
Enabling R packages for web or grid services

Martin T. Morgan∗, Nianhua Li, Seth Falcon,
Robert Gentleman,

30 November, 2006, 20 March, 2007

1 Preliminaries

1.1 Prerequisites

RWebServices and associated software must be installed; see the accompanying
documentation “Installing and testing RWebServices and enabled packages”.

You must have a valid R package, including NAMESPACE file. See the
Writing R Extensions manual.

All complex objects to be translated to Java must be either primitive types
(e.g., numeric, character) or S4 classes.

2 Creating Java templates

2.1 TypeInfo

Add type information to your functions.

1. Include TypeInfo as a ‘Depends’ line in the DESCRIPTION file.

2. Provide typeInfo for each method to be exposed. From the caDNAcopy
package, an example is:

> typeInfo(caDNAcopy) <-

+ SimultaneousTypeSpecification(

+ TypedSignature(dnacopyAssays= "DNAcopyAssays",

+ dnacopyParameter="DNAcopyParameter"),

+ returnType="DerivedDNAcopySegment")

Provide this information within the package, in a ‘.R’ file after the corre-
sponding function (caDNAcopy) has been defined. See documentation and
vignettes in the TypeInfo package for detail.

∗Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024 Seattle,
WA 98109

1

3. Install the package, e.g.,

R CMD INSTALL --clean <pkg>

where <pkg> is the name of your package. This can also be done from
within R using install.packages or other means.

2.2 Unpack ant scripts

Unpack ant scripts with the R unpackAntScript command, or at the command
line with

echo "library(RWebServices); unpackAntScript('~/tmp/<pkg>')" | R --vanilla

where ~/tmp/<pkg> is the path to a temporary directory.

2.3 Create Java templates

There are several ways of proceeding. One way is to use createMap from within
R. A second way is to change to the directroy where the ant scripts were un-
packed, and evaluate

cd ~/tmp/<pkg>
ant -Dpkg=<pkg> map-package

(~/tmp/<pkg> is the directory where the ant scripts were unpacked). Both
methods create a directory hierarchy src/, and usually test/src.

Sometimes additional Java templates maybe required for extra R data types.
Suppose your function returns a list of DerivedDNAcopySegment . Your type
information only shows returnType="list", but you need the Java templates
of DerivedDNAcopySegment . If you use createMap within R, use argument
extraClasses. If you use the ant scripts, set the property extra.classes in
~/tmp/<pkg>/RWebServicesTuning.properties to DerivedDNAcopySegment.
You can also specify multiple R data types as extra classes in a comma delimited
character string.

3 Writing and running tests

3.1 Writing test code – data

The files

test/src/org/bioconductor/rserviceJms/worker/RWorkerDataTest.java
test/src/org/bioconductor/rserviceJms/worker/R/*.R
test/src/org/bioconductor/rserviceJms/worker/Data/*.data

2

contain skeletons to help generate Java and R components for testing data trans-
fer between R and Java. Templates are established for tests from Java to R for
all function arguments, and from R to Java for all return values. If any extra
classes are specified, their tests are established in both directions.

The Java code for testing uses the JUnit framework. A typical method starts
with

@Ignore("please initialize data")
@Test
public void TestDNAcopyParameterToR() throws Exception {

org.bioconductor.packages.caDNAcopy.DNAcopyParameter
inputVal = null;

inputVal = new ...
String rScript =

getClass().getResource("R/DNAcopyParameterData.R").getFile();
String rVariable = "DNAcopyParameterData";
assertTrue(myService.mockJava2R(inputVal, rScript, rVariable));

}

The first two lines are directives for JUnit. The test framework will arrange to
pass inputVal to R, and use the value of the variable rVariable in rScript to
assess whether the data transfer is successful. The developer needs to customize
inputVal and the source file in the test/src hierarchy). Comment @Ignore to
enable the test.

Serialized data instances can be added to the Data directory. Brave users
can even render serialized Java data instances from R data instances. Save R
objects into binary files, and put them in one directory, say <data_dir>, and
then evaluate:

cd ~/tmp/<pkg>
ant create-data -Daction=load -Ddata.dir=<data_dir>

The ant task transfers those R objects into Java objects and saves them into
binary files in the same directory. You can then use the serialized Java data in
the test. This task requires the R to Java converts of the R objects. The R to
Java converts are not created for function arguments. So PLEASE make sure
your R objects are either a function return type or an extra class. An alternative
task

ant create-data -Daction=data -Ddata.name=<dataset_name> \
-Ddata.dir=<data_dir>

invokes R function data with argument <dataset_name>, and saves the serial-
ized Java data in <data_dir>. The default <data_dir> for the task create-data
is ~/tmp/<pkg>/test/src/org/bioconductor/rservicesJms/worker/Data.

The argument action in this ant task corresponds to R function load
and data respectively. If the R objects is provided by the package, you can
use action=data and provide the object name as argument data.dir. The

3

action=load is more useful for loading your own data files or for loading mul-
tiple files.

