Analysing Microscopy Screens with EBImage
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The R-package EBImage provides functionality to perform image processing and image analysis
on large sets of images in a programmatic fashion using the R language.

We use the term image analysis to describe the extraction of numeric features (image descriptors)
from images and image collections [Russ2002]. Image descriptors can then be used for statistical
analysis, such as classification, clustering and hypothesis testing, using the resources of R and its
contributed packages.

Image analysis is not an easy task, and the definition of image descriptors depends on the
problem. Analysis algorithms need to be adapted correspondingly. We find it desirable to develop
and optimize such algorithms in conjunction with the subsequent statistical analysis, rather than
as separate tasks. This is one of our motivations for writing EBImage as an R package.

We use the term image processing for operations that turn images into images with the goals of
enhancing, manipulating, sharpening, denoising or similar [Russ2002]. While some image processing
is often needed as a preliminary step for image analysis, image processing is not the primary goal
of the package. We focus on methods that do not require interactive user input, such as selecting
image regions with a pointer etc. Whereas interactive methods can be very effective for small sets
of images, they tend to have limited throughput and reproducibility.

EBImage uses the [ImageMagick| library API’s to implement much of its functionality in image
processing and input/output operations.

Cell-based assays

Advances in automated microscopy have made it possible to conduct large scale cell-based assays
with image-type phenotypic readouts. In such an assay, cells are grown in the wells of a microtitre
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plate (often a 96- or 384-well format is used) under a condition or stimulus of interest. Each well
is treated with one of the reagents from the screening library and the cells’ response is monitored,
for which in many cases certain proteins of interest are antibody-stained or labeled with a GFP-
tag |Carpenter2004, Wiemann2004, Moffat2006, Neumann2006].

The resulting imaging data can be in the form of two-dimensional (2D) still images, three-
dimensional (3D) image stacks or image-based time courses. Such assays can be used to screen
compound libraries for the effect of potential drugs on the cellular system of interest. Similarly,
RNA interference (RNAi) libraries can be used to screen a set of genes (in many cases the whole
genome) for the effect of their loss of function in a certain biological process [Boutros2004].

Importing and handling images

Images in EBImage are stored in objects of S4 class Image that extends the R array class. The
class encapsulates the most important image properies like size, resolution and colour mode, which
are accessible by means of accessor methods. It is recommended not to access slot data directly
as their structure might change in the future releases and only use accessor methods. The get
and set accessor methods for the Imageclass are: colorMode, imageData, fileName, compression,
resolution, and the get-only features. The colour mode can be either Grayscale or TrueColor
with the corresponding integer constants defined in the package. See help pages for the corresponding
functions for more detail.

New images can be created with the standard R constructor new, or using the wrapper function
Image. The following example code generates a 100x100 pixel grayscale image with black and white
vertical stripes [T}

> im <- Image(0.0, c(100,100), Grayscale)
> im[ c(1:20, 40:60, 80:100), , 1 =1

As mentioned above, for input/output operations EBImage uses ImageMagick API, which sup-
port reading and writing of more than 95 image formats including JPEG, TIFF and PNG. The
package can read and write multi-page images (image stacks or 3D images) or process multiple
files simultaneously. For example, the following code demonstrates how to read all PNG files in
the working directory into a single object of class Image, convert them to grayscales and save the
output as a single multi-page TIFF file:

files <- dir(pattern=".png")

im <- read.image(files, TrueColor)

img <- channel(im, "gray")
write.image(img, "single_multipage.tif")
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The package also provides an interactive way to select and load (multiple) images using the choose . image
function and an alternative way of specifying the file name to write as in the following example:

> img <- choose.image ()
> fileName(img) <- "single_multipage.tif"
> write.image (img)

! All examples in this vignette are based on version 1.9.12 (RC) of the package. Older versions have similar functions,
that can have slightly different names.



If the output format does not support multiple frames (stacks), ImageMagick will automatically
extend the provided filename with counter suffixes -0, -1, ... placed either before or after the
file extension depending on your installation of ImageMagick. Alternatively, one can specify the
same number of files as image frames in call to write.image or fileName. File names supplied to
write.image will take precedence over

Besides operations on local image files, anonymous HTTP and FTP protocols are supported.
The package can read from both and it can write to FTP only. These protocols are supported
internally by ImageMagick and do not use R connections.

