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Hypothesis Testing

Wolfgang Huber,
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Aims for this lecture

Understand the basic principles of hypothesis testing, its pitfalls, strengths,
use cases and limitations

What changes when we go from single to multiple testing?

False discovery rates, p-value ‘adjustments’, filtering and weighting



See also
www.huber.embl.de/msmb Chapter 6
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Testing vs Classification
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Accuracy vs Precision - Bias vs Variance

accuracy—

dispersion—

precision




How to make rational decisions based

on noisy, finite data

Prototypical examples:
- Testing efficacy of a drug on people

- lack of complete experimental control

- finite sample size
- Effect of fertilizer, genetic variants, ... on phenotype of plants in an outdoors field

trial

- Lady testing tea, clairvoyant, telepath, ...
+Toxicology

+: No understanding of mechanism involved / needed / desired
-- Wouldn't we want to use any available understanding or 'priors'?



Example

Toss a coin a number of times =

If the coin Is fair, then heads should appear
half of the time (roughly).

But what is “roughly”? We use combinatorics / probabillity theory to
guantify this.

Suppose we flipped the coin 100 times and got 59 heads. Is this
‘'significant’?



Binomial distribution
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Figure 6.3: The binomial distribution for
the parameters n = 100 and p = 0.5,

P(K =k|n,p) = ( Z )Pk (1—p)"*



Rejection region
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0.06 -
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0 25 50 75 100
K

Figure 6.5: As Figure 6.3, with rejection
region (red) whose total area is & = 0.05.



Questions

- Does the fact that we don't reject the null hypothesis mean that the
coin is fair?

- Would we have a better chance of detecting an unfair coin if we did
more coin tosses? How many?

- If we repeated the whole procedure and again tossed the coin 100
times, might we then reject the null hypothesis?

- Qur rejection region is asymmetric - its left part ends with 40, while
its right part starts with 61. Why is that? Which other ways of
defining the rejection region might be useful?



The Five Steps of Hypothesis Testing

Choose an experimental design and a data summary function for the effect that you
are interested in: the test statistic

Set up a null hypo f reality that
lets you compute )Ssible
outcomes and eac This Is the idealised scenario,

“orthodoxy”.
Decide on the reje 'hose total
probability is smal Reality, esp. in retrospective ‘data-
(Significance level mining’ can be CIUite different.

Do the experimen
compute the test statistic.

Make a decision: reject null hypothesis
If the test statistic is in the rejection region.




Types of Error in Testing

Test vs reality Null hypothesis is true ...1s false

Reject null hypothesis Type I error (false positive) True positive

Do not reject True negative Type 1l error (false negative)

0.3-

0.2-

0.1-

0.0-

test statistic



Parametric Theory vs Simulation
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Figure 6.3: The k Q e
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The choice of the test statistic

Suppose we observed 50 tails in a row, and then 50 heads in a row. Is this a
perfectly fair coin?

We could use a different test statistic: number of times we see two tails in a
row

Is this statistic generally and always preferable?
Power

There can be several test statistics, with different power, for different types of
alternative



Continuous data:

= L selumetinib 0.156 yM ~ trisomy12
the t-statistic (p = 3.02e-08)
o _
mi — Mmo _
I =c =
S o -
zT J
S o -
- Can also be adapted to one group only S © _:?_
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t-distribution

If the data are identically normal 800-
distributed and independent,

600 -
then under Ho, t follows a
't-distribution’ with parameter g 400
ni1+n2 (a.k.a. degrees of
200 -
freedom)
O_ |
_ 0 1 2 3 4 5
Q: t
How does the distribution of Figure 6.8: The null distribution of the
Itl look? (absolute) t-statistic determined by simula-

tions — namely, by random permutations of
the group labels.



Comments and Pitfalls

The proof that the t-statistic follows a t-distribution assumes that observations

are independent and follow a normal distribution: this is a sufficient, but not
necessary, condition

Deviation from normality (heavier tails): test typically maintains type-| error
control, but no longer has optimal power.

Options: use permutations;
use a different test (e.g., Wilcoxon)

Deviation from independence: type-l error control is lost, p-values will likely be
totally wrong (e.g., for positive correlation, too optimistic).

NoO easy options:

... try to model the dependence / remove it ...

... empirical null (Efron et al.) ...



Avoid Fallacy

The p-value is the probabillity
that the data could happen,
under the condition that the

null hypothesis is true.

It iIs not the probabillity that the
null hypothesis is true.

Absence of evidence =+
evidence of absence




Recap: Single Hypothesis Testing

p-values are random variables: uniformly distributed if the null
hypothesis is true - and should be close to zero if the
alternative holds.

Note: We only observe one draw.

We prove something by disproving (‘rejecting’) the opposite (the
null hypothesis). Reject = Discover.

