Assessing gene essentiality using pooled CRISPR screens

Katharina Imkeller, DKFZ and EMBL, Heidelberg, Germany

June 25th 2019

CSAMA 2019, 17th edition

Reverse vs. forward genetics

Forward genetics:

Find the genetic basis for a specific observed phenotype.

Discovery of CFTR gene mutation causing Cystic fibrosis.

Reverse genetics:

Modify gene sequence and analyzes the resulting phenotype.

Wikipedia

Knockout of gene affecting hair growth.

Biological motivation for reverse genetics screens

Core essential genes:

- ▶ RPL13 ribosomal component
- ► *POLR1B* RNA polymerase

Growthsupressing genes:

- "tumor supressor"
- ► TP53
- BRCA1

Synthetic lethality to target tumor cells:

- ► PARP in BRCA1 mutated tumors
- BRAF in KRAS mutated tumors

Advantages of using CRISPR-Cas9 for gene knockout

* shRNA based screens have problems with off-target effects and weak phenotypes.

Guide RNA (gRNA) simultaneously serves as perturbagen and barcode

- gRNA can be PCR amplified from genome
- serves as a proxy for gene knockout

Different types of CRISPR mediated genetic perturbations

Name	CRISPR associated enzyme	perturbation
CRISPR-KO	Cas9	gene knockout
CRISPRi	dCas9 + transcription inactivator	expression inhibition
CRISPRa	dCas9 + transcription activator	expression activation
CRISPR-BE	dCas $9+$ base editor	base editing (C-G, A-T)

Experimental procedure of pooled CRISPR screens

Experimental design principle

- guide RNA/ gRNA: perturbagen and barcode
- ▶ library size around 100K gRNAs
- perturbed cells growing in a pool
- individual growth rate depends on gene knockout
- compare abundance T0 vs. T1

For protocol see e.g. Joung et al. 2017

Phenotype detection in pooled CRISPR screens

Differences between RNA-seq and CRISPR screening data

M-A plot

Logarithmic fold change: $M = log_2(\frac{S_1}{S_2})$

Mean abundance: $A = \frac{1}{2}log_2(S_1S_2)$

CRISPR screen

RNA sequencing

Screening data is skewed towards negative fold changes

ASYMMETRY: T0 vs. T1 gRNA abundance

- negative logFC are more frequent
- especially for gRNAs that have low initial frequency

Computational simulation of screen to test influence of experiment design

- gRNA counts modelled as a tuple of integer numbers
- result: counts after sequencing
- functions modify the counts (multiplication, random sampling)
- number of cell splittings N_{split},
 cell duplication time τ
- ► "coverages" C_{PCR}, C_{virus}, C_{cells}

Mean gRNA coverage in pooled CRISPR screens determines cell number

Experiments assume a narrow distribution and are designed based on mean gRNA coverage.

Mean coverage of gRNAs:

how many times is one gRNA on average represented in a pooled experiment?

$$coverage = \frac{n_{cells}}{n_{gRNAs}}$$

For example (coverage 500): 10^7 gRNAs \times 500 = 5 \times 10⁹ cells

Computational simulation of screen to test influence of experiment design

Cell splitting causes asymmetry in gRNA abundance changes

Simulation with different coverage

Lower gRNA coverage increases asymmetry of gRNA abundance changes.

Asymmetry is caused by repetitive cell splitting

Bottle neck effect

Population bottlenecks in the Northern Elephant Seal

Bottle neck event: Hunting in 19th century, reduction of population size to 20 individuals. Today's 30,000 seals have a strongly reduced genetic diversity.

It is not OK to assume symmetry of null-distribution!

Current analysis tools loose detection power when asymmetry increases.

Software package gscreend with improved statistical test

Step 1: Data preparation

- Normalization or scaling to the total counts in the reference sample.
- Calculation of logarithmic fold changes, addition of pseudo-counts: $LFC = log_2(\frac{n_{T_1}+1}{n_{T_2}+1})$
- ▶ Partitioning into groups according to abundance in reference sample.

