
This is page 1
Printer: Opaque this

1

Machine Learning, Part I

Robert Gentleman, Wolfgang Huber, Vince
Carey, Raphael Irizarry

Abstract

In this lab we will cover some of the basic principles of machine
learning. We will use the ALL data set and will work on two different
problems. For one of them it is relatively easy to classify the samples
and for the other, it is harder. You will be introduced to some of
the basic concepts in machine learning such as the distance function,
supervised and unsupervised machine learning, as well as the so-
called confusion matrix.

1.1 Introduction

Fundamental to the task of machine learning is selecting a distance. In
many cases it is more important than the choice of classification method
(you might want to try some different choices for distances in the prob-
lems below and see what changes). Feature selection is also an important
problem. We suggest that you take a simple approach and use genes which
are differentially expressed between the phenotypes under study. In some
cases this can be improved on, but in general it seems to be a reasonable
approach. In most cases we have no a priori reason to believe that any
one gene should get more weighting than another. If that is true, then we
must standardize the genes before carrying out machine learning. If we do
not standardize them (for each gene, subtract some measure of the center
and divide by some measure of the variability, across samples), then many
machine learning algorithms (and distances) will treat different genes quite
differently, typically depending on their observed mean expression level and
its variation across samples. So, standardization is recommended, however,
it raises an important prerequisite. If you decide to standardize your ex-
pression data you will need to perform some sort of non-specific filtering to

2 R. Gentleman, W. Huber, V. Carey, R. Irizarry

remove genes that have low variability, for example because they are not ex-
pressed, or because the microarray experiment did not work for these genes
due to low labeling or hybridization efficiencies. The reason you must do
this is that we do not want to amplify what is essentially noise by the
operation of standardization.

1.1.1 Machine Learning Check List

1. Filter out features (genes) which show little variation across samples,
or which are known not to be of interest. If appropriate transform
features to all be on the same scale.

2. Select a distance measure. What does it mean for two genes to be
close? Make sure that the selected distance embodies your notion of
similarity.

3. Feature selection: select features to be used for machine learning.

4. Select the algorithm: which of the very many machine learning
algorithms do you want to use?

5. Assess the performance of your analysis. If performing supervised
machine learning performance is often assessed using cross-validation.
For unsupervised machine learning (or clustering) it is more difficult
to determine how well the algorithm has performed.

Non-specific filtering

First load the Biobase and ALL packages and then use the data function
to load the ALL data. Since the data in ALL are large and phenotypically quite
diverse, we reduce the cases down to a reasonable two group comparison. We will
return to a multigroup comparison later.

> library("Biobase")

> library("ALL")

> data(ALL, package = "ALL")

> ALLBs = ALL[, grep("^B", as.character(ALL$BT))]

> ALLBCRNEG = ALLBs[, ALLBs$mol == "BCR/ABL" | ALLBs$mol == "NEG"]

> ALLBCRNEG$mol.biol = factor(ALLBCRNEG$mol.biol)

> numBN = length(ALLBCRNEG$mol.biol)

> ALLBCRALL1 = ALLBs[, ALLBs$mol == "BCR/ABL" | ALLBs$mol == "ALL1/AF4"]

> ALLBCRALL1$mol.biol = factor(ALLBCRALL1$mol.biol)

> numBA = length(ALLBCRALL1$mol.biol)

Question 1
How many samples are in the BCR/ABL-NEG subset? How many are in the
BCR/ABL-ALL1/AF4 subset?

1. Machine Learning I 3

You now have two data sets to work with. Most of the code for carrying out
machine learning can easily be applied to either data set. The comparison of
BCR/ABL to NEG is difficult, and the error rates are typically quite high. On
the other hand, the comparison of BCR/ABL to ALL1/AF4 is rather easy, and
the error rates should be small. In this lab we will first select some genes to use as
features for the rest of the lab. Next we will use those features to do some machine
learning, in particular we will make use of cross-validation to select parameters
of the classification model and see how to assess the model itself. Many of the
details can be explored in much more detail, and some suggestions are made.