Displaying images

EBImage implements the method display to show images on screen interactively. By default (and
if the package was compiled with GTK+ support) EBImage uses the GTK+ implementation of this
function. It allows to display as many images simultaneously as the user needs and its interface is
easily expandable programmatically. The alternative implementation uses the ImageMagick API’s
display function. This implementation is only intended for systems where GTK+ interface is not
available and can only show one image at a time. The GTK+ interface is known to be working on all
supported architectures, including MS Windows.

In some cases users may want to use the generic R image function, the package provides a simple
wrapper, which keeps the image aspect ration and allows to specify which frame has to be displayed
as in the following example:

> display(abc) # 3 images, interactively
> image(abc, 2) # displays the 2nd frame

Image processing

The ImageMagick library provides a number of image processing routines, so called filters. Many of
those are ported to R in EBImage. The missing ones can be added as opportunity arises. Additional
image processing routines implementing distance map and watershed transforms and others have
been added to the package to power our work on cell-based assays.

Filters are implemented as S4 methods for class Image. The return value is usually an object
of class Image as well. One can divide all the filters into four categories: image enhancement,
segmentation and transformation, and colour correction. Some examples are listed below.

channel enables colour mode and colour channel conversions
sharpen, umask generate sharpened versions of an image
gblur applies the Gaussian blur to an image softening sharp edges and noise

thresh segments a grayscale image into a binary black-and-white image by the adaptive threshold-
ing algorithm

opening, closing sequentially use erosion and dilation operators to enhance edges of objects in
binary images and to reduce noise

distmap performs a Euclidean distance transform of a binary image, also known as distance map.
On a distance map, values of pixels indicate how far are they away from the nearest background



Figure 1: Implementation of a simple unsharp mask filter: (a) source image, (b) blurred colour-
scaled image, (c) sharpened image after normalization

normalize shifts and scales colours of images to a specified range, normally [0, 1] for grayscales
resample, resize changes image size, proportionally or arbitrary

watershed performs a watershed-like image segmentation (used also for object detection)

The storage mode of grayscale images is double (or numeric), and R functions that work with
arrays can be directly applied to grayscale images. This includes the arithmetic functions, subset-
ting, histograms, Fast Fourier transformation, (local) regression etc. For example, the sharpened
image in Figure can be obtained by subtracting the slightly blurred, scaled in colour version
of the original image (Figure ) from its source in Figure [la. All pixels that become negative
after subtraction are then re-set to background. The source image is obtained by subsetting the
original microscopic image. Hereafter, variables in the code are given the same literal names as the
corresponding image labels (e.g. data of variable a are shown in Figure [l|a, b —in b, and C —in c,
etc).

> orig <- read.image("ch2.png")
> a <- orig[150:550, 120:520,]
> b <- blur(0.5 * a, 80, 5)
>C<-a-bD

>C[C<0] =0

> C <- normalize(C)

One can think of this code as of a naive but fast and effective version of the unsharp mask
filter; a more sophisticated implementation from the ImageMagick library is provided by the umask
function in the package.

Some of the image analysis routines in EBImage assume grayscale data in the interval [0, 1], but
there are no formal restrictions on the range.

The storage mode of true colour images is integer, and we use the three lowest bytes to store
the red (R), green (G) and blue (B) values, each in the unsigned char (of C) range of [0,255].
Because of this, application of arithmetic and other functions on true colour images is generally
meaningless; although they can be useful in some special cases, as shown in the example code in the
following section. The support for true colour images is included mainly to enhance the display of
the analysis results and to support further extensions of the package by third parties. Most analysis
routines require grayscale data though.



Figure 2: Composing a false-colour image (d) from a set of grayscale microscopy images for three
different luminescent compounds: (a) — DAPI, (b) — tubulin and (c) — phalloidin

The following code demonstrates how grayscale images recorded using three different microscope

filters (Figure[2]a, b and c) can be put together into a single false-colour representation (Figure 2]d),
and conversely, how a single false-colour image can be decomposed into its individual channels.
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files <- c("chl.png","ch2.png","ch3.png")
orig <- read.image(files, Grayscale)

abc <- orig[150:550, 120:520,]

a <- channel(abc[,,1], "asgreen") # RGB

b <- channel(abc[,,2], "asred") # RGB

d <- a + b + channel(abc[,,1], "asblue")

C <- channel(d, "blue") # gray

Analysing an RNAIi screen

Consider an experiment in which images like in Figure [2| were recorded for each of ~ 20,000 genes,
using a whole-genome RNAI library to test the effect of gene knock-down on cell viability and
appearance. Among the image descriptors of interest are the number, position, size, shape and the
fluorescent intensities of cells and nuclei.

