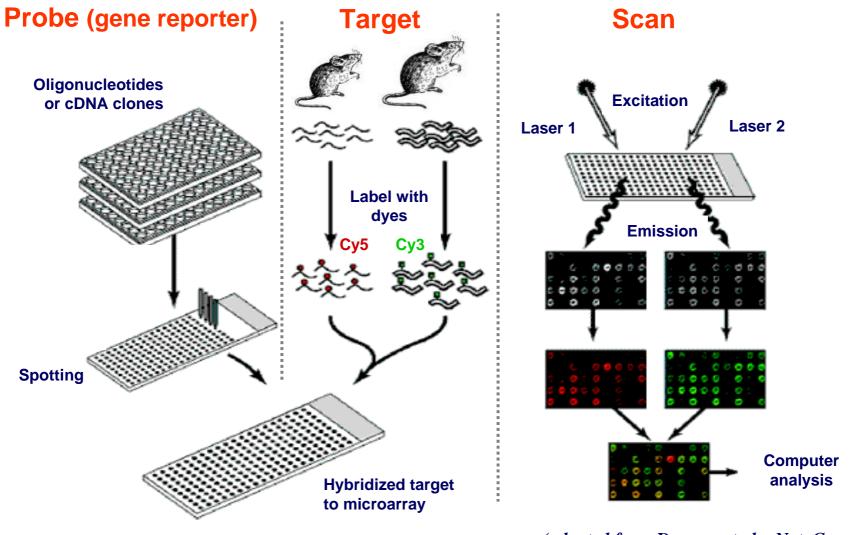


cDNA Microarray Quality Assessment and Quality Control with BioConductor packages

Nolwenn Le Meur

May 2007 Copyright 2007


Outline

- Image analysis
- Quality Assessment
- Pre-processing
 - Background correction
 - Normalization
 - Outliers detection

Two-color Microarray

(adapted from Duggan et al., Nat. Gen., 1999) FRED HUTCHINSON CANCER RESEARCH CENTER A LIFE OF SCIENCE

Terminology

- **Target:** DNA hybridized to the array, mobile substrate.
- Probe: DNA spotted on the array (spot).
- print-tip-group : collection of spots printed using the same print-tip or pin.

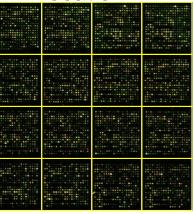

- **G**, **Gb**: Cy3 signal and background intensities
- **R**, **Rb**: Cy5 signal and background intensities
- $\mathbf{M} = \log 2(\mathbf{R}) \log 2(\mathbf{G})$
- A = 1/2(log2(R) + log2(G))

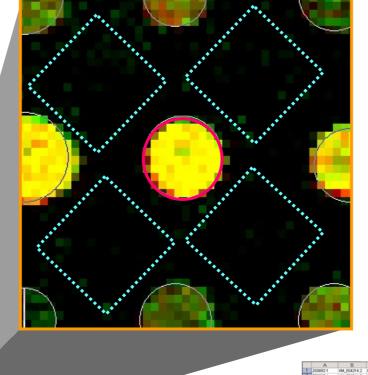
Image Analysis

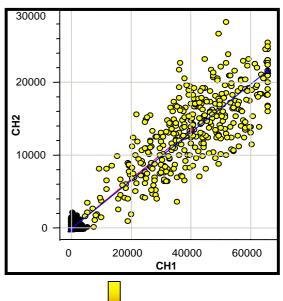
A (A) (A) 🕲 🎕 🌒 🧶 😑 🚳 🚳 🖲

0 0 💿 💿 🖕 0 💿 O O O O 💿 🕺 O • 0 • 0

0 0 0 0 0

0 0

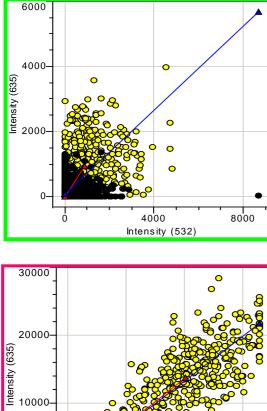

0 () 0 0 0 0 0


0 ΟΦΦΦΦ • • • • 🕘 💿 💿 💿 💿 💿 💿 💿 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 💩 💩 🖕 🔘 🔘 🔘 🚳 🍓