Preprocessing

First carry out non-specific filtering, as described in the Differential Expression
Lab. You should remove those genes that you think are not sufficiently informative
to be considered further. One recommendation is to filter on variability. Here, we
take the simplistic approach of using the 75th percentile of the interquartile range
(IQR) as the cut-off point. We do this because we want to have relatively few
genes to deal with so the examples will run quickly on laptops. Finding the IQR
can be done either by applying the IQR function over all rows of the ExpressionSet ,
or by manually computing quantiles using the very fast function rowQ (there are
some slight, hardly relevant numerical differences).

> lowQ = rowQ(ALLBCRNEG, floor(0.25 * numBN))

> upQ = rowQ(ALLBCRNEG, ceiling(0.75 * numBN))

> iqrs = upQ - lowQ

> giqr = iqrs > quantile(iqrs, probs = 0.75)

> sum(giqr)

[1] 3156

> BNsub = ALLBCRNEG[giqr,]

Exercise 1
What kind of object is BNsub?

1.2 Selecting a Distance

To some extent your choices here are not always that flexible because many ma-
chine learning algorithms have the distance measure fixed in advance. There are a
number of different tools that you can use in R to compute the distance between
objects. They include the function dist, the function daisy from the cluster
package (?), and the functions in the bioDist package. The bioDist package is
discussed in Chapter 12 of ?. Some ideas on visualizing distance measures can be
found in Section 10.5 of that same reference.

Exercise 2
What distance measures are availble in the bioDist package? Hint: load the
package and then look at the loaded functions, or read the vignette.

4 R. Gentleman, W. Huber, V. Carey, R. Irizarry

43
00

4
27

00
4

43
01

2
12

00
6

24
01

0
28

00
1

27
00

3
28

04
2

28
02

3
28

01
9

04
01

0
30

00
1

28
02

1
28

03
5

28
03

7
28

04
7

28
00

6
28

03
6

28
04

3
28

04
4

28
02

4
24

01
8

36
00

2
22

00
9

28
00

5
28

03
1

28
00

7
43

00
7

08
01

2
49

00
6

04
01

6
04

00
8

15
00

1
68

00
3

43
00

1
16

00
9

01
01

0
24

01
7

64
00

2
20

00
2

68
00

1
25

00
6

33
00

5
48

00
1

09
00

8
15

00
5

62
00

1
12

02
6

14
01

6
37

01
3

12
01

2
57

00
1

31
01

1
22

01
0

62
00

2
24

02
2

62
00

3
26

00
3

09
01

7
11

00
5

08
01

1
12

01
9

24
01

1
22

01
3

03
00

2
24

00
8

84
00

4
08

00
1

04
00

7
25

00
3

24
00

1
08

02
4

22
01

1
06

00
2

64
00

1
65

00
5

26
00

1
01

00
5

12
00

7

12007010052600165005640010600222011080242400125003040070800184004240080300222013240111201908011110050901726003620032402262002220103101157001120123701314016120266200115005090084800133005250066800120002640022401701010160094300168003150010400804016490060801243007280072803128005220093600224018280242804428043280362800628047280372803528021300010401028019280232804227003280012401012006430122700443004

Figure 1.1. A heatmap of the between-sample distances.

To make the computations easier, we take the first sixty genes from the BNsub data
set and use those for the exercises in this section. The dist function computes the
distance between rows of an input matrix. Since we want the distances between
samples, we transpose the matrix using the function t. The return value is an
instance of the dist class and you should read the manual page carefully to find
out more about this class. Since this class is not supported by some R functions
we will want to use, we also convert it to a matrix.

> dSub <- BNsub[1:60,]

> eucD <- dist(t(exprs(dSub)))

> eucD@Size

[1] 79

> eucM <- as.matrix(eucD)

We can use this as an input to various clustering algorithms and plot the outputs.
But for now we want to visualize it as a heatmap.