As a side effect of the watershed transform, the function watershed, EBImage identifies separable



objects in an image. For this particular purpose it is advisable to use the result of the distance map
transform (distmap) as input. Object descriptors can be obtained by calling getObjects on the
result. One can see that an image has data of detected object by printing it (typing its name and
hitting Enter): this information will be included in the object description. The features are a list
of matrices, one per image frame, each containing different objects in its rows and different object
descriptors in the columns. If a reference grayscale image was supplied to the watershed routine,
object gray value intensities will be calculated as well.

For every gene, the image analysis workflow looks, therefore, as follows: load and normalize
images, perform image segmentation, enhance the segmented images by morphological opening and
closing, generate distance maps and use them to identify cells and nuclei and to extract image
descriptors, and, finally, generate image previews with the identified objects marked.

Object descriptors can then be analysed statistically to cluster genes by their phenotypic effect,
generate a list of genes that should be studied further in more detail (hit list), e. g. genes that have
a specific phenotypic effect of interest, etc. The image previews can be used to verify and audit the
performance of the algorithm through visual inspection.

A schematic implementation is illustrated in the following example code and in Figure [3] Here
we omit the step of nuclei detection (object x1), from where the matrix of nuclei coordinates (object
seeds) is retrieved to serve as starting points for the cell detection. The nuclei detection is done
analogously to the cell detection without specifying starting points, seeds.

for (X in genes) {
files <- dir(pattern=X)
orig <- read.image(files)
abc <- normalize(orig)
i1 <- abcl,,1]
i2 <- abcl,,2]
i3 <- abcl[,,3]
<- sqrt(normalize(il + i3))
<- thresh( blur(a, 4, 2), 50, 50)
opening (b, morphKern(7))
<- closing(C, morphKern(7))
<- distmap(C) # shown normalized
## x1 <- watershed(...) # nuclei detection
features(x1l) <- getObjects(xl, il)
x2 <- propagate(xl, a, d)
features(x2) <- getObjects(x2, i3)
rgb <- channel(il, "asgreen") + channel(i2, "asred")
rgb <- rgb + channel(i3, "asblue")
e <- paintObjects(x2, rgb)
f <- paintObjects(xl, paintObjects(x2, i3) )
}
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Note that here we adopted the record-at-a-time approach: image data, which can be huge, are
stored on a mass-storage device and are loaded into RAM in portions of just a few images at a time.



Figure 3: Illustration of the object detection algorithm: (a) — sgrt-brightened combined image
of nuclei (DAPI from Figure [2a) and cells (phalloidin from Figure [2c); (b) — image a after blur
and adaptive thresholding; (c) — image b after morphological opening followed by closing; (d) —
normalized distance map generated from image c; (e) — outlines of cells detected using watershed
drawn on top of the RGB image from Figure [2d; (f) — colour-mapped cells and nuclei as detected
with watershed (one unique colour per object)



Summary

EBImage brings image processing and image analysis capabilities to R. Its focus is the programmatic
(non-interactive) analysis of large sets of similar images, such as those that are obtained in cell-
based assays for gene function via RNAi knock-down. Image descriptors extracted as the result
of analysis can be analysed further using existing R-functionality in machine learning (clustering,
classification) and hypothesis testing.

Our future developments in image analysis will focus primarily on more accurate object detection
and on algorithms for feature/descriptor extraction, and eventually on image registration, alignment
and object tracking. Algorithms for the statistical analysis of image descriptors will be developed
as part of a separate package that uses EBlImage for image processing and analysis. In addition,
one can imagine many other useful features, for example, support for more ImageMagick functions.
Contributions or collaborations on these or other topics are welcome.
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EBImage is available from BioConductor (www.bioconductor.org). The package was tested to
work on 32 and 64 bit UNIX and Linux systems, on both PowerPC and Intel based MacOS and
on MS Windows. The package requires external dependencies, ImageMagick and GTK+, therefore,
please read the included file 'INSTALL' in the package tarball for installation instructions on different
systems.

Parts of this text for older versions of EBImage were used in R-News [Sklyar2006].
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