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Reverse vs. forward genetics

Forward genetics:

Find the genetic basis for a specific
observed phenotype.

Reverse genetics:

Modify gene sequence and analyzes the
resulting phenotype.

Wikipedia
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Discovery of CFTR gene mutation
causing Cystic fibrosis.

Knockout of gene affecting hair growth.




Biological motivation for reverse genetics screens
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Advantages of using CRISPR-Cas9 for gene knockout

One gene at a time Suitable for pooled screening
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* shRNA based screens have problems with off-target effects and weak
phenotypes.
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Guide RNA (gRNA) simultaneously serves as perturbagen and barcode
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Different types of CRISPR mediated genetic perturbations

Name ‘ CRISPR associated enzyme perturbation
CRISPR-KO Cas9 gene knockout
CRISPRi dCas9 + transcription inactivator expression inhibition
CRISPRa dCas9 + transcription activator expression activation

CRISPR-BE dCas9 + base editor base editing (C-G, A-T)



Experimental procedure of pooled CRISPR screens

pooled DNA array
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Phenotype detection in pooled CRISPR screens

pooled DNA array
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Differences between RNA-seq and CRISPR screening data

M-A plot
Logarithmic fold change: M = Iogz(%)
2

Mean abundance: A = %logz(5152)

CRISPR screen RNA sequencing
o P Y . 50 2ol
ol count 254 count
1250 200
1000 0o HE 150
750 =
100

500
250




Screening data is skewed towards negative fold changes

ASYMMETRY: TO vs. T1 gRNA abundance

» negative logFC are more frequent

» especially for gRNAs that have low initial frequency
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Computational simulation of screen to test influence of experiment design
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Mean gRNA coverage in pooled CRISPR screens determines cell number
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Cell splitting causes asymmetry in gRNA abundance changes

Simulation with different coverage
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Lower gRNA coverage increases asymmetry of gRNA abundance changes.



Asymmetry is caused by repetitive cell splitting

Bottle neck effect
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Population bottlenecks in the Northern Elephant Seal

Bottle neck event: Hunting in 19th century, reduction of population size to 20
individuals. Today‘s 30,000 seals have a strongly reduced genetic diversity.
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It is not OK to assume symmetry of null-distribution!

Current analysis tools loose detection power when asymmetry increases.

Detection of essential genes
by MAGeCK-RRA (Li et al. 2014)
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Software package gscreend with improved statistical test

DA



Step 1: Data preparation

» Normalization or scaling to the total counts in the reference sample.
» Calculation of logarithmic fold changes, addition of pseudo-counts:

1
LFC = loga("2)
0

» Partitioning into groups according to abundance in reference sample.
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Step 2: Statistical modelling of gRNA level data

» Modeling of the data as a mixture of null-distribution f; and unknown
distribution fi of the gRNAs with fitness effect:
f(x) = (1 = A)fo(x) + A (x)
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Step 2: Statistical modelling of gRNA level data

» Modeling of the data as a mixture of null-distribution f, and unknown
distribution f; of the gRNAs with fitness effect:
F(x) = (1= () + M (x)

» fy is a skew normal distribution with 3 parameters:
location &, scale parameter w, skewness parameter «
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Step 3: Fitting the null-distribution

» Fit £, w, and « from the actual LFC data.

» Ignore strong positive or negative LFCs, only consider the central 90%
data point (using approach derived from least quantile of squares
regression (Rousseeuw et al. 1987).
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Step 4: Aggregation of gRNA level data to gene level

» Calculation of p-value for every gRNA.

» Ranking of gRNAs according to p-values.

> Robust rank aggregation (Kolde et al. 2012) to aggregate on gene level
(typically 3-10 gRNAs per gene).

» Do the observed gRNA ranks for a given gene lie significantly outside of
what you would expect by random sampling? (Permutation test)
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Results from a screen performed in HCT116 cells
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gscreend performance on simulated data

Ranking accuracy is improved using gscreend compared to other method.
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This has major implications for experiment design

» We can predict the minimal necessary experiment size.

» gscreend allows reduction of experiment size by up to 50%




Conclusions

» Understand the data from an experimental point of view!

»> Changes in gRNA abundance are asymmetric in pooled CRISPR screens
(unlike RNA-seq data).

» We provide recommendation for optimal experimental design.

» gscreend: more accurate phenotype detection at smaller experiment size.

gscreend (in preparation for Bioconductor submission):

https://github.com /imkeller/gscreend

bioRxiv

Modelling asymmetric count ratios in CRISPR screens to decrease experiment
size and improve phenotype detection

Katharina Imkeller, Giulia Ambrosi, View ORCID ProfileMichael Boutros,
Wolfgang Huber

doi: https://doi.org/10.1101/699348



WHEN YOU SEE A CLAIM THAT A
COMMON DRUG OR VITAMIN “KILLS
CANCER CELLS IN A PETRI DISH

KEEP IN MIND:

Example for
applications of

gi CRISPR screens...

S0 DOES A HANDGUN.



Context dependent lethality

Cancer dependency map: https://depmap.org/portal/

Pooled CRISPR
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BRAF mutation context dependency
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