> library("RColorBrewer")

> hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> heatmap(eucM, sym = TRUE, col = hmcol, distfun = function(x) as.dist(x))

Question 2
What do you notice most about the heatmap? What color is used to encode
objects that are similar? What color encodes objects that are dissimilar?

1. Machine Learning I 5

Question 3
Repeat this analysis using Kendall’s tau distance. How much does the heatmap
change?

Since our goal is to introduce you to a number of different distances and to
help you understand their effects, visualization is important. We will also create
a few helper functions to make it easier to carry out certain transformations and
calculations. First we define a function to find the closest neighbor of a particular
observation given a distance matrix and a label specifying an observation in the
distance matrix.

> closestN = function(distM, label) {

+ loc = match(label, row.names(distM))

+ names(which.min(distM[label, -loc]))

+ }

> closestN(eucM, "03002")

[1] "22013"

Exercise 3
Compute the distance between the samples using the MIdist function from the
bioDist package. What distance does this function compute? Which sample is
closest to "03002" in this distance?

Feature Selection

Now we are ready to select features. Perhaps the easiest approach to feature
selection is to use a t-test.

> library("genefilter")

> tt1 = rowttests(BNsub, "mol.biol")

> numToSel <- 50

Using the t-test statistics, we will select the top 50 genes to use for the machine
learning questions below.

> tt1ord = order(abs(tt1$statistic), decreasing = TRUE)

> top50 = tt1ord[1:numToSel]

> BNsub1 = BNsub[top50,]

Exercise 4
What is the value of the largest t-statistic? Which gene does it correspond to?
What is the corresponding p-value?

Next we will standardize all gene expression values. As discussed above, it
is important that non-specific filtering has already been applied, otherwise the
standardization step will add unnecessary noise to the data. Since we will compute
IQR by row many times in the next code chunk, we first write a helper function
to compute this for us.

6 R. Gentleman, W. Huber, V. Carey, R. Irizarry

> rowIQRs = function(eSet) {

+ numSamp = ncol(eSet)

+ lowQ = rowQ(eSet, floor(0.25 * numSamp))

+ upQ = rowQ(eSet, ceiling(0.75 * numSamp))

+ upQ - lowQ

+ }

Exercise 5
Use the rowIQRs function to repeat the IQR calculation that was carried out
previously. Do you get the same values?

Now we are ready to standardize all genes, which we will do by subtracting the
row medians and dividing by the row IQRs. Again, we write a helper function,
standardize, that will do most of the work.

> standardize = function(x) (x - rowMedians(x))/rowIQRs(x)

> exprs(BNsub1) = standardize(exprs(BNsub1))

Take a quick look at the data to verify that everything went as intended.

> library("RColorBrewer")

> hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> spcol <- ifelse(BNsub1$mol.biol == "BCR/ABL", "goldenrod", "skyblue")

> heatmap(exprs(BNsub1), col = hmcol, ColSideColors = spcol)

