Back to Mac ARM64 build report for BioC 3.17 |
|
This page was generated on 2023-10-20 09:38:05 -0400 (Fri, 20 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
kjohnson2 | macOS 12.6.1 Monterey | arm64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4347 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 1063/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
limma 3.56.2 (landing page) Gordon Smyth
| kjohnson2 | macOS 12.6.1 Monterey / arm64 | OK | OK | OK | OK | ||||||||
To the developers/maintainers of the limma package: - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: limma |
Version: 3.56.2 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:limma.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings limma_3.56.2.tar.gz |
StartedAt: 2023-10-18 03:41:55 -0400 (Wed, 18 Oct 2023) |
EndedAt: 2023-10-18 03:44:31 -0400 (Wed, 18 Oct 2023) |
EllapsedTime: 155.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: limma.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:limma.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings limma_3.56.2.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/limma.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: aarch64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.6.7 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘limma/DESCRIPTION’ ... OK * this is package ‘limma’ version ‘3.56.2’ * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘limma’ can be installed ... OK * used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’ * used SDK: ‘MacOSX11.3.sdk’ * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking startup messages can be suppressed ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking compiled code ... NOTE Note: information on .o files is not available * checking sizes of PDF files under ‘inst/doc’ ... OK * checking installed files from ‘inst/doc’ ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed alias2Symbol 5.834 0.284 9.443 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘limma-Tests.R’ Comparing ‘limma-Tests.Rout’ to ‘limma-Tests.Rout.save’ ...504,509c504,509 < Min. :-5.88044 Min. :-5.58404 < 1st Qu.:-1.18483 1st Qu.:-1.55410 < Median :-0.21632 Median : 0.06175 < Mean : 0.03487 Mean :-0.04246 < 3rd Qu.: 1.49669 3rd Qu.: 1.44880 < Max. : 7.07324 Max. : 6.28996 --- > Min. :-5.8801 Min. :-5.66985 > 1st Qu.:-1.1850 1st Qu.:-1.57014 > Median :-0.2164 Median : 0.04823 > Mean : 0.0349 Mean :-0.05481 > 3rd Qu.: 1.4964 3rd Qu.: 1.45113 > Max. : 7.0751 Max. : 6.19744 520,524c520,524 < [1,] -1.1689588 4.5652846 < [2,] 0.8971363 0.3521874 < [3,] 2.8247439 1.4446712 < [4,] -1.8533240 0.3788367 < [5,] 1.9158459 -5.5110982 --- > [1,] -1.1669590 4.5558123 > [2,] 0.8969743 0.3296544 > [3,] 2.8245754 1.4249960 > [4,] -1.8532747 0.4804851 > [5,] 1.9159023 -5.5087631 535,539c535,539 < [1,] -1.1689588 4.5652846 < [2,] 0.8971363 0.3521874 < [3,] 2.8247439 1.4446712 < [4,] -1.8533240 0.3788367 < [5,] 1.9158459 -5.5110982 --- > [1,] -1.1669590 4.5558123 > [2,] 0.8969743 0.3296544 > [3,] 2.8245754 1.4249960 > [4,] -1.8532747 0.4804851 > [5,] 1.9159023 -5.5087631 871,872c871,872 < mu+alpha 0.3333333 3.333333e-01 1.232595e-32 < mu+beta -0.3333333 1.232595e-32 3.333333e-01 --- > mu+alpha 0.3333333 3.333333e-01 1.110223e-16 > mu+beta -0.3333333 1.110223e-16 3.333333e-01 OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/limma.Rcheck/00check.log’ for details.