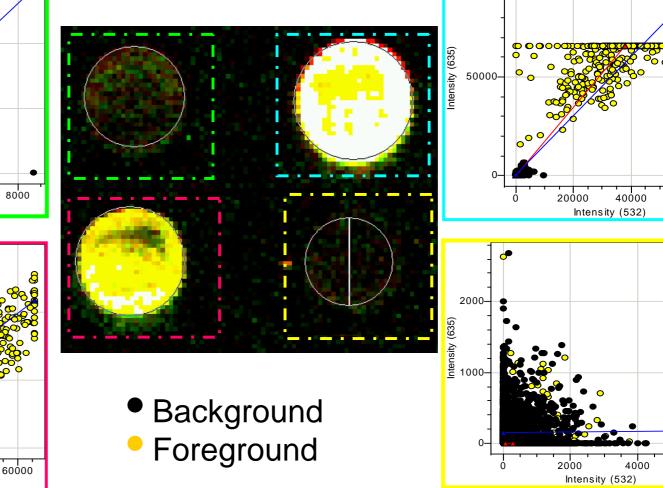
2. Segmentation

3. Quantification



	A	B	C	D	E	F	G	H	1	J	K	L	M	N
	209092.1	XM_054214.2	XM_041018.1	XM_030011.2	X63432	\$42658.1	NM_006471.1	NM_005159.1	[NM_003090.1	NM_001825.1	NM_001101.2	NM_000258.1	M14603.1	1,301415.1
	Z69092.1	XM_054214.2	XM_040948.2	XM_029192.1	X63432	NM_032169.1	NM_006471.1	NM_005159.1	NM_002007.1	NM_001025.1	NM_001101.2	NM_000257.1	M11146.1	1 J01415.1
ŀ	Z24725.1	XM_053038.1	XM_040948.2	XM_029192.1	X80819.1	NM_032169.1	NM_006471.1	NM_005159.1	3NM_002807.1	NM_001825.1	NM_001100.2	NM_000257.1	L39210.1	J01415.1
	Z24725.1	XM_053038.1	XM_039448.1	XM_028372.1	X50819.1	NM_021130.1	NM_006294.1	NM_005110.1	NM_002803.1	NM_001824.1	NM_001100.2	NM_000257.1	L39210.1	J01415.1
ī	Z15030.1	XM_052916.1	XM_039448.1	XM_028372.1	X54145.1	NM_021130.1	NM_006294.1	NM_005110.1	NM_002803.1	NM_001824.1	NM_001100.2	NM_000257.1	L36033.1	J01415.1
ı	Z15030.1	XM_052918.1	XM_038278.3	XM_018268.3	X54145.1	NM_016440.1	NM_006111.1	NM_005061.1	NM_002799.1	NM_001697.1	NM_001098.1	NM_000257.1	L36033.1	.301415.1
	XM_058357.1	XM_052627.2	XM_030278.3	XM_016697.2	X16009.1	NM_016160.1	NM_000111.1	NM_005061.1	NM_002799.1	NM_001689.1	NM_001098.1	NM_000256.1	L32035.1	.301415.1
ī	XM_058357.1	XM 052627.2	XM 038027.1	XM 016290.2	X15869.1	NM_014819.1	NM 006044.1	NM 005005.1	NM 002715.1	NM_001689.1	NM 001035.1	NM 000255.1	L32835.1	.J01415.1
ŀ	XM_058173.1	XM_052331.3	XM_038027.1	XM_016290.2	X16869.1	NM_014819.1	NM_006044.1	NM_005006.1	NM_002715.1	NM_001686.1	NM_001035.1	NM_000237.1	L07782.1	J01415.1
ŀ	XM_058173.1	XM_052321.1	XM_037923.1	XM_016198.2	X16869.1	NM_014713.1	NM_006007.1	NM_004768.1	NM_002710.1	NM_001686.1	NM_001008.1	NM_000237.1	L07782.1	J01415.1
		XM_051945.1	XM_037923.1	XM_016190.2	X16009.1	NM_014713.1	NM_006007.1	NM_004768.1	NM_002623.2	NM_001686.1	NM_001006.1	NM_000126.1	L05007.1	301415.1
			XM_037923.1	XM_000989.1	X16869.1	NM_014391.1	NM_006003.1	NM_004548.1	NM_002623.2	NM_001681.1	NM_000992.1	NM_000125.1	L05087.1	J01415.1
	XM_057346.1	XM_051885.3	XM_037923.1	XM_007127.2	X16869.1	NM_014391.1	NM_006003.1	NM_004548.1	NM_002612.1	NM_001681.1	NM_000992.1	NM_000065.1	L00016.1	J01415.1
			XM_037797.21	XM_007127.2	X14891.1	NM_014391.1	NM_005917.1	NM_004415.1	NM_002612.1	NM_001681.1	NM_000988.1	NM_000065.1	K02043.1	.301415.1
	XM_057063.1	XM_050614.1	XM_036050.1	XM_007031.4	X14091.1	NM_014391.1	NM_005917.1	NM_004415.1	NM_002521.1	NM_001620.1	NM_000905.1	NM_000019.1	H02043.1	301415.1
	XM_057063.1	XM_050614.1	XM_036858.1	XM_007031.4	U9					1628.1	NM_000972.1	NM_000019.1	K02043.1	D79994.1
	XM_056761.1	XM_049679.1	XM_035796.1	XM_006238.4	09					1613.1	NM_000972.1	NM_000018.1	K02043.1	079994.1
	XM_058761.1	XM_049679.1	XM_035796.1	XM_005848.2	-129					1613.1	NM_000970.2	NM_000018.1	K02043.1	050683.1
	XM_055059.1	XM_049575.2	XM_034179.1	XM_005848.2	-U9				\mathbf{x}	H613.1	NM_000970.2	NM_000016.1	H02043.1	050683.1
	XM_055859.1	XM_049131.2	XM_034179.1	XM_005417.4	U9			da	110	11553.1	NM_000919.1	NM_000016.1	303620.1	D30648.1
	XM_055793.1	XM_049131.2	XM_034146.2	XM_005417.4	09			MU)1553.1	NM_000919.1	NC_001807.4	J03620.1	D28908.1
	M_055793.1	XM_046843.1	XM_034146.2	XM_004377.3	UBS					11450.1	NM_000587.1	NC_001807.3	303015.1	D28908.1
	XM_055602.1	XM_046043.1	XM_034036.1	XM_003317.4	Ulli one					ren_sa)1450.1	NM_000507.1	NC_001807.3	303015.1	020900.1
	XM_055682.1	XM_046056.2	XM_034036.1	XM_003317.4	U62136.2	NM_007361.1	NM_005530.1	NM_003319.1	NM_002300.1	NM_001450.1	NM_000543.1	NC_001807.3	301415.1	D17409.1
	XM_055602.1	XM_046056.2	XM_033374.1]	XM_003317.4	U62138.2	NM_007361.1	NM_005530.1	NM_003319.1	NM_002300.1	NM_001450.1	NM_000543.1	M94859.1	301415.1	D17409.1
	XM_055602.1	XM_045954.1	XM_032396.1	XM_003317.4	U49020.1	NM_007159.1	NM_005368.1	NM_003319.1	NM_002300.1	NM_001450.1	NM_000368.1	M94859.1	301415.1	010040.1
	XM_055545.1	XM_045954.1	XM_032396.1	XM_002862.4	U49020.1	NM_007159.1	NM_005360.1	NM_003319.1	NM_002156.1	NM_001450.1	NM_000366.1	M64247.1	301415.1	010040.1
	XM_055545.1	XM_044022.1	XM_032004.1	XM_002852.4	U40490.1	NM_007107.1	NM_005368.1	NM_003319.1	NM_002156.1	NM_001402.1	NM_000366.1	M64247.1	301415.1	D00943.1
	XM_055358.1	XM_044022.1	XM_032004.1	XM_002659.3	U40490.1	NM_007107.1	NM_005368.1	NM_003319.1	NM_002138.1	NM_001402.1	NM_000366.1	M31776.1	301415.1	000943.1
	XM_055358.1	XM_043689.1	XM_031823.1	XM_002659.3	\$72481.1	NM_007079.1	NM_005368.1	NM_003197.2	NM_002138.1	NM_001402.1	NM_000368.1	M31776.1	301415.1	000943.1
	XM_055266.1	XM_043669.1	XM_031023.1	XM_002601.3	\$72401.1	NM_007079.1	NM_005162.2	NM_000130.1	NM_002107.1	NM_001402.1	NM_000294.1	M31776.1	301415.1	00050053
	KM_055266.1	XM_043419.2	XM_031736.2	XM_002601.3	\$69022.1	NM_006076.1	NM_005162.2	NM_000130.1	NM_002107.1	NM_001402.1	NM_000294.1	M27024.1	J01415.1	
	XM_055102.1	XM_041875.1	XM_031736.2	XM_002556.5	589022.1	NM_006876.1	NM_005159.2	NM_003130.1	NM_002079.1	NM_001402.1	NM_000289.1	M27024.1	301415.1	BC017495
	M_055102.1	XM_041869.2 *	XM_031661.1	XM_002558.5	\$89022.1	NM_006793.1	NM_005159.2	NM_003130.1	NM_002079.1	NM_001232.1	NM_000289.1	M26700.1	301415.1	80017495
	XM_054049.1	XM_041069.2+	XM_031661.1	X91647.1	\$69022.1	NM_006793.1	NM_005159.2	NM_000130.1	NM_001909.1	NM_001232.1	NM_000209.1	M26700.1	301415.1	00017105
	XM_054049.1	XM_041393.1	XM_030102.1	X91647.1	\$69022.1	NM_006513.1	NM_005159.1	NM_003094.1	NM_001969.1	NM_001103.1	NM_000209.1	M26576.1	J01415.1	DC017108
	XM_054461.1	XM_041393.1	XM_030182.1	X66699.1	589022.1	NM_006513.1	NM_005159.1	NM_003094.1	NM_001885.1	NM_001103.1	NM_000258.1	M26576.1	301415.1	BC017185
1	M 054461.1	XM_041018.1	XM 030011.2	X66699.1	\$42658.1	NM 006471.1	NM 005159.1	NM 003090.1	NM 001885.1	NM 001103.1	NM 000258.1	M14603.1	301415.1	BC017080