04
00

8
06

00
2

15
00

1
24

00
8

16
00

9
25

00
6

33
00

5
28

03
1

28
02

3
04

01
0

28
02

4
08

01
2

22
01

1
24

00
1

04
01

6
28

04
2

43
01

2
26

00
1

24
01

8
12

01
9

28
00

7
68

00
1

57
00

1
64

00
2

08
02

4
28

04
7

22
00

9
25

00
3

48
00

1
22

01
0

01
01

0
28

00
5

64
00

1
28

00
6

28
00

1
28

03
7

43
00

4
28

04
3

43
00

7
04

00
7

36
00

2
28

01
9

28
03

5
28

04
4

24
01

7
09

00
8

30
00

1
28

02
1

65
00

5
22

01
3

84
00

4
20

00
2

27
00

3
12

01
2

03
00

2
62

00
1

24
02

2
28

03
6

26
00

3
62

00
2

11
00

5
08

01
1

24
01

1
01

00
5

62
00

3
12

00
7

12
02

6
14

01
6

37
01

3
49

00
6

27
00

4
68

00
3

12
00

6
09

01
7

15
00

5
43

00
1

24
01

0
31

01
1

08
00

1

40132_g_at
32310_f_at
40076_at
37014_at
40202_at
40516_at
33774_at
32542_at
36591_at
39329_at
39330_s_at
39319_at
40167_s_at
37027_at
33232_at
40855_at
37403_at
106_at
32434_at
2039_s_at
40480_s_at
32562_at
32979_at
39824_at
39730_at
1636_g_at
1635_at
36275_at
1674_at
33440_at
34472_at
33362_at
40504_at
35162_s_at
41815_at
37363_at
39631_at
39837_s_at
40196_at
671_at
40051_at
31786_at
38032_at
1326_at
1467_at
36617_at
35912_at
32134_at
40795_at
37015_at

Figure 1.2. Heatmap.

Exercise 6
a What do we expect to see in the heatmap? Do we see that?

1. Machine Learning I 7

b What color corresponds to high values of expression?

c Optional: Repeat the calculations to this point using ALLBCRALL1.

d Optional: Use either the ROC package or the edd package to select genes
for the machine learning portion. Alternatively you could use genes in a
GO category or a KEGG pathway (but you still want to use only those
that passed your non-specific filter).

Make sure that you standardize the gene expression data once you have selected
your set of interesting genes. This standardization insures that all genes have
equal weighting in the machine learning exercises below.

1.3 Machine Learning

There are many different machine learning algorithms available in R. You may
use which ever one you would like, we suggest using k nearest neighbors for this
lab since it is conceptually simple and can be used to demonstrate most of the
general principles. We also recommend that you use the MLInterfaces package.
The reason for this suggestion is that this package provides a uniform set of
calling parameters and a uniform return value which will make it easier to switch
your code from one machine learning algorithm to another. This package does
not implement any of the machine learning algorithms, it just provides a set of
interfaces and in general the name of the function or method remains the same,
but a B is post-pended, so we will use knnB and knn.cvB.

Exercise 7
Use the knn method to estimate the prediction error rate. If you are ambitious
you could try to do this with something more sophisticated than leave-one-out
cross-validation.

Some example code is given below, but you will need to modify it to answer the
questions that have been posed.

> library("class")

> a1 = knn.cv(t(exprs(BNsub1)), BNsub1$mol.biol)

> ctab1 = table(a1, BNsub1$mol.biol)

> errrate = (ctab1["BCR/ABL", "NEG"] + ctab1["NEG", "BCR/ABL"])/sum(ctab1)

Exercise 8
Use cross-validation to estimate k, the number of nearest neighbors to use. That
is, for each of a number of values of k, estimate the cross-validation error, and
then select k as that value which yields the smallest error rate.

Again, the code below is intended solely to get you started, it does not represent
a complete solution to the question, you must modify it.

> alist = list()

> for (i in 1:4) alist[[i]] = knn.cv(t(exprs(BNsub1)), BNsub1$mol.biol,

+ k = i)

8 R. Gentleman, W. Huber, V. Carey, R. Irizarry

> sapply(alist, function(x) {

+ ct1 = table(x, BNsub1$mol.biol)

+ (ct1["BCR/ABL", "NEG"] + ct1["NEG", "BCR/ABL"])/sum(ct1)

+ })

[1] 0.05063291 0.06329114 0.07594937 0.06329114

Exercise 9
a What happens when k is even and there is a tie?

b Optional: Suppose that instead of Euclidean distance you wanted to use
some other metric, such as 1-correlation. How might you achieve that?

c How might you define outlier and doubt classes? Are there any outliers, or
hard to classify samples?

1.3.1 MLInterfaces

We now repeat some of the previous calculations using the MLInterfaces
package. Load the library and explore its documentation.

> library("MLInterfaces")

Exercise 10
a Use library(help=MLInterfaces), ?"MLearn-methods" and openVignette()

to explore the package.

b Try to follow the example at the bottom of the MLearn-methods help page.
Depending on the packages installed on your computer, you might have
luck with the command example("MLearn-methods").