limma.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL limma ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library’ * installing *source* package ‘limma’ ... ** using staged installation ** libs using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’ using SDK: ‘MacOSX11.3.sdk’ clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c init.c -o init.o clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c normexp.c -o normexp.o clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c weighted_lowess.c -o weighted_lowess.o clang -arch arm64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -single_module -multiply_defined suppress -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o limma.so init.o normexp.o weighted_lowess.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation installing to /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/00LOCK-limma/00new/limma/libs ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** checking absolute paths in shared objects and dynamic libraries ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (limma)
limma.Rcheck/tests/limma-Tests.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(limma) > options(warnPartialMatchArgs=TRUE,warnPartialMatchAttr=TRUE,warnPartialMatchDollar=TRUE,width=120) > > set.seed(0); u <- runif(100) > > ### strsplit2 > > x <- c("ab;cd;efg","abc;def","z","") > strsplit2(x,split=";") [,1] [,2] [,3] [1,] "ab" "cd" "efg" [2,] "abc" "def" "" [3,] "z" "" "" [4,] "" "" "" > > ### removeext > > removeExt(c("slide1.spot","slide.2.spot")) [1] "slide1" "slide.2" > removeExt(c("slide1.spot","slide")) [1] "slide1.spot" "slide" > > ### printorder > > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4) $printorder [1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 [29] 26 25 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1 12 11 [57] 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 [85] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 [113] 14 13 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37 48 47 [141] 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 [169] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 [197] 50 49 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73 84 83 [225] 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55 [253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 [281] 86 85 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61 72 71 [309] 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 [337] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 [365] 74 73 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 102 101 100 99 98 97 108 107 [393] 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127 [421] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 [449] 110 109 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133 144 143 [477] 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 [505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 [533] 98 97 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 132 131 [561] 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 150 149 148 147 146 145 156 155 154 153 152 151 [589] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 [617] 182 181 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 168 167 [645] 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187 [673] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 [701] 170 169 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145 156 155 [729] 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 [757] 186 185 184 183 182 181 192 191 190 189 188 187 $plate [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [58] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [115] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [172] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [229] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [286] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [343] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [400] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [457] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [514] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [571] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [628] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [685] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [742] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $plate.r [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 [39] 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 [77] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [115] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 [153] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [191] 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 [229] 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 [267] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 [305] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 [343] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 [381] 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 [419] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 [457] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 [495] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 9 9 9 [533] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 [571] 9 9 9 9 9 