The argument data.dir has different meanings on different action types.
When action is load, data.dir is the path for both the input R data files
and the output Java data files. Both absolete and relative path will work. But
please make sure all the files in data.dir are R data files when you invoke the
ant task. When action is data, data.dir is the path for the output Java data
file. The argument data.name is only used when action is data and it has to
be a R object name, not a R data file name.

3.2 Writing test code – methods

The file

test/src/org/bioconductor/rserviceJms/services/<pkg>.java

contains a template for writing test methods. The methods in this class arrange
for input parameters to be provided by the developer, and for the corresponding
R function to be invoked. The developer is free to implement tests on the return
value; the default is to compare the return value with an expected value provided
by the developer.

3.3 Running tests

Tests require (1) a running activemq (2) a ‘worker’ to perform calculations and
(3) the Java program to run the tests. The strategy (to be refined) is:

1. Open a terminal window and start activemq

cd $JMS_HOME
bin/activemq

(alternatives are in the activemq documentation.)

2. Open another teriminal window, compile the test and package source code,
and start the worker:

cd ~/tmp/<pkg>
ant precompile start-worker

Several files should be compiled, and the worker should start. The ant
task will remain active.

3. Finally, open a third teriminal window and run the test program:

cd ~/tmp/<pkg>
ant local-test

4

The test files will be compiled and and executed.

As the test program executes, any output directed toward stderr in R (warnings
or errors) will appear in the ‘worker’ window. Java-based errors (e.g., failed unit
tests or explicit print statements) in the test code are echoed in the local-test
console.

Test output is collated in the test/output directory.

4 Creating web services from Java templates

The Java code you have now is a standard Java application. Converting it into
a web service application allows your functions to be accessed remotely in a
platform and implementation indenpendant way. This process is enabled by
Apache Axis , a java platform for creating and deploying web services applica-
tions. Please make sure Apache Axis is correctly installed and deployed. If you
have no existing web server, use Apache Tomcat as a starting point. Please also
specify related properties in ~/tmp/<pkg>/RWebServicesEnv.properties

4.1 Creating web services

1. Create WSDL from Java code and Java templates from WSDL

cd ~/tmp/<pkg>
ant gen-wsdl

The outputs in ~/tmp/<pkg> are:

wsdl/*.wsdl
wsdl/org/bioconductor/packages/*/*.java
wsdl/org/bioconductor/rservicesJms/services/*/*

The file *.wsdl is written in WSDL, the Web Service Description Lan-
guage. It specifies the type information of your functions, and defines all
related data types. It is the agreement between the web service server
and client for service invocations. The file is generated by a tool called
Java2WSDL from Axis by extracting information from your Java codes.
Advanced users can customize the WSDL style via properties wsdl.style
and wsdl.use in ~/tmp/<pkg>/RWebServicesTuning.properties. The
default is Document/literal wrapped. More information about WSDL
style is available.

All other Java files in directory wsdl are generated by a tool called WSDL2Java
from Axis by extracting information from the WSDL file. wsdl/org/bioconductor/rservicesJms/services/*/*
contains server binding skeletons, client binding stubs and a template for
test. The stubs and skeletons handle all the low-level details of the remote
method invocation. They allow seemless interactions between your Java
application, Axis and web service clients. wsdl/org/bioconductor/packages/*/*.java
are Java implementations for the data type definitions in WSDL.

5

http://ws.apache.org/axis/
http://tomcat.apache.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

2. Creating web service server and web service client

The outputs from WSDL2Java need to be connected with your Java codes.

cd ~/tmp/<pkg>
ant mkserver
ant mkclient

Two directories are created: server and client, to hold all data for the
web service server and client respectively. The client is only for testing
pupose. Any users of your web service can create a client from the WSDL
file, by using any tool or any programming language.

The ant tasks gen-wsdl, mkserver and mkclient can also be invoked in one
composite task:

cd ~/tmp/<pkg>
ant ws

4.2 Deploying the web service to Axis

To deploy the service:

cd ~/tmp/<pkg>
ant deploy-serv

If it fails, check Tomcat log files for error messages. Please also access your
Axis instance from browser, and view the list of deployed web services. Some-
times the service does not appear on the list even if the above ant call re-
turns no error information. Try the ant call again. You may also want to
restart Tomcat server after deploying the service. The deployment step copies
wsdl/org/bioconductor/rservicesJms/services/*/deploy.wsdd to the file
<AXIS_HOME>/WEB-INF/server-config.wsdd.

Always remember to undeploy the service afterwards:

cd ~/tmp/<pkg>
ant undeploy-serv

4.3 Testing the web service

Add test code to

client/*/src/org/bioconductor/rservicesJms/services/*/*TestCase.java

Make sure activemq, the ‘worker’, and Tomcat are all running, and then perform
tests:

cd ~/tmp/<pkg>
ant web-test

Test output is collated in client/test_output.

6

5 Adding Java code to R packages for redistri-
bution

After R methods have been exposed and working tests developed, a next (and
optional) step is to add the Java code to the original R package. In this way,
the combined R and Java code can be redistributed for others to use or deploy
as web services.