A key function is MLearn. MLearn is designed for easy use with expression data.
The first argument is the name of variable containing a priori classification infor-
mation, e.g., mol.biol. The second argument is an instance of the ExpressionSet
class, the third argument the name of the machine learning algorithm, and the
fourth argument the individuals to be used for training. So to use the k nearest
neighbors machine learning algorithm using the first 50 samples for training, do
the following:

> knnResult <- MLearn(mol.biol ~ ., BNsub1, "knn", 1:50)

> knnResult

MLOutput instance, method= knn

Call:

MLearn(formula = formula, data = data, method = method, trainInd = trainInd,

mlSpecials = mlSpecials)

predicted class distribution:

BCR/ABL NEG

14 15

Exercise 11
a Interpret each line of the input to MLearn.

1. Machine Learning I 9

(a) What would you do to change the training set?
(b) To use every second sample as the training set?
(c) To use all but the last sample for training?
(d) To use a training set of 50 individuals, chosen at random from the

samples in BNsub1 (hint: use the sample function).

b Interpret the output of MLearn. In particular, look at the predicted class
distribution and check that the right number of samples are being used for
testing.

The confusion matrix compares the known classification of the testing set with
the predicted classification based on the tuned machine learning algorithm.

> confuMat(knnResult)

predicted

given BCR/ABL NEG

BCR/ABL 12 0

NEG 2 15

Exercise 12
a Interpret the confusion matrix. How well do you think the algorithm is

doing? What might you do to improve the classification?

b What other information can you extract from the fitted model?

Cross-validation

Cross-validation is often used to assess the prediction error of supervised machine
learning. In order to get an accurate assessment it is important that all steps that
can affect the outcome are included in the cross-validation process. In particular,
the selection of features to use in the machine learning algorithm must be included
within the cross-validation step. The MLInterfaces package has a method for
performing cross-validation. The method is called xval. Ponder its help page
(?xval) and think about how you might perform cross-validation of BNsub1. From
the xval help page, it looks like we should be able to perform cross validation
with a command like:

> knnXval <- xvalML(mol.biol ~ ., data = BNsub1, "knn", xvalMethod = "LOO")

The first two arguments should be familiar. The third argument, knnB, specifies
that we will use the knn function. The final argument, xvalMethod , indicates
the method that will be used for cross-validation. The cryptic ”LOO” stands for
leave-one-out.

Exercise 13
a Describe in words the operation that xval is performing.

b What is the length of knnXval? Why?

c Interpret the meaning of each element in knnXval.

10 R. Gentleman, W. Huber, V. Carey, R. Irizarry

d What information is provided by the following command? How would you
use this to assess the performance of this machine learning algorithm?

> table(given = BNsub1$mol.biol, predicted = knnXval)

predicted

given BCR/ABL NEG

BCR/ABL 35 2

NEG 2 40

Now, let’s see what happens when we include feature selection in the cross-
validation algorithm.

> BNx = BNsub

> exprs(BNx) = standardize(exprs(BNx))

> t.fun <- function(data, fac) {

+ (abs(rowttests(data, data[[fac]], tstatOnly = FALSE)$statistic))

+ }

> lk3f <- xvalML(mol.biol ~ ., data = BNx, "knn", xvalMethod = "LOO",

+ fsFun = t.fun, fsNum = 50)

> table(given = BNx$mol.biol, predicted = lk3f$out)

predicted

given BCR/ABL NEG

BCR/ABL 33 4

NEG 4 38

Exercise 14
a In the example above we used 50 features for each of the cross-validations.

What happens if we use twice as many? What happens if we only use 5?
How would you interpret these results?

b Optional: Hard Repeat the exercise above using 10 fold cross-validation.
To do this you will need to divide the data into 10 groups and use the group
argument to xval.

c Next, use xval with a different classifier, such as support vector machines
(the function is svmB).