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 [609] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 [647] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 [685] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 [723] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 [761] 13 13 13 13 13 13 13 13 $plate.c [1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 [39] 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 [77] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 [115] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 [153] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 [191] 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 [229] 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 [267] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 [305] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 [343] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 [381] 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 [419] 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 [457] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 [495] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 [533] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 [571] 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 [609] 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 [647] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 [685] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 [723] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 [761] 19 19 24 24 23 23 22 22 $plateposition [1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05" "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" [15] "p1D08" "p1D08" "p1D07" "p1D07" "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14" "p1D14" [29] "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16" "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" [43] "p1D24" "p1D24" "p1D23" "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01" "p1C06" "p1C06" [57] "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08" "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" [71] "p1C10" "p1C10" "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17" "p1C17" "p1C16" "p1C16" [85] "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19" "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" [99] "p1B02" "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04" "p1B09" "p1B09" "p1B08" "p1B08" [113] "p1B07" "p1B07" "p1B12" "p1B12" "p1B11" "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13" [127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20" "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" [141] "p1B23" "p1B23" "p1B22" "p1B22" "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05" "p1A05" [155] "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07" "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" [169] "p1A15" "p1A15" "p1A14" "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16" "p1A21" "p1A21" [183] "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23" "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" [197] "p1H01" "p1H01" "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08" "p1H08" "p1H07" "p1H07" [211] "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10" "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" [225] "p1H17" "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19" "p1H24" "p1H24" "p1H23" "p1H23" [239] "p1H22" "p1H22" "p1G03" "p1G03" "p1G02" "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04" [253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11" "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" [267] "p1G14" "p1G14" "p1G13" "p1G13" "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20" "p1G20" [281] "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22" "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" [295] "p1F06" "p1F06" "p1F05" "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07" "p1F12" "p1F12" [309] "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14" "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" [323] "p1F16" "p1F16" "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23" "p1F23" "p1F22" "p1F22" [337] "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01" "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" [351] "p1E08" "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10" "p1E15" "p1E15" "p1E14" "p1E14" [365] "p1E13" "p1E13" "p1E18" "p1E18" "p1E17" "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19" [379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02" "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" [393] "p1L05" "p1L05" "p1L04" "p1L04" "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11" "p1L11" [407] "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13" "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" [421] "p1L21" "p1L21" "p1L20" "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22" "p1K03" "p1K03" [435] "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05" "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" [449] "p1K07" "p1K07" "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14" "p1K14" "p1K13" "p1K13" [463] "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16" "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" [477] "p1K23" "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