The approach is to add Java files to the directory <pkg>inst/rservices.
The commands

ant map-package unpack-package -D<pkg>

will then create an RWebServices skeleton as outlined for map-package, and then
copy the files in the inst/rservices folder into their corresponding location
in the skeleton. The typical contents of inst/rservices might be Java source
files and perhaps data instances used for implementing tests or simple clients.

6 Alternative deployments: caGrid services

RWebServices packages can be used as traditional web services, or integrated into
other projects. One example of the latter involves caBIG and caGrid. caBIG is
an effort by the US National Cancer Institute to develop standardized software
that uses strongly typed data. caGrid builds on this foundation to offer analytic
and data services in a grid-based computing environment built on top of the
Globus toolkit.

Here is how one might proceed to create a caGrid analytic service based
on an RWebServices-enabled package; the assumption is that caSurvey contains
functions with typeInfo applied. caSurvey has been built with R CMD build
-clean caSurvey. One can then

tar xzf caSurvey_1.0.tar.gz
R CMD INSTALL --clean caSurvey
echo "library(RWebServices);unpackAntScript('caSurveyImpl')" | \

R --vanilla
cd caSurveyImpl
ant map-package -Dpkg=caSurvey

To start the project. Just as described above, this creates src/ and test/ di-
rectories. the test directories are meant to be populated with unit tests to
ensure that data are being translated between R and Java correctly (RWork-
erDataTest.java) and that the service is invoked correctly (caSurveyTest.java).
The worker tests require RWebServices, SJava, and caSurvey to work correctly;
the service tests also require activeMQ and a worker to be working correectly.
The tests constructed and run as described above.

You can go on to create and deploy a web service (ant ws deploy-serv), but
for the workflow we want the next step is to use caGrid and the introduce tool

7

http://cabig.nci.nih.gov
http://www.cagrid.org
http://www.globus.org

to create a grid service. We will forward grid service requests to the caSurvey
application created by RWebServices’ map-package.

Creating a caGrid analytic service is document in this best practices docu-
ment. Think of application produced by map-package as a ‘silver level’ appli-
cation (chapter 4), with the goal being to reach ‘gold level’ (chapter 5). The
basic steps involved are

1. Create xsd from the Java data beans produced by RWebServices.

2. Create a caGrid / introduce ‘project’ based on the xsd and services to be
exposed;

3. Add relevant components from the RWebServices project to the caGrid /
introduce project.

4. Translate grid service requests to requests handled by the RWebServices
project.

The first two steps are necessary when brining any Java project to caGrid, and
are described in the caGrid best practices document.

Components of the RWebServices project need to be added to the lib direc-
tory of the caGrid project. These are:

1. A jar file of compiled classes, e.g.,

ant precompile
jar -cf caSurvey.jar -C bin .

2. rservices.jar from RWebServices, and activemq-core-4.02.jar and
geronimo-jms from activeMQ.

The best practices document suggests that caGrid services use <service>Impl
to wrap the underlying business logic. For us, this means

1. Import data packaages and the service provider, e.g.,

import org.bioconductor.packages.caSurvey.*;
import org.bioconductor.rserviceJms.services.caSuvery.caSurvey;

2. Create a persistent service when the grid service is initialized, e.g.,

public class CaSurveyImpl extends CaSurveyImplBase {
private caSurvey caService = null;
public CaSurveyImpl() throws RemoteException {

super();
// Start our service; the service has a lifetime
// equal to that of this instance.
try {

// logs/catalina.out

8

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/archvcdebpsig/analytical_services/building_analytical_services_bp.doc?cvsroot=archvcdebpsig

System.out.println("Starting caSurvey");
caService = new caSurvey();

} catch (Exception ex) {
throw new RemoteException(ex.getMessage());

}
System.out.println("Start caSurvey successful");

}
...

3. Forward service requests. The <survey>Impl class contains methods.
Each method represents a grid service. We map each to a caSurvey ser-
vice, perhaps using get methods to access the grid data types. Generally:

...
public <caGrid type> <caGrid service>(<caGrid types>) {

// map input types, i.e., create <caSurvey type>
// from <caGrid type>
<caSurvey type> var =

new <caSurvey type>(<caGrid type>);

// invoke service
<caSurvey result> = null;
try {

<caSurvey result> =
caService.<caSurvey method>(<caSurvey types>);

} catch (RemoteException ex) {
// maybe log?
throw (ex);

}

// map from <caSurvey result> to <caGrid result>
return(<caGrid result>)

}
...

7 More information

The vignette “Installing and testing RWebServices and enabled packages” pro-
vides guidance on package and software installation.

Additional vignettes contain thoughts and ‘lessons learned’ from this project,
and are not essential reading.

9

	Preliminaries
	Prerequisites

	Creating Java templates
	TypeInfo
	Unpack ant scripts
	Create Java templates

	Writing and running tests
	Writing test code -- data
	Writing test code -- methods
	Running tests

	Creating web services from Java templates
	Creating web services
	Deploying the web service to Axis
	Testing the web service

	Adding Java code to R packages for redistribution
	Alternative deployments: caGrid services
	More information