۵ ن


Quality Assessment Probe level

20000

40000

Intensity (532)

A LIFE OF SCIENCE

HUTCHINS

60000

6000

Quality Assessment

For at the probe-level:

Sources

 faulty printing, uneven distribution, contamination with debris, magnitude of signal relative to noise, poorly measured spots

Spot quality

- Brightness: foreground/background ratio
- Uniformity: variation in pixel intensities and ratios of intensities within a spot
- *Morphology:* area, perimeter, circularity
- Spot Size: number of foreground pixels

Action

- use weights for measurements to indicate reliability in later analysis.
- set measurements to NA (missing values)

Quality Assessment

For each array

Problems

- array fabrication defect
- problem with RNA extraction
- failed labeling reaction
- poor hybridization conditions
- faulty scanner

Quality measures

- Percentage of spots with no signal (~30% excluded spots)
- Range of intensities
- (Av. Foreground)/(Av. Background) > 3 in both channels
- Distribution of spot signal area

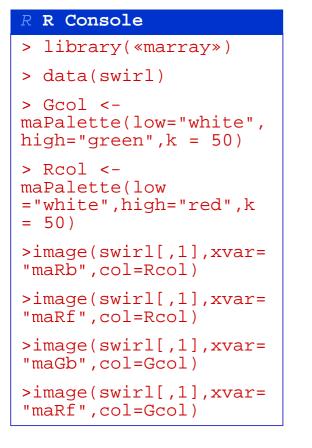
Quality Assessment

For each array:

Visual inspection

 hairs, dust, scratches, air bubbles, dark regions, regions with haze

Diagnostics plots of spot statistics


- e.g. R and G log-intensities, M, A, spot area.
 - 2D spatial images;
 - ECDF plots;
 - Boxplots;
 - Scatter-plots;
 - Density plots.
- Stratify plots according to layout parameters, *e.g.* print-tipgroup, plate.