01" "p1J06" "p1J06" "p1J05" "p1J05" [491] "p1J04" "p1J04" "p1J09" "p1J09" "p1J08" "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10" [505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17" "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" [519] "p1J20" "p1J20" "p1J19" "p1J19" "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02" "p1I02" [533] "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04" "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" [547] "p1I12" "p1I12" "p1I11" "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13" "p1I18" "p1I18" [561] "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20" "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" [575] "p1I22" "p1I22" "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05" "p1P05" "p1P04" "p1P04" [589] "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07" "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" [603] "p1P14" "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16" "p1P21" "p1P21" "p1P20" "p1P20" [617] "p1P19" "p1P19" "p1P24" "p1P24" "p1P23" "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01" [631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08" "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" [645] "p1O11" "p1O11" "p1O10" "p1O10" "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17" "p1O17" [659] "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19" "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" [673] "p1N03" "p1N03" "p1N02" "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04" "p1N09" "p1N09" [687] "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11" "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" [701] "p1N13" "p1N13" "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20" "p1N20" "p1N19" "p1N19" [715] "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22" "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" [729] "p1M05" "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07" "p1M12" "p1M12" "p1M11" "p1M11" [743] "p1M10" "p1M10" "p1M15" "p1M15" "p1M14" "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16" [757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23" "p1M23" "p1M22" "p1M22" > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6)) $printorder [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 [39] 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 [77] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [115] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 [153] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 [191] 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 [229] 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [267] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [305] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 [343] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 [381] 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 [419] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 [457] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 [495] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 [533] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 [571] 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 [609] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [647] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 [685] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 [723] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 [761] 41 42 43 44 45 46 47 48 $plate [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 [58] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [115] 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 [172] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 [229] 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [286] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 [343] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [400] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [457] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 [514] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [571] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 [628] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 [685] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [742] 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $plate.r [1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 [39] 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 [77] 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 [115] 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 [153] 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 [191] 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 [229] 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 [267] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 [305] 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 [343] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 [381] 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 [419] 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 [457] 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 [495] 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 [533] 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 [571] 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 [609] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 [647] 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 [685] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 [723] 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 [761] 9 9 13 13 13 13 13 13 $plate.c [1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 [39] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 [77] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 [115] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 [153] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 [191] 17 21 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 [229] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 [267] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 [305] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 [343] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 [381] 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 [419] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 [457] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 [495] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 [533] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 [571] 3 7 11 15 19 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 [609] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 [647] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 [685] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 [723] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 [761] 20 24 4 8 12 16 20 24 $plateposition [1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09" "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" [15] "p1L09" "p1L13" "p1L17" "p1L21" "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09" "p2D13" [29] "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21" "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" [43] "p2P01" "p2P05" "p2P09" "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21" "p1G01" "p1G05" [57] "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09" "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" [71] "p1O17" "p1O21" "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09" "p2G13" "p2G17" "p2G21" [85] "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21" "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" [99] "p1B09" "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21" "p1J01" "p1J05" "p1J09" "p1J13" [113] "p1J17" "p1J21" "p1N01" "p1N05" "p1N09" "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21" [127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09" "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" [141] "p2N09" "p2N13" "p2N17" "p2N21" "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09" "p1E13" [155] "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21" "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" [169] "p2A01" "p2A05" "p2A09" "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21" "p2I01" "p2I05" [183] "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09" "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" [197] "p1D18" "p1D22" "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10" "p1L14" "p1L18" "p1L22" [211] "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22" "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" [225] "p2H10" "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22" "p2P02" "p2P06" "p2P10" "p2P14" [239] "p2P18" "p2P22" "p1C02" "p1C06" "p1C10" "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22" [253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10" "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" [267] "p2C10" "p2C14" "p2C18" "p2C22" "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10" "p2K14" [281] "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22" "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" [295] "p1F02" "p1F06" "p1F10" "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22" "p1N02" "p1N06" [309] "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10" "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" [323] "p2F18" "p2F22" "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10" "p2N14" "p2N18" "p2N22" [337] "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22" "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" [351] "p1I10" "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22" "p2A02" "p2A06" "p2A10" "p2A14" [365] "p2A18" "p2A22" "p2E02" "p2E06" "p2E10" "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22" [379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11" "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" [393] "p1H11" "p1H15" "p1H19" "p1H23" "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11" "p1P15" [407] "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23" "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" [421] "p2L03" "p2L07" "p2L11" "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23" "p1C03" "p1C07" [435] "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11" "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" [449] "p1K19" "p1K23" "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11" "p2C15" "p2C19" "p2C23" [463] "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23" "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" [477] "p2O11" "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23" "p1F03" "p1F07" "p1F11" "p1F15" [491] "p1F19