
1

Solutions for chapter Supervised Machine Learning

Exercise 1

> table(ALL_bcrneg$mol.biol)

BCR/ABL NEG
37 42

Exercise 2

> class(ALLfilt_bcrneg)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

Exercise 3

The distances available include Kullback-Leibler distance, mutual infor-
mation distance, Euclidean distance, Manhattan distance and correlation
distance (using Pearson, Spearman or Kendall’s tau). See the dist function
and the daisy function in the cluster package for other distances.

Exercise 4

The diagonal band of blue squares is probably the most prominent feature,
but it is merely indicating that each sample is distance zero from itself.
After that you might notice that there are some blue-ish colored blocks
along the diagonal, the most prominent one being in the top left corner.
The dendrogram also suggests that those samples are similar to each other,
and some distance from the others.

Exercise 5

Since the bioDist package is loaded we can simply the call the spear-

man.dist function. All other steps are essentially the same, as before.

> spD = spearman.dist(ALLfilt_bcrneg)

> spD@Size

[1] 79
> spM = as.matrix(spD)

> heatmap(spM, sym=TRUE, col=hmcol,

distfun=function(x) as.dist(x))

2

62
00

2
15

00
1

24
00

8
28

04
4

43
00

4
08

02
4

24
01

1
08

01
1

01
00

5
28

00
7

28
02

4
12

00
7

12
02

6
06

00
2

26
00

1
57

00
1

49
00

6
22

01
0

31
01

1
22

00
9

62
00

1
65

00
5

64
00

1
03

00
2

11
00

5
09

01
7

09
00

8
15

00
5

48
00

1
24

01
8

08
00

1
68

00
3

28
03

5
28

03
7

28
01

9
28

02
1

30
00

1
04

01
0

33
00

5
01

01
0

68
00

1
25

00
6

25
00

3
36

00
2

43
00

1
24

01
0

12
00

6
24

00
1

08
01

2
22

01
1

22
01

3
12

01
2

14
01

6
28

03
1

28
02

3
43

01
2

04
01

6
84

00
4

37
01

3
43

00
7

12
01

9
04

00
7

62
00

3
28

00
6

27
00

3
28

00
1

28
04

7
28

00
5

24
01

7
28

04
2

28
03

6
26

00
3

24
02

2
04

00
8

20
00

2
27

00
4

28
04

3
16

00
9

64
00

2

64002160092804327004200020400824022260032803628042240172800528047280012700328006620030400712019430073701384004040164301228023280311401612012220132201108012240011200624010430013600225003250066800101010330050401030001280212801928037280356800308001240184800115005090080901711005030026400165005620012200931011220104900657001260010600212026120072802428007010050801124011080244300428044240081500162002

Figure 1. A heatmap of the between-sample
distances, for the same data as in Fig-
ure 1, but now using Spearman’s correlation
instead of the Euclidean distance.

In this heatmap, the samples seem to be further from each other (darker
red colors predominate), but there are a small number that are quite close,
as evidenced by the light blue rectangle in the middle of the heatmap.

Exercise 6

> cD = MIdist(ALLfilt_bcrneg)

> cM = as.matrix(cD)

> closest.top("03002", cM, 1)

[1] "09017"

Exercise 7

We will use the MLearn interface to the machine learning code. We make use
of the MLearn interface to the different machine learning tools, provided
by MLearn.

The function, confuMat, can be used to compute the confusion matrix,
and from that we can estimate the error rates.

> kans = MLearn(mol.biol ~ ., data=ALLfilt_bcrneg,

knnI(k=1,l=0), TrainInd)

> confuMat(kans)

predicted
given BCR/ABL NEG

3

BCR/ABL 13 4
NEG 9 13

> dldans = MLearn(mol.biol ~ ., ALLfilt_bcrneg, dldaI,

TrainInd)

> confuMat(dldans)

predicted
given BCR/ABL NEG
BCR/ABL 14 3
NEG 6 16

> ldaans = MLearn(mol.biol ~ ., ALLfilt_bcrneg, ldaI,

TrainInd)

> confuMat(ldaans)

predicted
given BCR/ABL NEG
BCR/ABL 12 5
NEG 2 20

Exercise 8

a Ties are broken at random. This suggests that it might not be all
that helpful to select a value of k that is even, as different users
would potentially classify samples differently, given the same data.

b This is difficult with the current implementation. You would es-
sentially need to do the nearest neighbor finding directly from the
distance matrix, and this will be somewhat slow. The closest.top

function, from the bioDist package could be used.

c The knn function has a parameter, prob that if set to TRUE will cause
the proportion of votes for the winning class to be returned. This
could be used. Also, the parameter l can be used, in that case doubt
is encoded as NA. The concept of outlier is more difficult, but could
potentially be handled in a preprocessing step. Any object that is a
long way from all other objects could be identified as an outlier and
removed. This does not help with pairs of outliers, or triples.

