayed with probeset.stats.

The hit, exon and gene scores are calculated using all the probes in the probesets
(usually 4) by finding the number of their matches to genome, exons and genes - and
multiplying the minimum value for the probe within a probeset with a maximum. Thus
the first probeset in the example is “intronic” as it matches 1 gene, but no exons. The
second one is “exonic” and well defined - it matches exactly 1 exon in 1 gene, and only
hits the entire genome exactly once. The third one is a “multitarget” probeset because
it includes at least one probe that matches two locations in the genome. The fourth one
is “intergenic”, because it matches the genome once, but does not hit an annoted gene.

These four types of probesets can be selected or excluded from a probeset list us-
ing the select.probewise and exclude.probewise functions. For example, to find
probesets that hit within genes, but outside regions annotated as exons by ensembl:

> select.probewise(sigs, filter = "intronic")

[1] ”3388403”
In a similar way, a probeset list can be filtered to get rid of multiply targeting

probesets (i.e. those annotated by X:MAP to hit in more than one place on the genome):

> sigs.nomt <- exclude.probewise(sigs, filter = "multitarget")

8 Plotting genes of interest

At it’s simplest,

> plot.gene("ENSG00000141510")

will generate a plot of the specified gene (in this case, TP53). Black lines repre-
sent well behaved probesets that hit the genome only once, grey lines represent those
that hit in more than one place. The outer box represents the gene, each of the inner
boxes represents a transcript; each contain exons. Hopefully, the plot is relatively self
explanatory.

The plot function can also colour the plot using expression data:

> plot.gene("ENSG00000141510", x.rma, 1:3, 4:6)

5

7515000 7520000 7525000 7530000

ENSG00000141510 : TP53

ENST00000269305

ENST00000359597

−5 −3.75−2.5−1.25 0 1.25 2.5 3.75 5
mean−fc

will compute the fold changes between arrays 1:3 and 4:6. All well behaving exon-
matching probesets are found, and the mean value used to colour the gene. The process
is repeated for each transcript and each exon. By default transcripts aren’t coloured.

The approach to averaging can be changed and, raw intensity or t-test p-score values
cab plotted instead; see ?plot.gene for more details. It is also possible to pre-scale the
colouring to the fold-change for the gene, so that differential expression for each exon is
plotted relative to the gene-average, (using the parameter scale.to.gene).

Sometimes, an exon is drawn with a cross through it. This happens when the function
can’t find a well behaving probeset targeting that exon and represents the fact that there
is no data to plot.

Another utility to visualize the expression of a gene is ?plot.gene.graph. It creates
a line-plot for a specified gene, including intronic probesets. For example:

> plot.gene.graph("ENSG00000082175", x.rma, 4:6, 1:3, draw.exon.border = F,

+ scale.to.gene = F, ylim = c(0, 16), type = "median-int")

ENSG00000082175 : PGR

0
5

10
15

100420000 100440000 100460000 100480000 100500000

●●●●

●●●● ●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●● ●●● ●
●●● ●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●
●●●●

●●●●
●●● ●●●●●

●●●●●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●
●●●●

●●●●

●●●●

●●●●

●●●●
●●●●

●●●●

●●●●

●●●●

●●●●
●●●●

●●●●

●●●●

●●●●

●●● ●

●●● ●

●●●●

●●●●

●●●●

●●●●

●●●●
●●●●

●●●●

●●●●

●●●●

●●● ●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

Heatmap style plots can also be generated with the gene.strip.

> gene.strip(c("ENSG00000141510", "ENSG00000082175"), x.rma, 1:3,

+ 4:6, type = "mean-fc")

6

0 2 4 6 8 10 12

ENSG00000141510 TP53 <

ENSG00000082175 PGR <

Here, each row corresponds to a gene, and each exon is plotted in exon-order along
the X axis. The plot is coloured as before; exons for which a uniquely matching probe-
set cannot be found are, by default, coloured white. When multiple probesets hit the
same exon, these are stacked vertically within that exon’s rectangle. The parameter
plot.introns can be used to change the plotting behaviour so that introns are shown,
and exons are positioned relative to their nucleotide position within the gene.

9 Splicing index and splicing ANOVA

Splicing index and splicing ANOVA have also been implemented, as described in the
Affymetrix white paper: “Alternative transcript analysis methods for exon arrays”.

Splicing index is the ratio of probeset gene expression versus gene-level expression.
It is calculated for genes, but produces values assigned to probesets:

> si <- splicing.index(x.rma, c("ENSG00000141510", "ENSG00000082175"),

+ "group", c("a", "b"))

splanova is an implementation of the MIDAS approach suggested by Affymetrix.
It produces an object with F-values and significance of alternative splicing, for each
probeset and treatment in a multi-treatment experiment.

7

	Introduction
	Initial processing of exon array data
	Reading in data and generating expression calls
	Pairwise comparison of expression data
	Translation routines for genes, transcripts, exons and probesets
	More details
	Probeset filtering
	Plotting genes of interest
	Splicing index and splicing ANOVA