" "p1F23" "p1J03" "p1J07" "p1J11" "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23" [505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11" "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" [519] "p2J11" "p2J15" "p2J19" "p2J23" "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11" "p1A15" [533] "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23" "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" [547] "p1M03" "p1M07" "p1M11" "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23" "p2E03" "p2E07" [561] "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11" "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" [575] "p2M19" "p2M23" "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12" "p1H16" "p1H20" "p1H24" [589] "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24" "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" [603] "p2D12" "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24" "p2L04" "p2L08" "p2L12" "p2L16" [617] "p2L20" "p2L24" "p2P04" "p2P08" "p2P12" "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24" [631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12" "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" [645] "p1O12" "p1O16" "p1O20" "p1O24" "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12" "p2G16" [659] "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24" "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" [673] "p1B04" "p1B08" "p1B12" "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24" "p1J04" "p1J08" [687] "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12" "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" [701] "p2B20" "p2B24" "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12" "p2J16" "p2J20" "p2J24" [715] "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24" "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" [729] "p1E12" "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24" "p1M04" "p1M08" "p1M12" "p1M16" [743] "p1M20" "p1M24" "p2A04" "p2A08" "p2A12" "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24" [757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12" "p2M16" "p2M20" "p2M24" > > ### merge.rglist > > R <- G <- matrix(11:14,4,2) > rownames(R) <- rownames(G) <- c("a","a","b","c") > RG1 <- new("RGList",list(R=R,G=G)) > R <- G <- matrix(21:24,4,2) > rownames(R) <- rownames(G) <- c("b","a","a","c") > RG2 <- new("RGList",list(R=R,G=G)) > merge(RG1,RG2) An object of class "RGList" $R [,1] [,2] [,3] [,4] a 11 11 22 22 a 12 12 23 23 b 13 13 21 21 c 14 14 24 24 $G [,1] [,2] [,3] [,4] a 11 11 22 22 a 12 12 23 23 b 13 13 21 21 c 14 14 24 24 > merge(RG2,RG1) An object of class "RGList" $R [,1] [,2] [,3] [,4] b 21 21 13 13 a 22 22 11 11 a 23 23 12 12 c 24 24 14 14 $G [,1] [,2] [,3] [,4] b 21 21 13 13 a 22 22 11 11 a 23 23 12 12 c 24 24 14 14 > > ### background correction > > RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2))) > backgroundCorrect(RG) An object of class "RGList" $R [,1] [1,] -1 [2,] 0 [3,] 1 [4,] 2 $G [,1] [1,] -1 [2,] 0 [3,] 1 [4,] 2 > backgroundCorrect(RG, method="half") An object of class "RGList" $R [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 $G [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 > backgroundCorrect(RG, method="minimum") An object of class "RGList" $R [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 $G [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 > backgroundCorrect(RG, offset=5) An object of class "RGList" $R [,1] [1,] 4 [2,] 5 [3,] 6 [4,] 7 $G [,1] [1,] 4 [2,] 5 [3,] 6 [4,] 7 > > ### loessFit > > x <- 1:100 > y <- rnorm(100) > out <- loessFit(y,x) > f1 <- quantile(out$fitted) > r1 <- quantile(out$residuals) > w <- rep(1,100) > w[1:50] <- 0.5 > out <- loessFit(y,x,weights=w,method="weightedLowess") > f2 <- quantile(out$fitted) > r2 <- quantile(out$residuals) > out <- loessFit(y,x,weights=w,method="locfit") > f3 <- quantile(out$fitted) > r3 <- quantile(out$residuals) > out <- loessFit(y,x,weights=w,method="loess") > f4 <- quantile(out$fitted) > r4 <- quantile(out$residuals) > w <- rep(1,100) > w[2*(1:50)] <- 0 > out <- loessFit(y,x,weights=w,method="weightedLowess") > f5 <- quantile(out$fitted) > r5 <- quantile(out$residuals) > data.frame(f1,f2,f3,f4,f5) f1 f2 f3 f4 f5 0% -0.78835384 -0.687432210 -0.78957137 -0.76756060 -0.63778292 25% -0.18340154 -0.179683572 -0.18979269 -0.16773223 -0.38064318 50% -0.11492924 -0.114796040 -0.12087983 -0.07185314 -0.15971879 75% 0.01507921 -0.008145125 -0.01857508 0.04030634 0.07839396 100% 0.21653837 0.145106033 0.19214597 0.21417361 0.51836274 > data.frame(r1,r2,r3,r4,r5) r1 r2 r3 r4 r5 0% -2.04434053 -2.05132680 -2.02404318 -2.101242874 -2.22280633 25% -0.59321065 -0.57200209 -0.58975649 -0.577887481 -0.71037756 50% 0.05874864 0.04514326 0.08335198 -0.001769806 0.06785517 75% 0.56010750 0.55124530 0.57618740 0.561454370 0.65383830 100% 2.57936026 2.64549799 2.57549257 2.402324533 2.28648835 > > ### normalizeWithinArrays > > RG <- new("RGList",list()) > RG$R <- matrix(rexp(100*2),100,2) > RG$G <- matrix(rexp(100*2),100,2) > RG$Rb <- matrix(rnorm(100*2,sd=0.02),100,2) > RG$Gb <- matrix(rnorm(100*2,sd=0.02),100,2) > RGb <- backgroundCorrect(RG,method="normexp",normexp.method="saddle") Array 1 corrected Array 2 corrected Array 1 corrected Array 2 corrected > summary(cbind(RGb$R,RGb$G)) V1 V2 V3 V4 