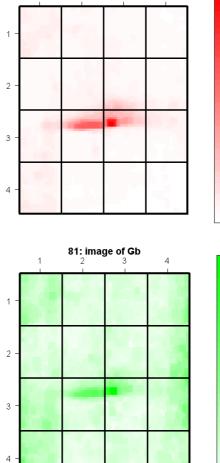


Image Plots

4

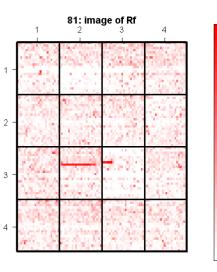
81: image of Rb

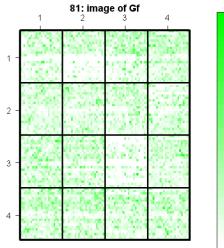
1

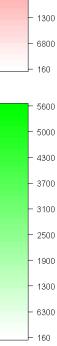
- 280

250

- 230


· 200


- 180


- 150

- 130

· 100 · 76

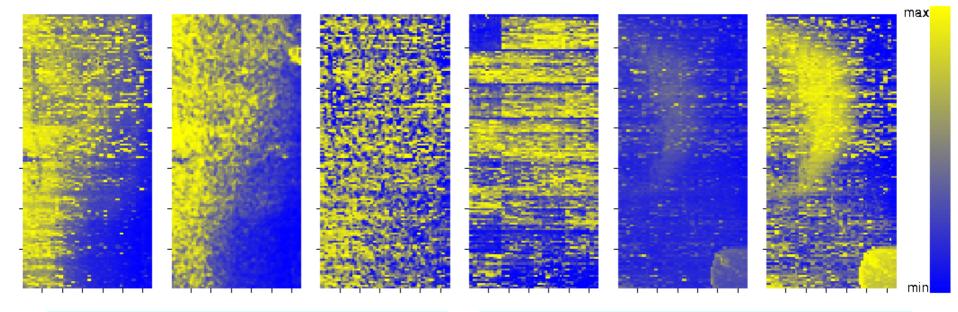
- 6000

- 5300

- 4700

- 4000

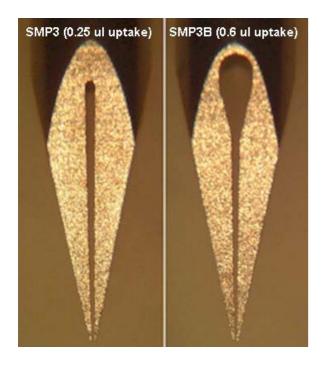
- 3300


- 2700

- 2000

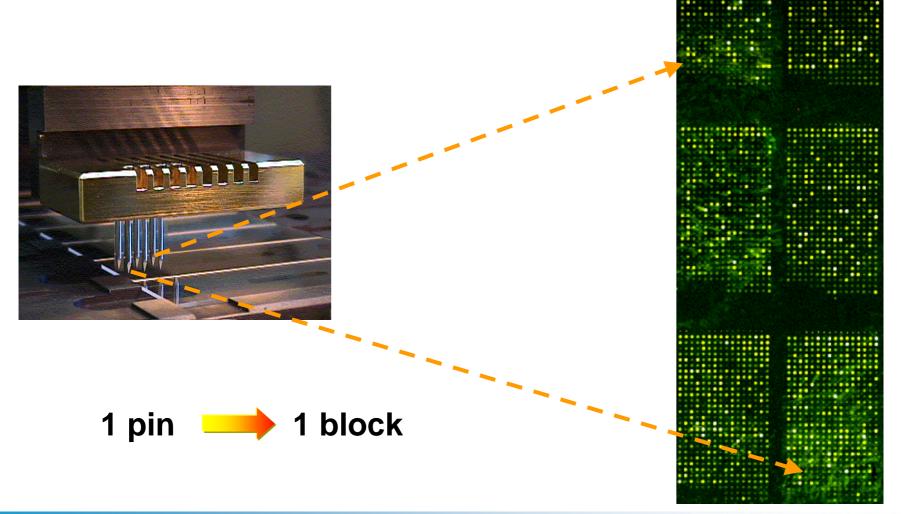
Spatial Effects – Image Plots

R Rb R-Rb color scale by rank


Print-tip

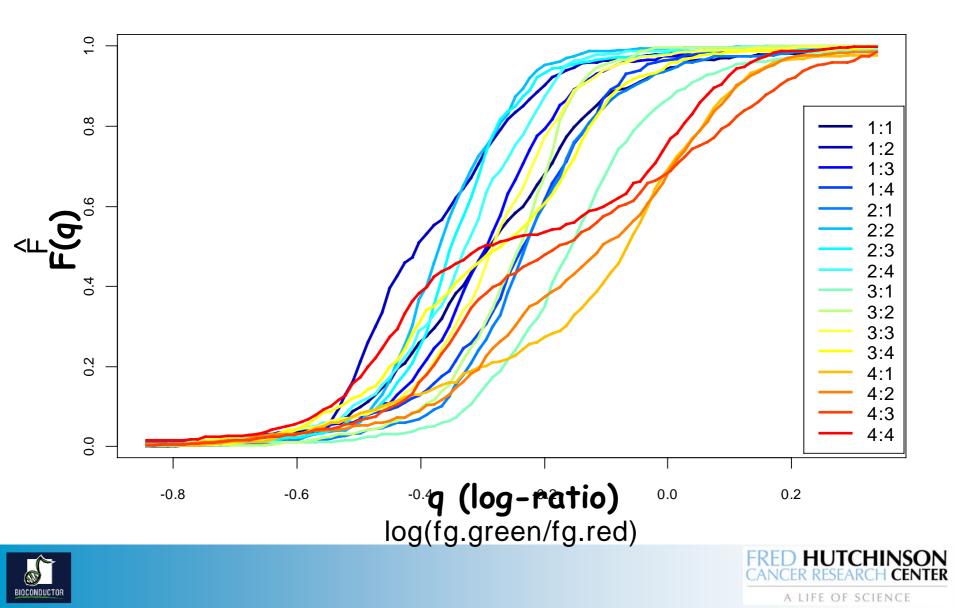
Washing

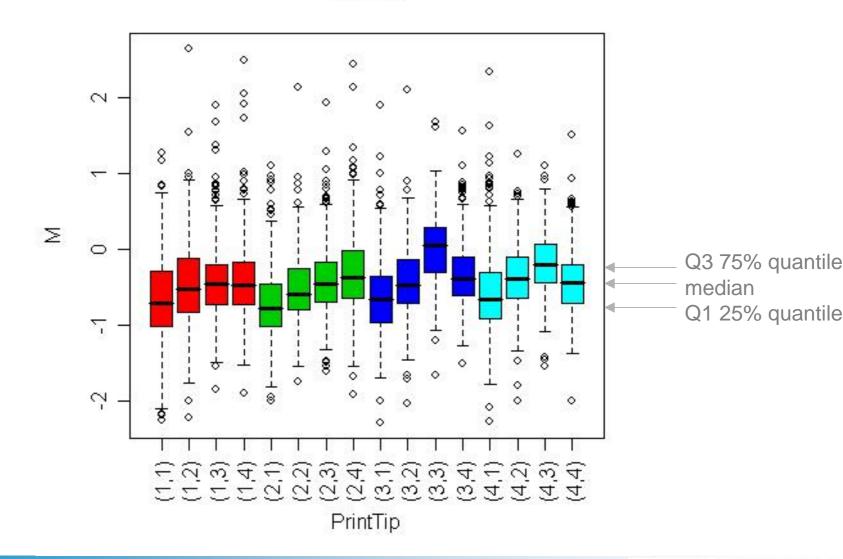
Spotting Pin Quality Decline


after delivery of 5x10⁵ spots

after delivery of 3x10⁵ spots

Spatial Effects

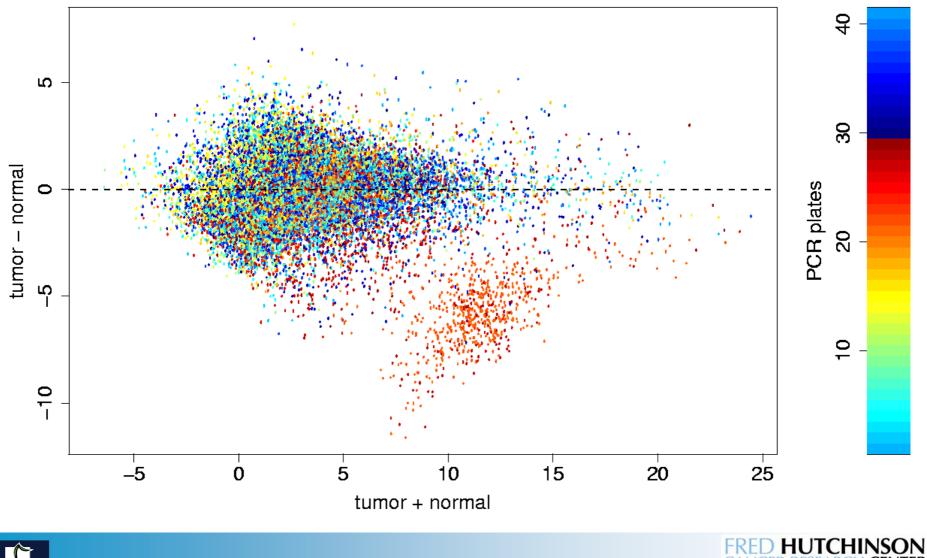




A LIFE OF SCIENCE

Print-tip Effects – ECDF plot

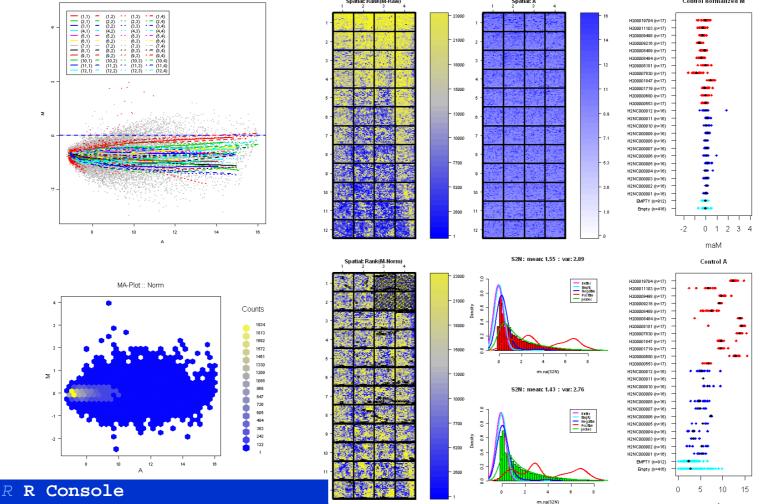
Print-tip Effects - Boxplots



CENTER

A LIFE OF SCIENCE

PCR plates



A LIFE OF SCIENCE

CENTER

Diagnostic plot with the fing Quality Could and the state of the state

library(«arrayQuality»)

?maQualityPlots

A LIFE OF SCIENCE

maA

FileName	DL32	DL31	DL30	HuPr_4005_E
СуЗ	PEC34_cntrl	PEC34_HGF	PEC34_SFN-	PEC34_SFN
Cy5	Control	Control	Control	Control