Multi-group machine learning

The part of the exercise described here is optional, but it does raise some inter-
esting issues. We briefly consider the application of supervised machine learning
methods to a mult-class problem. We will return to our original data, and instead
of creating a two class problem, we will create a three class problem.

Instead of treating this as two separate two class problems make one data
set that has all three phenotypes. Now use the kNN procedure to make class
predictions. Can you estimate the class conditional error rates? Can you control
the procedure so that the class-conditional error rates are treated equally?

1. Machine Learning I 11

1.4 Random Forests

In this part of the laboratory exercise we will use the random forests (??) and the
randomForest package to further explore the data in the golubEsets package.

> library(randomForest)

randomForest 4.5-18

Type rfNews() to see new features/changes/bug fixes.

Basic use of the random forest technology is fairly straightforward. The only
parameter that seems to be very important is mtry. This controls the number of
features that are selected for each split. The default value is the square root of the
number of features but often a smaller value tends to have better performance.

> set.seed(123)

> trainY = BNsub$mol.biol[TrainInd]

> Xm = t(exprs(BNsub)[, TrainInd])

> rf1 <- randomForest(Xm, trainY, ntree = 2000, mtry = 55, importance = TRUE)

> rf1

Call:

randomForest(x = Xm, y = trainY, ntree = 2000, mtry = 55, importance = TRUE)

Type of random forest: classification

Number of trees: 2000

No. of variables tried at each split: 55

OOB estimate of error rate: 12.5%

Confusion matrix:

BCR/ABL NEG class.error

BCR/ABL 17 3 0.15

NEG 2 18 0.10

> rf2 <- randomForest(Xm, trainY, ntree = 2000, mtry = 35, importance = TRUE)

> rf2

Call:

randomForest(x = Xm, y = trainY, ntree = 2000, mtry = 35, importance = TRUE)

Type of random forest: classification

Number of trees: 2000

No. of variables tried at each split: 35

OOB estimate of error rate: 22.5%

Confusion matrix:

BCR/ABL NEG class.error

BCR/ABL 17 3 0.15

NEG 6 14 0.30

> vcrf1 = MLearn(mol.biol ~ ., data = BNsub, "randomForest", TrainInd,

+ ntree = 2000, mtry = 55, importance = TRUE)

> vcrf1

MLOutput instance, method= randomForest

Call:

12 R. Gentleman, W. Huber, V. Carey, R. Irizarry

MLearn(formula = formula, data = data, method = method, trainInd = trainInd,

mlSpecials = mlSpecials, ntree = 2000, mtry = 55, importance = TRUE)

predicted class distribution:

BCR/ABL NEG

24 15

> vcrf2 = MLearn(mol.biol ~ ., data = BNsub, "randomForest", TrainInd,

+ ntree = 2000, mtry = 35, importance = TRUE)

> vcrf2

MLOutput instance, method= randomForest

Call:

MLearn(formula = formula, data = data, method = method, trainInd = trainInd,

mlSpecials = mlSpecials, ntree = 2000, mtry = 35, importance = TRUE)

predicted class distribution:

BCR/ABL NEG

22 17

Random forests seems to have some difficulties when the sizes of the groups are
not approximately equal. There is a weight argument that can be given to the
random forest function but it appears to have little or no effect. We can use the
prediction function to assess the ability of these two forests to predict the class
for the test set.

> p1 <- predict(rf1, Xm, prox = TRUE)

> table(trainY, p1$pred)

trainY BCR/ABL NEG

BCR/ABL 20 0

NEG 0 20

> p2 <- predict(rf2, Xm, prox = TRUE)

> table(trainY, p2$pred)

trainY BCR/ABL NEG

BCR/ABL 20 0

NEG 0 20

> confuMat(vcrf1)

predicted

given BCR/ABL NEG

BCR/ABL 15 2

NEG 9 13

> confuMat(vcrf2)

predicted

given BCR/ABL NEG

BCR/ABL 14 3

NEG 8 14

1. Machine Learning I 13

1.4.1 Feature Selection

One of the nice things about the random forest technology is that it provides some
indication of which variables were most important in the classification process.
These features can be compared to those selected by t-test or other means. The
current version of randomForest produces four different variable importance
statistics. Breiman has recently recommended that only two of those be consid-
ered (the other two are too unstable). The ones to concentrate on are measures
two and four. In the next code chunk a small function is defined that can be used
to extract the most important variables (those with the highest scores).