Min. :0.01626 Min. :0.01213 Min. :0.0000 Min. :0.0000 1st Qu.:0.35497 1st Qu.:0.29133 1st Qu.:0.2745 1st Qu.:0.3953 Median :0.71793 Median :0.70294 Median :0.6339 Median :0.8223 Mean :0.90184 Mean :1.00122 Mean :0.9454 Mean :1.1324 3rd Qu.:1.16891 3rd Qu.:1.33139 3rd Qu.:1.4059 3rd Qu.:1.4221 Max. :4.56267 Max. :6.37947 Max. :5.0486 Max. :6.6295 > RGb <- backgroundCorrect(RG,method="normexp",normexp.method="mle") Array 1 corrected Array 2 corrected Array 1 corrected Array 2 corrected > summary(cbind(RGb$R,RGb$G)) V1 V2 V3 V4 Min. :0.01701 Min. :0.01255 Min. :0.0000 Min. :0.0000 1st Qu.:0.35423 1st Qu.:0.29118 1st Qu.:0.2745 1st Qu.:0.3953 Median :0.71719 Median :0.70280 Median :0.6339 Median :0.8223 Mean :0.90118 Mean :1.00110 Mean :0.9454 Mean :1.1324 3rd Qu.:1.16817 3rd Qu.:1.33124 3rd Qu.:1.4059 3rd Qu.:1.4221 Max. :4.56193 Max. :6.37932 Max. :5.0486 Max. :6.6295 > MA <- normalizeWithinArrays(RGb,method="loess") > summary(MA$M) V1 V2 Min. :-5.88044 Min. :-5.58404 1st Qu.:-1.18483 1st Qu.:-1.55410 Median :-0.21632 Median : 0.06175 Mean : 0.03487 Mean :-0.04246 3rd Qu.: 1.49669 3rd Qu.: 1.44880 Max. : 7.07324 Max. : 6.28996 > #MA <- normalizeWithinArrays(RG[,1:2], mouse.setup, method="robustspline") > #MA$M[1:5,] > #MA <- normalizeWithinArrays(mouse.data, mouse.setup) > #MA$M[1:5,] > > ### normalizeBetweenArrays > > MA2 <- normalizeBetweenArrays(MA,method="scale") > MA$M[1:5,] [,1] [,2] [1,] -1.1689588 4.5652846 [2,] 0.8971363 0.3521874 [3,] 2.8247439 1.4446712 [4,] -1.8533240 0.3788367 [5,] 1.9158459 -5.5110982 > MA$A[1:5,] [,1] [,2] [1,] -2.48465011 -2.4041550 [2,] -0.79230447 -0.9002250 [3,] -0.76237200 0.2071043 [4,] 0.09281027 -1.3880965 [5,] 0.22385828 -3.0855818 > MA2 <- normalizeBetweenArrays(MA,method="quantile") > MA$M[1:5,] [,1] [,2] [1,] -1.1689588 4.5652846 [2,] 0.8971363 0.3521874 [3,] 2.8247439 1.4446712 [4,] -1.8533240 0.3788367 [5,] 1.9158459 -5.5110982 > MA$A[1:5,] [,1] [,2] [1,] -2.48465011 -2.4041550 [2,] -0.79230447 -0.9002250 [3,] -0.76237200 0.2071043 [4,] 0.09281027 -1.3880965 [5,] 0.22385828 -3.0855818 > > ### unwrapdups > > M <- matrix(1:12,6,2) > unwrapdups(M,ndups=1) [,1] [,2] [1,] 1 7 [2,] 2 8 [3,] 3 9 [4,] 4 10 [5,] 5 11 [6,] 6 12 > unwrapdups(M,ndups=2) [,1] [,2] [,3] [,4] [1,] 1 2 7 8 [2,] 3 4 9 10 [3,] 5 6 11 12 > unwrapdups(M,ndups=3) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 1 2 3 7 8 9 [2,] 4 5 6 10 11 12 > unwrapdups(M,ndups=2,spacing=3) [,1] [,2] [,3] [,4] [1,] 1 4 7 10 [2,] 2 5 8 11 [3,] 3 6 9 12 > > ### trigammaInverse > > trigammaInverse(c(1e-6,NA,5,1e6)) [1] 1.000000e+06 NA 4.961687e-01 1.000001e-03 > > ### lmFit, eBayes, topTable > > M <- matrix(rnorm(10*6,sd=0.3),10,6) > rownames(M) <- LETTERS[1:10] > M[1,1:3] <- M[1,1:3] + 2 > design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1)) > contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1)) > fit <- lmFit(M,design) > fit2 <- eBayes(contrasts.fit(fit,contrasts=contrast.matrix)) > topTable(fit2) First3 Last3 Last3.First3 AveExpr F P.Value adj.P.Val A 1.77602021 0.06025114 -1.71576906 0.918135675 50.91471061 7.727200e-23 7.727200e-22 D -0.05454069 0.39127869 0.44581938 0.168369004 2.51638838 8.075072e-02 3.758388e-01 F -0.16249607 -0.33009728 -0.16760121 -0.246296671 2.18256779 1.127516e-01 3.758388e-01 G 0.30852468 -0.06873462 -0.37725930 0.119895035 1.61088775 1.997102e-01 4.992756e-01 H -0.16942269 0.20578118 0.37520387 0.018179245 1.14554368 3.180510e-01 6.361019e-01 J 0.21417623 0.07074940 -0.14342683 0.142462814 0.82029274 4.403027e-01 7.338379e-01 C -0.12236781 0.15095948 0.27332729 0.014295836 0.60885003 5.439761e-01 7.382414e-01 B -0.11982833 0.13529287 0.25512120 0.007732271 0.52662792 5.905931e-01 7.382414e-01 E 0.01897934 0.10434934 0.08536999 0.061664340 0.18136849 8.341279e-01 9.268088e-01 I -0.04720963 0.03996397 0.08717360 -0.003622829 0.06168476 9.401792e-01 9.401792e-01 > topTable(fit2,coef=3,resort.by="logFC") logFC AveExpr t P.Value adj.P.Val B D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 > topTable(fit2,coef=3,resort.by="p") logFC AveExpr t P.Value adj.P.Val B A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 > topTable(fit2,coef=3,sort.by="logFC",resort.by="t") logFC AveExpr t P.Value adj.P.Val B D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 > topTable(fit2,coef=3,resort.by="B") logFC AveExpr t P.Value adj.P.Val B A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 > topTable(fit2,coef=3,lfc=1) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p.value=0.2) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p.value=0.2,lfc=0.5) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p.value=0.2,lfc=0.5,sort.by="none") logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > contrasts.fit(fit[1:3,],contrast.matrix[,0]) An object of class "MArrayLM" $coefficients A B C $rank [1] 2 $assign NULL $qr $qr First3Arrays Last3Arrays [1,] -1.7320508 0.0000000 [2,] 0.5773503 -1.7320508 [3,] 0.5773503 0.0000000 [4,] 0.0000000 0.5773503 [5,] 0.0000000 0.5773503 [6,] 0.0000000 0.5773503 $qraux [1] 1.57735 1.00000 $pivot [1] 1 2 $tol [1] 1e-07 $rank [1] 2 $df.residual [1] 4 4 4 $sigma A B C 0.3299787 0.3323336 0.2315815 $cov.coefficients <0 x 0 matrix> $stdev.unscaled A B C $pivot [1] 1 2 $Amean A B C 0.918135675 0.007732271 0.014295836 $method [1] "ls" $design First3Arrays Last3Arrays [1,] 1 0 [2,] 1 0 [3,] 1 