hybridisation	HuPr_4008_DL3	HuPr_4007_DL3	HuPr_4006_D	HuPr_4005_E
width	0.39	0.36	0.43	0.43
medianDistance	0.22	0.21	0.25	0.28
correlation	0.94	0.95	0.94	0.94
correlationLogRaw	0.82	0.86	0.82	0.79
meanSignalGreen	2701.65	2664.29	1558.81	2928.64
meanSignalRed	2797.52	2683.97	2037.56	3194.82
meanSignal	2749.59	2674.13	1798.19	3061.73
signalRange.Green	11001.25	11188.90	6289.65	11982.30
signalRange.Red	11446.00	11207.00	8602.65	13497.80
backgroundRange.Green	21.00	28.00	14.00	23.00
backgroundRange.Red	28.00	19.00	28.00	37.00
signalToBackground.Green	9.14	8.30	5.67	10.88
signalToBackground.Red	14.01	14.00	10.53	16.08

R R Console

library(«arrayMagic»)

?qualityParameters

R Console R distributionOfRawDataSlideWise library(«arrayMagic») quantiles: lower:0.25; middle:0.5; upper:0.75 ?qualityDiagnostics 0 -

Quality Assessment: Summary

For each spot:

weight

For each array:

- Diagnostics plots
- Stratify
- Controls

BioC packages:

- arrayQuality
- arrayMagic

Outline

- Image analysis
- Quality Assessment
- Pre-processing
 - Background correction
 - Normalization
 - Outliers detection

Sources of Variation

- RNA extraction
- reverse transcription
- Iabeling efficiencies
- Scanner settings

