ISB bigquery for TCGA: Some Bioconductor strategies

Vince Carey

June 22, 2016

Road map

- Basic overview on cancer genomics cloud approach to level 3 TCGA
- BigQuery intro by doing
- A bladder cancer CDK use case from ISB
- An interactive oncoPrint
- Exercises and commentary

Overview

- TCGA is a collection of omics assay results and clinical characteristics of donors of tumor tissue on a wide variety of cancers
- The public data has so far been a perennial source of logistical challenges for interested bioinformaticians
 - Access is sufficiently complex to warrant several independently developed Bioconductor packages
 - Coordination of data structures and vocabularies consumes significant effort
- NCI Cancer Genomic Cloud pilots: "Democratize" access, federate management and analysis methods

The ISB Cancer Genomic Cloud Pilot: A way in via Google BigQuery

You need an authentication token, 'my_billing' contains secret info

```
getBQ = function ()
{
    library(dplyr)
    library(bigrquery)
    my_billing = <secret>
    src_bigquery("isb-cgc", "tcga_201510_alpha", billing = my_billing)
}
```

Let's try it, dplyr idiom

bq = getBQ()
bq

src: bigquery [isb-cgc:tcga_201510_alpha]
tbls: Annotations, Biospecimen_data, Clinical_data, Copy_Number_segments,
DNA_Methylation_betas, miRNA_expression, mRNA_BCGSC_HiSeq_RPKM,
mRNA_UNC_HiSeq_RSEM, Protein_RPPA_data, Somatic_Mutation_calls

Access now available for all tumor types

```
LUAD_Clin = bq %>% tbl("Clinical_data") %>%
filter(Study=="LUAD") %>% as.data.frame()
```

dim(LUAD_Clin)

[1] 522 65

- dplyr idiom is not necessary
- bigrquery query_exec() will submit BigQuery-compliant SQL

Some variables (lots of NA, blanks)

```
#datatable(LUAD_Clin[,c(1,49,54)], options=list(lengthMenu=c(3,5)))
head(LUAD_Clin[,c(1,49,54)])
```

##		${\tt ParticipantBarcode}$	<pre>pathologic_T</pre>	primary_therapy_outcome_success
##	1	TCGA-67-3772	T2	<na></na>
##	2	TCGA-67-3774	T2	<na></na>
##	3	TCGA-67-3776	T2	<na></na>
##	4	TCGA-L9-A8F4	T2a	<na></na>
##	5	TCGA-44-5643	T2b	<na></na>
##	6	TCGA-44-5644	T2a	Complete Remission/Response

Use case from ISB BigQuery walkthrough

For bladder cancer patients that have mutations in the CDKN2A (cyclin-dependent kinase inhibitor 2A) gene, what types of mutations are they, what is their gender, vital status, and days to death - and for 3 downstream genes (MDM2 (MDM2 proto-oncogene), TP53 (tumor protein p53), CDKN1A (cyclin-dependent kinase inhibitor 1A)), what are the gene expression levels for each patient?

Break it down

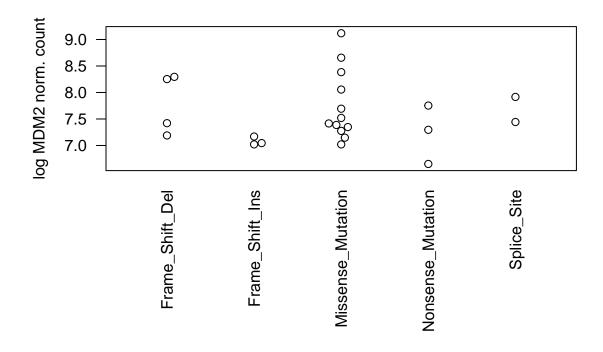
- Bladder cancer: Study is BLCA
- Mutation data: filter to CDKN2A and tabulate type
- Clinical data: merge
- Expression data: MDM2, TP53, CDKN1A on these patients

Mutations – NB order of operations can affect timing/timeout

```
##
    ParticipantBarcode Study Hugo_Symbol Variant_Type Variant_Classification
## 1
           TCGA-XF-AAN3 BLCA
                                   CDKN2A
                                                            Missense_Mutation
                                                   SNP
           TCGA-ZF-A9R4 BLCA
                                                            Missense Mutation
## 2
                                   CDKN2A
                                                   SNP
## 3
           TCGA-ZF-AA4N BLCA
                                   CDKN2A
                                                   SNP
                                                                  Splice_Site
```

Expression

Running query: RUNNING 2.6s


```
## 7.0 gigabytes processed
```

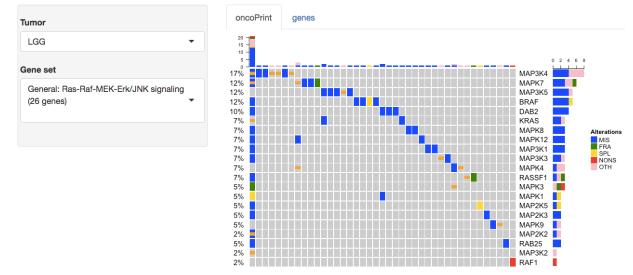
Condense multiple CDKN2A mutations of the same type in an individual

```
o = order(mudf$ParticipantBarcode, mudf$Variant_Classification)
mudf = mudf[o,]
cls = with(mudf, split(Variant_Classification, ParticipantBarcode))
todrop = lapply(cls, duplicated)
mudf = mudf[-which(unlist(todrop)),]
```

Merge mutation and expression data

```
muex = merge(mudf, exdf, by="ParticipantBarcode", all.x=TRUE)
par(mar=c(12,5,3,3),las=2)
with(muex[muex$HG=="MDM2",],
    beeswarm(split(log(normalized_count+1), Variant_Classification),
        ylab="log MDM2 norm. count"))
```


Exercises


- See the walkthrough at ISB
- Write the BigQuery SQL to carry out the merge and use query_exec to verify that the R operations agree with the native operations
- Merge the clinical data and test for an effect of CDKN2A mutation class on survival time distribution
- Define and execute a test of the null hypothesis that the mean of (MDM2, TP53, CDKN1A) is constant over CDKN2A mutation classes
- Generalize the computing framework for this test to allow free selection of upstream mutation carriers and downstream expression target patterns for any TCGA tumor family

Interactive oncoprint

To achieve the following display, use

library(cgcR)
bq = getBQ() # set your project properly
isbApp(bq) # then pick LGG as the tumor to study

TCGA/ISB/bigQuery interface

Exercises

- Add additional gene sets to the isbApp
- Introduce a systematic approach to labeling mutation classes
- Improve the heatmap tile generation/coding
- Add hoverOver functionality so that relevant information on the sample is produced to help interpret mutation patterns might take a lot of transformation of code to ggvis or ggplot2/plotly/rbokeh

Comments

- Clinical data curation still important
- Molecular data quality assessment/QC still important
- See MultiAssayExperiment package and TCGA archive in S3 bucket
- Additional BigQuery project in ISB CGC: ccle_201602_alpha but lacks chemosensitivity profiles