> varImpPlot(rf1, n.var = 15)

37027_at

33263_at

35769_at

41815_at

40202_at

40795_at

40167_s_at

34472_at

671_at

39730_at

1674_at

1140_at

39837_s_at

40504_at

1636_g_at

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.9 1.1 1.3
MeanDecreaseAccuracy

1635_at

33362_at

32434_at

39730_at

35162_s_at

41815_at

671_at

39824_at

41439_at

40202_at

1674_at

39837_s_at

1140_at

40504_at

1636_g_at

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.10 0.20
MeanDecreaseGini

rf1

> varImpPlot(rf2, n.var = 15)

14 R. Gentleman, W. Huber, V. Carey, R. Irizarry

38323_at

41193_at

1635_at

1140_at

33325_at

40167_s_at

39824_at

41815_at

1467_at

40196_at

39730_at

40202_at

40504_at

671_at

1636_g_at

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.8 1.0 1.2
MeanDecreaseAccuracy

37027_at

1467_at

40196_at

1140_at

39824_at

1635_at

671_at

40202_at

40795_at

1674_at

35162_s_at

40504_at

41815_at

39730_at

1636_g_at

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.10
MeanDecreaseGini

rf2

> impvars <- function(x, which = 2, k = 10) {

+ v1 <- order(x$importance[, which])

+ l1 <- length(v1)

+ x$importance[v1[(l1 - k + 1):l1], which]

+ }

> iv.rf1 <- impvars(rf1, k = 25)

> library("hgu95av2")

> library(annotate)

> isyms <- getSYMBOL(names(iv.rf1), data = "hgu95av2")

> par(las = 2)

> plot(getVarImp(vcrf1), resolveenv = hgu95av2SYMBOL)

1. Machine Learning I 15

AMOT
WSB2
LGMN

CDC42EP3
ITGAE

KLF9
ABL1

ACVR2A
TUBA4A

YES1
SYNE2
SPARC

EPS8
P2RY14

CPVL
ABL1

ZNF467
PON2
ABL1

39824_at

Mean decrease in accuracy0.
00

00

0.
00

05

0.
00

10

0.
00

15

0.
00

20

0.
00

25

1.4.2 More exercises

Again a number of interesting exercises present themselves.

Exercise 15
a Reverse the role of the test set and the training set and see how the

estimated prediction errors change.

b Use the whole data set to build a random forest. How well does it do?

The version number of R and the packages and their versions that were
used to generate this document are listed below

R version 2.5.0 RC (2007-04-22 r41275)
i386-apple-darwin8.9.1

locale:
C

attached base packages:
[1] "splines" "tools" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

other attached packages:

16 R. Gentleman, W. Huber, V. Carey, R. Irizarry

annotate randomForest sma hgu95av2 MLInterfaces rda
"1.14.1" "4.5-18" "0.5.15" "1.16.0" "1.10.2" "1.0"

rpart class genefilter survival bioDist RColorBrewer
"3.1-35" "7.2-34" "1.15.6" "2.31" "1.8.0" "0.2-3"

ALL Biobase weaver codetools digest
"1.4.2" "1.14.0" "1.2.0" "0.1-1" "0.3.0"

	Machine Learning, Part I
	Robert Gentleman, Wolfgang Huber, Vince Carey, Raphael Irizarry
	Introduction
	Machine Learning Check List

	Selecting a Distance
	Machine Learning
	MLInterfaces

	Random Forests
	Feature Selection
	More exercises