Exercise 9

We repeat the steps taken above, but use all of the data.

> alltt = rowttests(ALLfilt_bcrneg, "mol.biol")

> ordall = order(abs(alltt$statistic), decreasing=TRUE)

> fNall = featureNames(ALLfilt_bcrneg)[ordall[1:50]]

> intersect(fNall, fNtt)

4

[1] "1635_at" "1674_at" "40504_at" "37015_at"
[5] "40202_at" "32434_at" "37027_at" "39837_s_at"
[9] "40167_s_at" "40480_s_at" "41815_at" "33774_at"
[13] "37363_at" "39631_at" "34472_at" "35162_s_at"
[17] "37014_at" "31786_at" "32542_at" "33440_at"
[21] "40196_at" "36275_at" "40516_at" "40132_g_at"
[25] "671_at" "33232_at" "1467_at" "40076_at"
[29] "38994_at" "38546_at" "1249_at" "36638_at"
[33] "38119_at" "39070_at" "38052_at"

Exercise 10

We simply redo the calls with

> dldtt = MLearn(mol.biol ~ ., BNf, dldaI, TrainInd)

> confuMat(dldtt)

predicted
given BCR/ABL NEG
BCR/ABL 13 4
NEG 1 21

> ldatt = MLearn(mol.biol ~ ., BNf, ldaI, TrainInd)

> confuMat(ldatt)

predicted
given BCR/ABL NEG
BCR/ABL 13 4
NEG 3 19

In all cases the error rates are lower, which is nice.

Exercise 11

Each sample is left out, in turn, and since k = 1 the class of that sample
is determined by its nearest neighbor in the remaining n− 1 samples. For
larger values of k, then more nearest neighbors would be used in the pre-
diction. The confusion matrix is produced by the confuMat function, and it
can be used to estimate either the overall error rate, or the class conditional
error rates.

> knnCM = confuMat(knnXval1)

> knnCM

predicted
given BCR/ABL NEG
BCR/ABL 31 6
NEG 16 26

5

> #overall error rate

> (knnCM[1,2] + knnCM[2,1])/sum(knnCM)

[1] 0.278
> #class conditional error rates

> knnCM[1,2]/sum(knnCM[1,])

[1] 0.162
> knnCM[2,1]/sum(knnCM[2,])

[1] 0.381

So it seems that it was harder to predict the NEG phenotype than the
BCR/ABL phenotype.

Exercise 12

a > lk3f2 = MLearn(mol.biol~., data=BNx, knnI(k=1),

xvalSpec("LOO", fsFun=fs.absT(5)))

> confuMat(lk3f2)

> table(unlist(fsHistory(lk3f2)))

The error rate seems to be bit higher when only five features are
selected.

Exercise 13

This is quite an interesting problem. Basically, what you need to do, is to
try out the KNN algorithm, for a variety of values of k, and see what value
of k gives the lowest error rate.

> knnXval2 = MLearn(mol.biol~., data=BNx, knn.cvI(k=2, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval2)

> knnXval3 = MLearn(mol.biol~., data=BNx, knn.cvI(k=3, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval3)

> knnXval5 = MLearn(mol.biol~., data=BNx, knn.cvI(k=5, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval5)

Exercise 14

We are only concerned with the errors for the test set since those for the
training set are known to be overly optimistic. Error rates can be computed

6

for either all prediction combined, or on a per class basis. It is often the
case that error rates can be quite different for different classes, so we also
compute the class conditional error rates. Note that the error rates are a
bit worse for model 2, which had a much smaller value of mtry .

