Self-Study Exercises

Nishant Gopalakrishnan

Fred Hutchinson Cancer Research Center

17-18 February, 2011

Introduction

The genotype information for the GWAS study is provided to you in a comma
separated file snpData.csv. This data has been converted to NetCDF based
storage (with byte precision) and stored as a file snpData.nc. These files are
available in the extdata folder of the AdvancedR2011Data package.

The exercises that are included in this document are intended to

e Introduce the snp data and explore some of the options in R to read data
from the snpData.csv file.

Get familiar with the application programming interface provided by the
nedf package for accessing NetCDF files and create a script to retrieve
horizontal slices of the data from the NetCDF file snpData.nc.

Create a more useful function getGWAScols that access vertical slices of
data (snps for all samples) from the NetCDF file. This function will be
added to the StudentGWAS package that is being developed as this course
progresses. The function should be general enough to work with NetCDF
files of different sizes.

Create a unit test to verify that the getGWAScols function produces the
correct output.

Exercise 1
The goal of this exercise is to explore some of the functionality available in R
to read large text files in an efficient manner by reading in smaller chunks at a

e The snp data is available as a comma separated file snpData.csv located
in the extdata folder of the AdvancedR2011Data package. Make use of
the function system.file to get a path to the snpData.csv file.

e Use the function scan to read in only the 601th row from the snpData.csv
file.

Solution:

> library(AdvancedR2011Data)

> pth <- system.file("extdata", "snpData.csv", package = "AdvancedR2011Data")
> dat <- scan(pth, what = character(0), sep =",",

+ skip = 600, nlines = 1, quiet = TRUE)

Exercise 2

The goal of this exercise is to create a script to read in all the snps for sample
601 from the NetCDF file snpData.nc and verify that the values read from the
NetCDF file match those in the file snpData.csv. Both files are provided in the
extdata folder of the AdvancedR2011Data package and can be located using
the system.file function. The snpData.nc file contains genotype information
for 1000 samples(rows), 113735 snps(columns) per sample.

e Use the function open.ncdf to open the NetCDF file snpData.nc.

e Use the function get.var.ncdf to read in the data for all snps for the
sample 601 in the file snpData.nc

e Use the scan function to read in the snp data for sample 601 from the
snpData.csv file and compare its performance with that using the get.var.ncdf
function for the snpData.nc file. The system.time function can be used to
compare the performance of the two functions.

e Check if the results are identical using the identical function in R.

e Finally close the NetCDF file using close.ncdf

Solution:

library(ncdf)

st <- system.time

ncFile <- system.file("extdata", "snpData.nc", package = "AdvancedR2011Data")

nc <- open.ncdf (ncFile, write = FALSE)

st(dat <- get.var.ncdf(nc, varid = "snpData", start= c(601,1), count = c(1, 113735)))

vV V.V Vv Vv

user system elapsed
0.016 0.064 0.202

> csvFile <- system.file("extdata", "snpData.csv", package = "AdvancedR2011Data")
st(origDat <- scan(csvFile, what = integer(0), sep =",", skip = 600, nlines = 1,
+ quiet = TRUE))

v

user system elapsed
4.600 0.080 4.721

> identical (as.vector(dat), origDat)

[1] TRUE

> invisible(close.ncdf (nc))

Exercise 3

For most of the software development in the remainder of the course, we will
need to access snp data for all the samples(i.e. along the columns of the NetCDF
file) in smaller chunks(couple of columns at a time) for block processing of data.
To make it convenient to develop code as we go along, a smaller subset of the
data that we have looked at so far has been provided as a NetCDF file in the
extdata folder of the StudentGWAS package. The file small_snpData.nc contains
genotype information of 50 samples, 25 snips per sample.

Our goal in this exercise is to develop a getGWAScols function that retrieves
the genotype information for all the samples for the range of snps specified by
the user.

The function should take three arguments

e nc: An ncdf file pointer obtained by a call to the open.ncdf

e first: A single integer, the start index for the snpData (column) to be
returned

e last: A single integer, the end index for the snpData to be returned.

The function should return a matrix of data type raw having dimensions with
number of rows equal to the number of samples in the small_snpData.nc file and
columns corresponding to the range of input specified by the user. The function
as.raw can be used to coerce the integer data type returned by get.var.ncdf to
the raw data type.

Since the getGWAScols function is going to be included in a package and will
likely encounter NetCDF files of varying sizes, the function has to be written
with general usability in mind. (rather than hard coding number of rows/columns
in the NetCDF file etc.) Additionally, suitable checks need to be put in place
for the input arguments to make sure they are of the correct type and are within
bounds with regard to the dimensions of the NetCDF file.

To help with the function development, a convenience function getNcdfVar-
Summary has been provided in the file utils.R included in the R folder of the
StudentGWAS package. This function takes the NetCDF file pointer returned
by the function open.ncdf as input and returns a list. Elements diml and dim2
of this list returned correspond to the number of rows and number of columns in
the NetCDF file respectively. The getNcdfVarSummary can be pasted into your R
session or the contents of the file utils.R can be sourced into your session using
the source command for this exercise.

Solution:

> library(StudentGWAS)
> getNcdfVarSummary <- StudentGWAS:::getNcdfVarSummary
> getGWAScols <- function(nc, first, last = first)

+{

+ if (!is.numeric(first) || length(first) != 1 || is.na(first))
+ stop("'first' must be a single integer")

+ if (!is.numeric(last) || length(last) != 1 || is.na(last))

+ stop("'last' must be a single integer")

+ ncInfo <- getNcdfVarSummary(nc, "snpData")

+ nrows <- ncInfo$diml

+ ncols <- ncInfo$dim2

+ if (first < 1 || last < first || last > ncols)

+ stop("we need to have 1 <= 'first' <= 'last' <= nb col in NetCDF file")
+ dat <- get.var.ncdf(nc, varid = "snpData", start= c(1,first),
+ count = c(nrows, last - first + 1))

+ structure(as.raw(dat), dim = dim(dat))

+ }

> pth <- system.file("extdata", "small_snpData.nc", package = "StudentGWAS")
> nc <- open.ncdf (pth)

> dat <- getGWAScols(nc, 1, 4)

> invisible(close.ncdf (nc))

Exercise 4

An important part of the software development process is to include unit tests
to verify that the results returned by the functions that we have implemented
are correct. This becomes extremely useful as we try to optimize code as the
development of the package progresses.

The goal of this exercise is to develop a unit test function testGWAScols that
checks if the values returned by the getGWAScols function are correct. The ex-
pected result for a call to the function getGWAScols for all columns and samples in
the file small_snpData.nc has as been provided to you as a file small_snpData.rda
in the data folder of the StudentGWAS package. This data can be loaded into
an R session using the load function.

e Create a unit test function testGWAScols that takes no inputs

e Retrieve the genotype information for all the snips and samples in the file
small_snpData.nc using the getGWAScols function that we developed in our
previous exercise.

e Load the target data from the extdata folder of the StudentGWAS package
using the load function.

e Check if the results match using the identical function.

Solution:

library(ncdf)

testGWAScols <- function()

{
pth <- system.file("extdata", "small_snpData.nc", package = "StudentGWAS")
nc <- open.ncdf(pth, write = FALSE)
ncols <- getNcdfVarSummary(nc, "snpData')$dim2
current <- getGWAScols(nc, 1, ncols)
load(system.file("extdata", "small_snpData.rda", package = "StudentGWAS"))
identical (current, small_snpData)

}

testGWAScols ()

	Introduction