PCR

- DNA quality
- Spotting efficiency
- cross-hybridization

Systematic

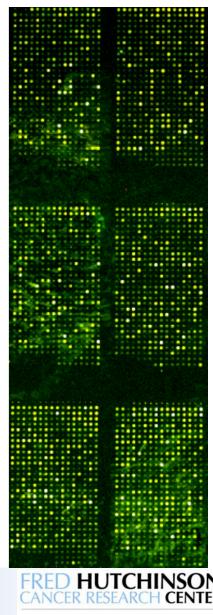
similar effect on many measurements
corrections can be estimated from data

Calibration

Stochastic

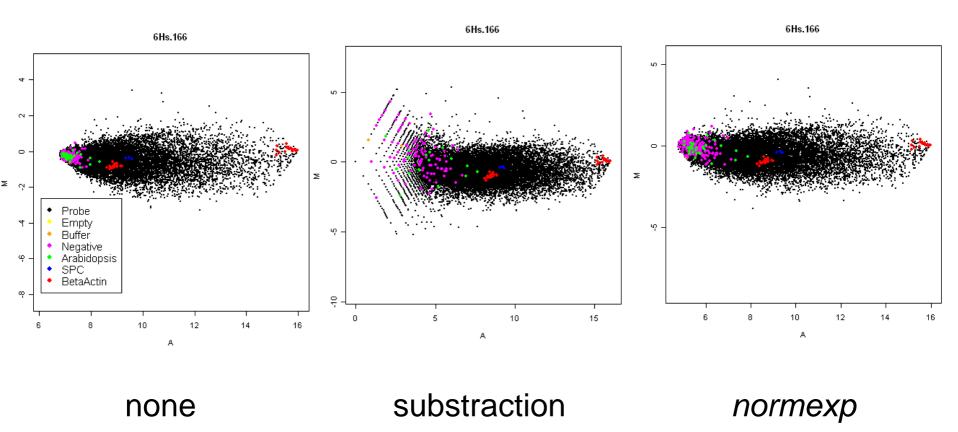
- too random to be explicitely accounted for
- "noise"

Error Model

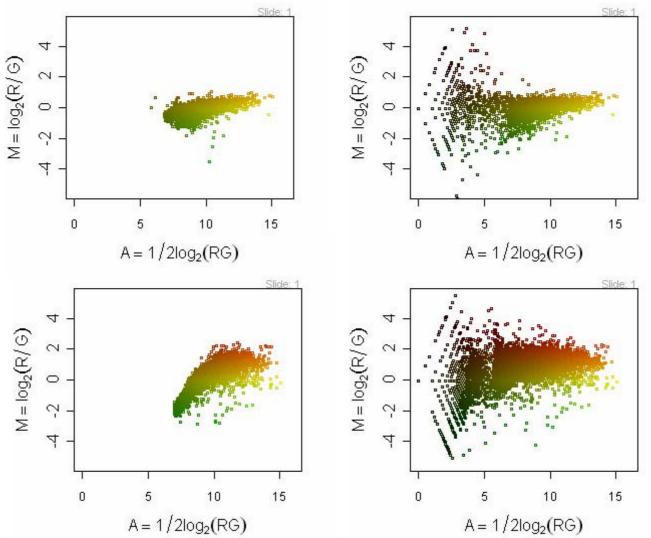

Background Correction

subtraction, movingmin

Minimun,edwards, normexp,...


More details ... *limma* >?backgroundCorrect

A LIFE OF SCIENCE


Background Correction

Background Correction

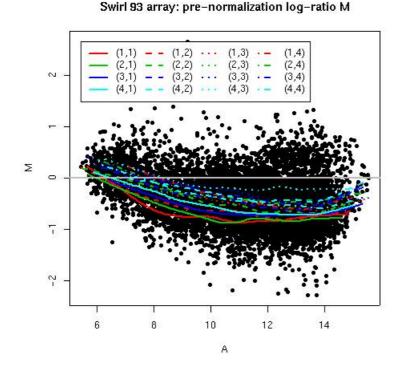
Normalization

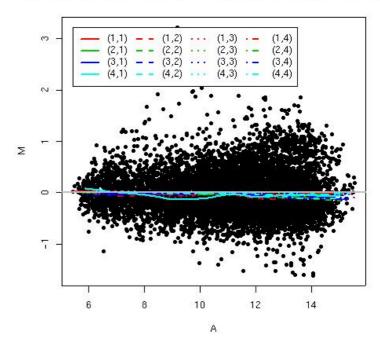
Identify and remove the effects of systematic variation

- In a ideal experiment, no normalization would be necessary, as the technical variations would have been avoided. Normalization is closely related to quality assessment.
- Normalization is needed to ensure that differences in intensities are indeed due to differential expression, and not some printing, hybridization, or scanning artifact.
- Normalization is necessary before any analysis which involves between slide comparisons of intensities, e.g., clustering, testing.

Normalization methods

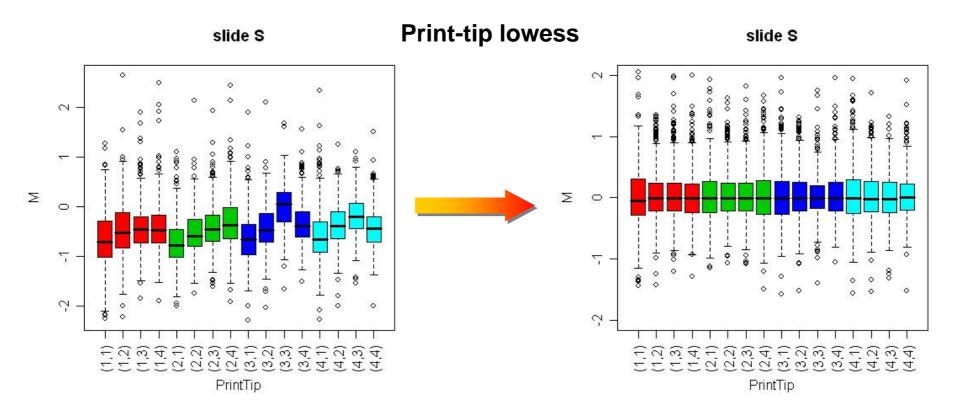
median
loess
print-tip loess
....
variance stabilisation
Quantile
....
Separate-channel (between)