Low abundant gRNAs (20-30% percentile)

Histogram of LFC_data\$LFC

High abundant gRNAs (80-90% percentile)

Histogram of LFC_data\$LFC

Step 2: Statistical modelling of gRNA level data

Modeling of the data as a mixture of null-distribution f_0 and unknown distribution f_1 of the gRNAs with fitness effect:

$$f(x) = (1 - \lambda)f_0(x) + \lambda f_1(x)$$

Step 2: Statistical modelling of gRNA level data

Modeling of the data as a mixture of null-distribution f_0 and unknown distribution f_1 of the gRNAs with fitness effect:

$$f(x) = (1 - \lambda)f_0(x) + \lambda f_1(x)$$

• f_0 is a skew normal distribution with 3 parameters: location ξ , scale parameter ω , skewness parameter α

Step 3: Fitting the null-distribution

- ▶ Fit ξ , ω , and α from the actual LFC data.
- ▶ Ignore strong positive or negative LFCs, only consider the central 90% data point (using approach derived from least quantile of squares regression (*Rousseeuw et al. 1987*).

Low abundant gRNAs (20-30% percentile) $\xi=0.16,~\omega=0.69,~\alpha=1.57$

High abundant gRNAs (80-90% percentile) $\xi = -0.02, \ \omega = 0.13, \ \alpha = 1.09$

Histogram of LFC

Histogram of LFC

Step 4: Aggregation of gRNA level data to gene level

- Calculation of p-value for every gRNA.
- Ranking of gRNAs according to p-values.
- Robust rank aggregation (Kolde et al. 2012) to aggregate on gene level (typically 3-10 gRNAs per gene).
- ▶ Do the observed gRNA ranks for a given gene lie significantly outside of what you would expect by random sampling? (Permutation test)

Results from a screen performed in HCT116 cells

components of the ribosome non-essential genes

gscreend performance on simulated data

Ranking accuracy is improved using gscreend compared to other method.

This has major implications for experiment design

- ▶ We can predict the minimal necessary experiment size.
- gscreend allows reduction of experiment size by up to 50%.

Conclusions

- Understand the data from an experimental point of view!
- Changes in gRNA abundance are asymmetric in pooled CRISPR screens (unlike RNA-seq data).
- ▶ We provide recommendation for optimal experimental design.
- **gscreend**: more accurate phenotype detection at smaller experiment size.

gscreend (in preparation for Bioconductor submission):

https://github.com/imkeller/gscreend

bioRxiv

Modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection

Katharina Imkeller, Giulia Ambrosi, View ORCID ProfileMichael Boutros,

Wolfgang Huber

doi: https://doi.org/10.1101/699348

When you see a claim that a common drug or vitamin "kills cancer cells in a petri dish,"

KEEP IN MIND:

SO DOES A HANDGUN.

Example for applications of CRISPR screens...

Context dependent lethality

Cancer dependency map: https://depmap.org/portal/

Rauscher et al. 2018, Henkel et al. 2019

BRAF mutation context dependency

Rauscher et al. 2018, Henkel et al. 2019

Resources

- Some of the graphics in this presentation were generated with Biorender (www.biorender.com)
- Rousseeuw, PJ, Leroy, AM. Robust regression and outlier detection. Wiley Series in Probability and Statistics 329 (1987).
- Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics. 2012. 10.1093/bioinformatics/btr709
- ▶ Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, Irizarry RA, Liu JS, Brown M, Liu XS. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014. 10.1186/s13059-014-0554-4
- ▶ Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017. 10.1038/nprot.2017.016
- Rauscher B, Heigwer F, Henkel L, Hielscher T, Voloshanenko O, Boutros M. Toward an integrated map of genetic interactions in cancer cells. Mol Syst Biol. 2018. 10.15252/msb.20177656
- ► Henkel L, Rauscher B, Boutros M. Context-dependent genetic interactions in cancer. Curr Opin Genet Dev. 2019. 10.1016/j.gde.2019.03.004