> cf1 = confuMat(rf1)

> overallErrM1 = (cf1[2,1] + cf1[1,2])/sum(cf1)

> overallErrM1

[1] 0.179
> perClass1 = c(cf1[1,2], cf1[2,1])/rowSums(cf1)

> perClass1

BCR/ABL NEG
0.176 0.182

And now for model 2.

> cf2 = confuMat(rf2)

> overallErrM2 = (cf2[2,1] + cf2[1,2])/sum(cf2)

> overallErrM2

[1] 0.205
> perClass2 = c(cf2[1,2], cf2[2,1])/rowSums(cf2)

> perClass2

BCR/ABL NEG
0.294 0.136

For KNN we had the following error rates:

> cfKNN = confuMat(knnf)

> (cfKNN[1,2] + cfKNN[2,1])/sum(cfKNN)

[1] 0.103
> #class conditional error rates

> cfKNN[1,2]/sum(cfKNN[1,])

[1] 0.176
> cfKNN[2,1]/sum(cfKNN[2,])

[1] 0.0455

And in this case, it seems that KNN has the lower overall error rate,
0.103 compare to 0.179 for model 1 and 0.205 for model 2.

Exercise 15

We can obtain the importance measure by calling them importance function
and in

> impvars = function(x, which="MeanDecreaseAccuracy", k=10) {

v1 = order(importance(x)[,which], decreasing=TRUE)

7

importance(x)[v1[1:k],]

}

> ivm1 = impvars(rf1@RObject, k=20)

> ivm2 = impvars(rf2@RObject, k=20)

> intersect(row.names(ivm1) , row.names(ivm2))

[1] "X34798_at" "X1674_at" "X33264_at"

The other importance measure is called MeanDecreaseGini, and we leave
that part of the problem to the reader.

Exercise 16

Reversing the role of the test and training sets is quite simple, we use model
2.

> rfRev = MLearn(mol.biol~., data=ALLfilt_bcrneg,

randomForestI, TestInd, ntree=2000, mtry=10,

importance=TRUE)

> rfRev
MLInterfaces classification output container
The call was:
MLearn(formula = mol.biol ~ ., data = ALLfilt_bcrneg, me
thod = randomForestI,

trainInd = TestInd, ntree = 2000, mtry = 10, importa
nce = TRUE)

Predicted outcome distribution for test set:

BCR/ABL NEG
13 27

and for the confusion matrix

> cfR = confuMat(rfRev)

> cfR

predicted
given BCR/ABL NEG
BCR/ABL 12 8
NEG 1 19

> overallErr = (cfR[2,1] + cfR[1,2])/sum(cfR)

> overallErr

[1] 0.225
> perClass = c(cfR[1,2], cfR[2,1])/rowSums(cfR)

> perClass

BCR/ABL NEG
0.40 0.05

8

We can see from the confusion matrix that the error rate observed is
roughly comparable to that obtained with the other split - as we expected,
since the two sets were roughly the same size.

It is also quite simple to use the whole data set to fit a random forest.

> rfAll = MLearn(mol.biol~., data=ALLfilt_bcrneg,

randomForestI, 1:79, ntree=1000, mtry=10,

importance=TRUE)

> rfAll@RObject

Call:
randomForest(formula = formula, data = trdata, ntree =
1000, mtry = 10, importance = TRUE)

Type of random forest: classification
Number of trees: 1000

No. of variables tried at each split: 10

OOB estimate of error rate: 19%
Confusion matrix:

BCR/ABL NEG class.error
BCR/ABL 27 10 0.270
NEG 5 37 0.119

Exercise 17

Using KNN is quite straightforward. We demonstrate its use for k = 1, you
might want to try other methods.

> knn1MV = knn(t(exprs(trainSet)), t(exprs(testSet)),

trainSet$mol.biol)

> tab1 = table(knn1MV, testSet$mol.biol)

> tab1

knn1MV ALL1/AF4 BCR/ABL NEG
ALL1/AF4 5 0 0
BCR/ABL 0 16 13
NEG 0 2 8

> s3 = table(testSet$mol.biol)

with the correct classification (on the diagonal of the table produced
above) classification. For example, of the 18 BCR/ABL samples in the test
set, 16 are correctly classified, so that the class conditional error rate is
0.11.

It is not so easy, to handle unbalanced data. One can, in principle find k
nearest neighbors, and then compare the proportion of nearest neighbors
to the class counts.

	Supervised Machine Learning
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