Smyth, G. K., and Speed, T. P. (2003). In: *METHODS: Selecting Candidate Genes from DNA Array Screens: Application to Neuroscience*

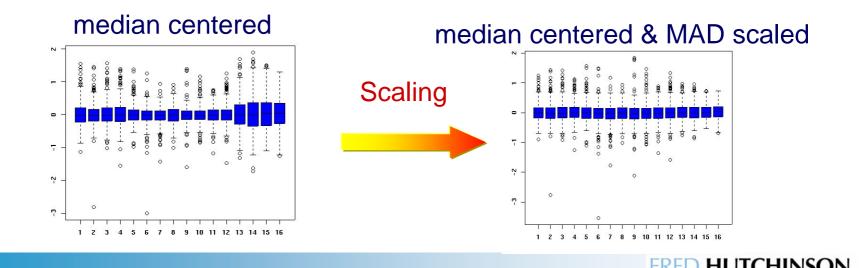


Two channel normalization

Location: centers log-ratios around zero using A and spatial dependent bias


Swirl 93 array: within-print-tip-group loess normalization log-ratio

Two channels normalization



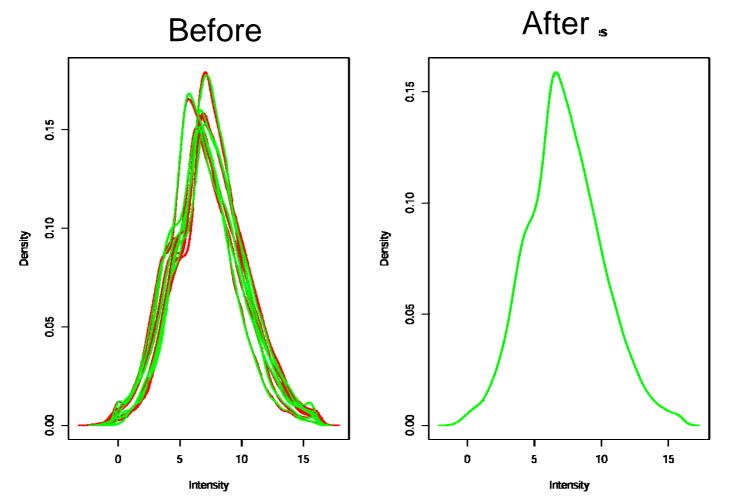
Two channels normalization

Location: centers log-ratios around zero using A and spatial dependent bias

Scale: adjust for different in scale between multiple arrays

A LIFE OF SCIENCE

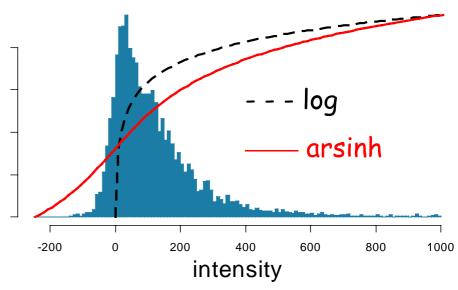
One channel normalization


- As technology improves the spot-to-spot variation is reduced
- Development of normalization techniques that work on the absolute intensities

Ex: quantile normalization (*limma*) variance stabilization (*vsn*)

Quantile Normalization

Bolstand et al.(2003)

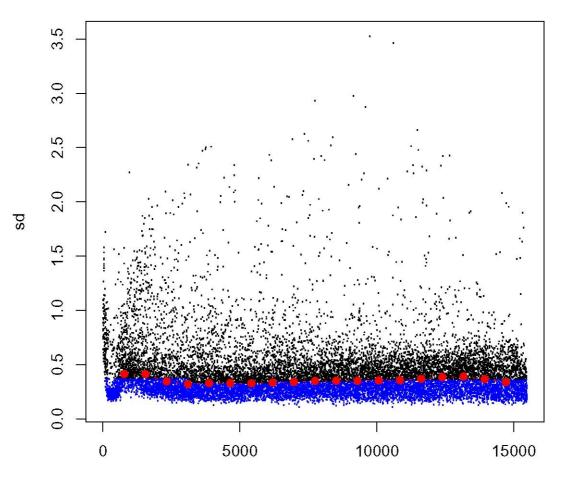


FRED HUTCHINSON CANCER RESEARCH CENTER

Variance Stabilization Transformation

Iog-transformation is replaced by a arsinh transformation

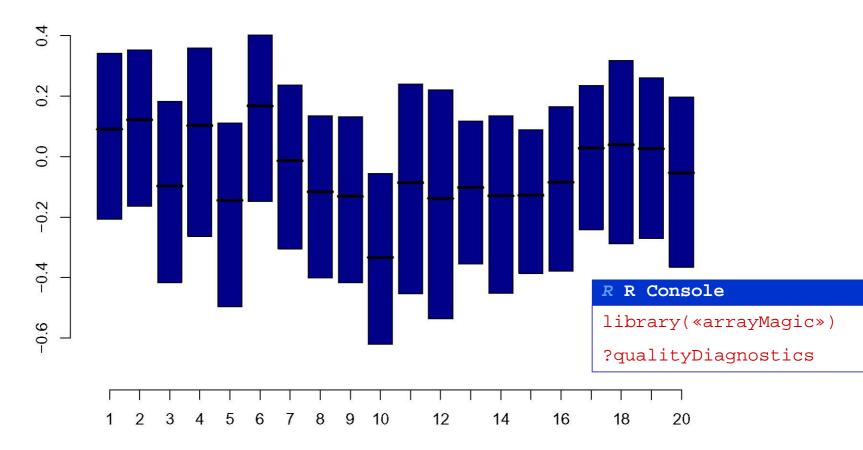
- Meaningful around 0
- Original intensities may be negatives
- Estimation of transformation parameters (location, scale)
 based on Maximun Likelihood
 paradigm
- vsn–normalized data behaves close to the normal distribution