Not rejecting does not prove the null hypothesis

Repeating the experiment (under the null): Around 5% of the

times the p-value will be less than 0.05 by chance

All this reasoning is probabilistic. Testing & p-values are for
rational decision making in uncertain contexts.



Limitations of p-value based hypothesis
testina

Too much power: often, the 'null' is small (point-
ike), alternative is large (region-like)

Summarizing the data into one single number
mushes together effect size and sample size

No place to take into account plausibility or
prior’' knowledge



What is p-Value Hacking ?

On the same data, try different tests until one is significant

On the same data, try different hypotheses until one is
significant (HARKing - hypothesizing after results are known)

Moreover...:

retrospective data picking

‘outlier’ removal

the 5% threshold and publication bias

The ASA's Statement on p-Values:
Context, Process, and Purpose
Ronald L. Wasserstein & Nicole A.
Lazara DOI:

10.1080/00031305.2016.1154108

What can we do about this?



http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

The right answer to the wrong guestion

Researchers (regulators, investors, etc.) usually want to know:

If | publish this finding (allow this drug, invest in this
product, ...), what is the probabillity that I'll later be proven
wrong (cause harm, lose my money, ...)7

The p-value is the probability of seeing the data if the null
hypothesis is true. It has little to do with the probability that my
subsequent decision is wrong (a.k.a. "false discovery").

Can we compute a False Discovery Probability instead?



The two-groups model and
the (local) false discovery rate

f(p) = mo+ (1 —70) faie(p),

_ T
)= 7
E 1e line
> _01 . But how do we |

KNnow 7, and ?
FDR: Ratio betw 0 falt

set property. It appne
of hypotheses (discoveries).




Multiple Testing

WE FOUND NO THAT SETTLES THAT.
LINK BETWEEN /

T HEAR TS ONLY
A CERTAIN COLOR
THAT CAUSES [T.

SCIENTISTS ! /
M

(

JELLY BEANS AND
ANE (p > 0.05).

BuT
HOINECRAFT!




Multiple Testing




Multiple Testing
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Multiple Testing

Many data analysis

in genomics

approaches

employ item-by-item

testing

- Expression profiling

Differential microbiome

analysis

(Genetic or chemical

compound screens

Genome-wide association

€S

stud

Proteomics
- Variant calling



False Positive Rate and False Discovery Rate

FPR: fraction of FP among all
true negatives

FDR: fraction of FP among
hits called

Example:
20,000 genes, 500 are d.e.,
100 hits called, 10 of them

wrong.

FPR: 10/19,500 = 0.05%
FDR: 10/100 = 10%

“Wait a minute! Isn’t anyone here a real sheep?”



Experiment-Wide Type | Error Rates

Test vs Reality Null Hypothesis is true ...is false Total

Rejected Vv S R
Not rejected U T m — R
Total 1 m — mp m

e m: total number of hypotheses
* mp: number of null hypotheses
e V: number of false positives (a measure of type I error)

Family-wise error rate (FWER): The probabillity of one or
more false positives, P(V >0 ). For large m,, this is

difficult to keep small.

False discovery rate (FDR): The expected fraction of false
positives among all discoveries, E[ V/ max{R, 1}].

NB: if mg=m, then FDR=FWER



The Multiple Testing Burden

When performing several tests, type | error goes up: for
a = 0.05 and n indep. tests, probability of no false positive result is

0.90-095-...-090 <& 0.95
N —— ——
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Bonferroni Gorrection

. . = e A .
(;.“ o o - ~-—" . .."f - -

ey . T ')/, Ny - ol .

-0 e 5 R s B i o J -~ - —

For m tests, multiply each p-value with m.

Then see if anyone still remains below a.



The Multiple Testing Opportunity
DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MEASURES
WHETHER THE SUN HAS GONE NOVA.

THEN, [T ROWS TWO DICE. |F THEY
BOTH COME UP SIX, IT UES TO US.
OTHERWISE,, IT TELLS THE TRUIH.

LETS TRY.

CETECTOR! HAS THE
SN GONE NoA?

) sa[-:s (O

FREQUENTIST STATISTICIAN: BAYESIAN STATISTIOAN:

THE PROGABLLITY OF THIS RESULT

HAPPENING BY CHANCE 15 3;=0077 BET YOU $50
SNCE p<0.05, T CONCLUDE. T HANT.
THRTTF{ESUN%&PLDDED )

i




Transcri
sample;
smooth
dexame
glucocc

log fold change

celll
NG61
NG61 ) ] .
N05 I I I

NOS 1 100 10000

NO mean of normalized counts

NO8

NO610
NO61011 trt design <- ~ cellline + dexamethasone

analysis:

persion = a;)

Himes et al. “BRNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene
that Modulates Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 GEO: GSE52778.



http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778

Data set 2: hQTL

ChIP-seq for histone marks in ", ... 1Brec Chromatin contact
lymphoblastoid cell lines from - HaKamed elereneemees
75 sequenced individuals. N vare

Local QTLs: find best- o

correlated SNP within 2kb of o R A

peak boundaries: 14,142 P

hQTLs, involving ~10% of all ~ *

H3K27ac peaks (FDR=0.1,
permutations) g

Distal: distance cutoffs from S gNp
50 tO 300 kb, aISO H|C _ local SRS distal

histone QTLs histone QTLs

Grubert, Zaugg, Kasowski, et al. Genetic control of chromatin states in humans involves local and distal
chromosomal interactions. Cell (2015).




False Discovery Rate

750 - false discoveries

= FDR

all discoveries

500 -

250 -

0.00 0.25 0.50 0.75 1.00
p.value

Method of Benjamini & Hochberg (1995)



Method of Benjamini & Hochberg

0.100 - /

1 <- length(p):1

O <- order (p, decreasing = TRUE)
ro <- order (o)

pmin(l, cummin(n/i * p[o])) [ro]

BH

Il
ot

}
takes a list of p-values as input and returns a matched list

of ‘adjusted’ p-values.

0.000 .A

0 2000 4000 6000
rank



Not all Hypothesis Tests
are Created Equal

S 10

asinh(baseMean)
Figure 6.15: Histogram of baseMean. We 0 5000 10000 15000 20000
see that it covers a large dynamic range, rank(baseMean)

from close to o to around 3.3 x 10°.



Application

Differential RNA-Seq,
ChlP-Seq, CLIP-seq, ...

Covariate

(Normalized) mean of
counts for each gene

eQTL analysis SNP — gene distance
GWAS Minor allele frequency
t-tests Overall variance

Two-sided tests

Sign

All applications

Sample size; measures of
signal-to-noise ratio




Independent Filtering

Two steps:

= All hypotheses H; with RNA-Seq
X; < z get tiltered.

m Apply BH to remaining
hypotheses.

(Bourgon, Gentleman, Huber
PNAS 2010)

mean counts



RNA-Seq p-value histogram stratified by average
read count

1 2 3 4
1000 -
750~
500 -
250 -
0 - L“ L-—.-.-u- L——_
c
—
o
Q
1000 -

T

000 025 050 075 1.000.00 025 050 075 1.00000 025 050 075 1.00000 025 050 075 1.00
pvalue



Let w;

> () and L

— 2




Independent hypothesis weighting (IHW): basic idea
hypothesis weighting

m Stratify the tests into GG bins, by covariate X
m Choose o

m For each possible weight vector w = (wyq, ..., wg)
apply weighted BH procedure. Choose w that
maximizes the number of rejections at level a.

m Report the result with the optimal weight vector w*.

Ilgnatiadis et al.,
* Nature Methods 2016, DOI10.1038/nmeth.3885
- arXiv:1701.05179

Bioconductor package IHW

Nikos Ignatiadis



number of discoveries

—h
)
)
o

500 -

O_

0.00

RNA-Seqg example (DESeqg?2)

power

method

ey weights

006 040 015  0.20
adjusted p-value /
5 0 5
log2(base mean)

= THil

10



Ranking is not monotonous In raw p-values
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Histone-QTL example (H3K27ac

8000 -
IHW 600{ =
6000 -
Indep. Filt. 400 -
0 200 kb
.5 = fold
[y Indep. Filt. = — 2
@ 4000 1 10 kb — 3
~ 200 - y
Indep. Filt. -
/ Vb -
— BH ::. ¥k
2000 - ___— 0w
O - Q_N'l!-

0.05 0.06 0.07 0.08 0.09 0.10 1e+04 16405 1e+06 1e+07
Nominal o Genomic distance (bp)



2D decision boundaries

covariate
covariate




Summary

- Multiple testing is not a problem
but an opportunity

- Heterogenelty across tests

- Informative covariates are often
apparent to domain scientists

- Independent of test statistic under the null
- Informative on m, Far

- Data-driven weighting

- Scales well to millions of hypotheses

- Controlling ‘overoptimism’



Nl
N b
NN
NS
m0

P

e




p-VALUE  INTERPRETATION

0.00l
0.0l

0.02

HIGHLY SIGNIFICANT

SIGNIFICANT

CALCULATIONSS.

ON THE EDGE
OF SIGNIFICANCE.

HIGHLY SUGGESTIVE,
SIGNIFICANT AT THE
O 0% P<O.10 LEVEL

00771 Hey

; LOOK AT
>(.] _}—THIS INTERESTING
SUBGROUP ANALY51S