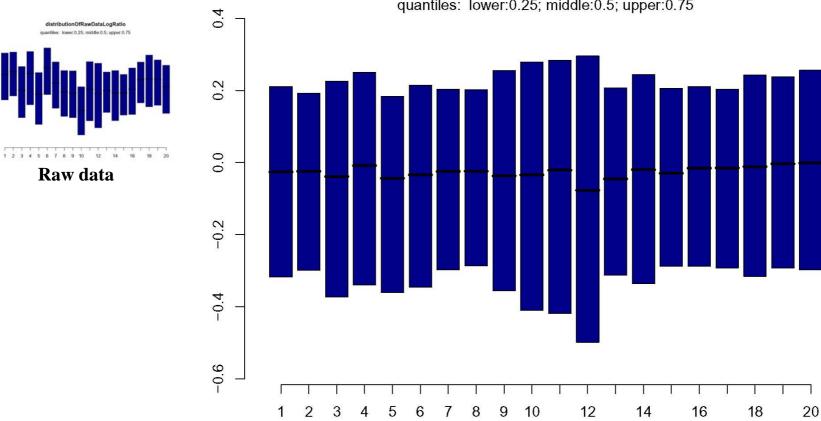


(Huber et al. 2004)

A LIFE OF SCIENCE

Variance Stabilization


rank(mean)

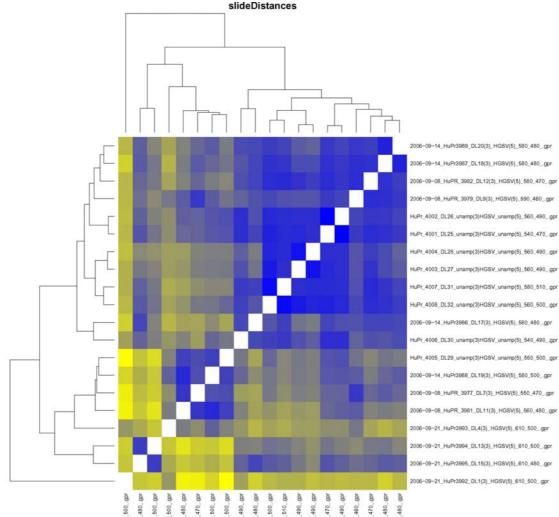

distributionOfRawDataLogRatio

quantiles: lower:0.25; middle:0.5; upper:0.75

distributionOfNormalisedDataLogRatio

quantiles: lower:0.25; middle:0.5; upper:0.75

vsn normalized data



slideDistances 20 19 18 0.40 17 -16 15 0.35 14 13 -12 0.30 11 10 9 25 8 7 6 0.20 5 4 3 -0.15 2 -1 -

92_DL1(3)_

DL15(3)_____

DL11(3)

DL4(3).

77_DL7(3)_

DL19(3)

DL17(3)_

GSV

DL12(3).

GSV

FRED HUTCHINSON CANCER RESEARCH CENTER

Outlier detection (Technical replicates)

- Estimate the coefficient of variation
- Statistical tests (e.g., Dixon test, Grubb's test
- DuplicateCorrelation() from *limma*
- Threshold (e.g., max, mean)

Preprocessing : Summary

For each array:

- Background correction or not
- Normalization (within and/or between)
- Diagnostic plots QA/QC
- Replicates

BioC pacakges:

- arrayQuality
- arrayMagic
- vsn
- limma

. . .

BioC Task View: TwoChannel

🝷 🛶 🚽 🔁 💿 🏠 📀 http://bioconductor.org/packages/1.9/TwoChannel.html

Subview of

• <u>Microarray</u>

27 packages (122 Microarray)

🗸 🔘 Go 💽

_ 8 X

FFR

A LIFE OF SCIENCE

Packages in view

Package	Maintainer	Title
aroma.light	Henrik Bengtsson	Light-weight methods for normalization and visualization of microarray data using only basic R data types
<u>arrayMagic</u>	Andreas Buness	two-colour cDNA array quality control and preprocessing
<u>arrayQuality</u>	A. Paquet	Assessing array quality on spotted arrays
<u>beadarraySNP</u>	Jan Oosting	Normalization and reporting of Illumina SNP bead arrays
bridge	Raphael Gottardo	Bayesian Robust Inference for Differential Gene Expression
convert	Yee Hwa (Jean) Yang	Convert Microarray Data Objects
copa	James W. MacDonald	Functions to perform cancer outlier profile analysis.
<u>daMA</u>	Jobst Landgrebe	Efficient design and analysis of factorial two-colour microarray data
genArise	IFC Development Team	Microarray Analysis tool
GEOquery	Sean Davis	Get data from NCBI Gene Expression Omnibus (GEO)
limma	Gordon Smyth	Linear Models for Microarray Data
<u>limmaGUI</u>	Keith Satterley	GUI for limma package
<u>maDB</u>	Johannes Rainer	Microarray database and utility functions for microarray data analysis.
<u>MANOR</u>	Pierre Neuvial	CGH Micro-Array NORmalization
marray	Yee Hwa (Jean) Yang	Exploratory analysis for two-color spotted microarray data
<u>nnNorm</u>	Tarca Laurentiu	Spatial and intensity based normalization of cDNA microarray data based on robust neural nets
nudge	N. Dean	Normal Uniform Differential Gene Expression detection
<u>OLIN</u>	Matthias Futschik	Optimized local intensity-dependent normalisation of two-color microarrays
<u>OLINgui</u>	Matthias Futschik	Graphical user interface for OLIN
<u>rama</u>	Raphael Gottardo	Robust Analysis of MicroArrays
<u>snapCGH</u>	Mike Smith	Segmentation, normalisation and processing of aCGH data.
spotSegmentation	Chris Fraley	Microarray Spot Segmentation and Gridding for Blocks of Microarray Spots
<u>stepNorm</u>	Yuanyuan Xiao	Stepwise normalization functions for cDNA microarrays
vsn	Wolfgang Huber	Variance stabilization and calibration for microarray data