0 [4,] 0 1 [5,] 0 1 [6,] 0 1 $contrasts [1,] [2,] > fit$coefficients[1,1] <- NA > contrasts.fit(fit[1:3,],contrast.matrix)$coefficients First3 Last3 Last3-First3 A NA 0.06025114 NA B -0.1198283 0.13529287 0.2551212 C -0.1223678 0.15095948 0.2733273 > > designlist <- list(Null=matrix(1,6,1),Two=design,Three=cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1))) > out <- selectModel(M,designlist) > table(out$pref) Null Two Three 5 3 2 > > ### marray object > > #suppressMessages(suppressWarnings(gotmarray <- require(marray,quietly=TRUE))) > #if(gotmarray) { > # data(swirl) > # snorm = maNorm(swirl) > # fit <- lmFit(snorm, design = c(1,-1,-1,1)) > # fit <- eBayes(fit) > # topTable(fit,resort.by="AveExpr") > #} > > ### duplicateCorrelation > > cor.out <- duplicateCorrelation(M) > cor.out$consensus.correlation [1] -0.09290714 > cor.out$atanh.correlations [1] -0.4419130 0.4088967 -0.1964978 -0.6093769 0.3730118 > > ### gls.series > > fit <- gls.series(M,design,correlation=cor.out$cor) > fit$coefficients First3Arrays Last3Arrays [1,] 0.82809594 0.09777201 [2,] -0.08845425 0.27111909 [3,] -0.07175836 -0.11287397 [4,] 0.06955100 0.06852328 [5,] 0.08348330 0.05535668 > fit$stdev.unscaled First3Arrays Last3Arrays [1,] 0.3888215 0.3888215 [2,] 0.3888215 0.3888215 [3,] 0.3888215 0.3888215 [4,] 0.3888215 0.3888215 [5,] 0.3888215 0.3888215 > fit$sigma [1] 0.7630059 0.2152728 0.3350370 0.3227781 0.3405473 > fit$df.residual [1] 10 10 10 10 10 > > ### mrlm > > fit <- mrlm(M,design) Warning message: In rlm.default(x = X, y = y, weights = w, ...) : 'rlm' failed to converge in 20 steps > fit$coefficients First3Arrays Last3Arrays A 1.75138894 0.06025114 B -0.11982833 0.10322039 C -0.09302502 0.15095948 D -0.05454069 0.33700045 E 0.07927938 0.10434934 F -0.16249607 -0.34010852 G 0.30852468 -0.06873462 H -0.16942269 0.24392984 I -0.04720963 0.03996397 J 0.21417623 -0.05679272 > fit$stdev.unscaled First3Arrays Last3Arrays A 0.5933418 0.5773503 B 0.5773503 0.6096497 C 0.6017444 0.5773503 D 0.5773503 0.6266021 E 0.6307703 0.5773503 F 0.5773503 0.5846707 G 0.5773503 0.5773503 H 0.5773503 0.6544564 I 0.5773503 0.5773503 J 0.5773503 0.6689776 > fit$sigma [1] 0.2894294 0.2679396 0.2090236 0.1461395 0.2309018 0.2827476 0.2285945 0.2267556 0.3537469 0.2172409 > fit$df.residual [1] 4 4 4 4 4 4 4 4 4 4 > > # Similar to Mette Langaas 19 May 2004 > set.seed(123) > narrays <- 9 > ngenes <- 5 > mu <- 0 > alpha <- 2 > beta <- -2 > epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays) > X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1)) > dimnames(X) <- list(1:9,c("mu","alpha","beta")) > yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3] > ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon > ymat[5,1:2] <- NA > fit <- lmFit(ymat,design=X) > test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1)) > dimnames(test.contr) <- list(c("mu","alpha","beta"),c("alpha-beta","mu+alpha","mu+beta")) > fit2 <- contrasts.fit(fit,contrasts=test.contr) > eBayes(fit2) An object of class "MArrayLM" $coefficients alpha-beta mu+alpha mu+beta [1,] 3.537333 1.677465 -1.859868 [2,] 4.355578 2.372554 -1.983024 [3,] 3.197645 1.053584 -2.144061 [4,] 2.697734 1.611443 -1.086291 [5,] 3.502304 2.051995 -1.450309 $stdev.unscaled alpha-beta mu+alpha mu+beta [1,] 0.8164966 0.5773503 0.5773503 [2,] 0.8164966 0.5773503 0.5773503 [3,] 0.8164966 0.5773503 0.5773503 [4,] 0.8164966 0.5773503 0.5773503 [5,] 1.1547005 0.8368633 0.8368633 $sigma [1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509 $df.residual [1] 6 6 6 6 4 $cov.coefficients alpha-beta mu+alpha mu+beta alpha-beta 0.6666667 3.333333e-01 -3.333333e-01 mu+alpha 0.3333333 3.333333e-01 1.232595e-32 mu+beta -0.3333333 1.232595e-32 3.333333e-01 $pivot [1] 1 2 3 $rank [1] 3 $Amean [1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593 $method [1] "ls" $design mu alpha beta 1 1 0 0 2 1 0 0 3 1 0 0 4 1 1 0 5 1 1 0 6 1 1 0 7 1 0 1 8 1 0 1 9 1 0 1 $contrasts alpha-beta mu+alpha mu+beta mu 0 1 1 alpha 1 1 0 beta -1 0 1 $df.prior [1] 9.306153 $s2.prior [1] 0.923179 $var.prior [1] 17.33142 17.33142 12.26855 $proportion [1] 0.01 $s2.post [1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980 $t alpha-beta mu+alpha mu+beta [1,] 3.847656 2.580411 -2.860996 [2,] 6.637308 5.113018 -4.273553 [3,] 3.692066 1.720376 -3.500994 [4,] 3.464003 2.926234 -1.972606 [5,] 3.175181 2.566881 -1.814221 $df.total [1] 15.30615 15.30615 15.30615 15.30615 13.30615 $p.value alpha-beta mu+alpha mu+beta [1,] 1.529450e-03 0.0206493481 0.0117123495 [2,] 7.144893e-06 0.0001195844 0.0006385076 [3,] 2.109270e-03 0.1055117477 0.0031325769 [4,] 3.381970e-03 0.0102514264 0.0668844448 [5,] 7.124839e-03 0.0230888584 0.0922478630 $lods alpha-beta mu+alpha mu+beta [1,] -1.013417 -3.702133 -3.0332393 [2,] 3.981496 1.283349 -0.2615911 [3,] -1.315036 -5.168621 -1.7864101 [4,] -1.757103 -3.043209 -4.6191869 [5,] -2.257358 -3.478267 -4.5683738 $F [1] 7.421911 22.203107 7.608327 6.227010 5.060579 $F.p.value [1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02 > > ### uniquegenelist > > uniquegenelist(letters[1:8],ndups=2) [1] "a" "c" "e" "g" > uniquegenelist(letters[1:8],ndups=2,spacing=2) [1] "a" "b" "e" "f" > > ### classifyTests > > tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE) > classifyTestsF(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 0 0 [3,] -1 -1 1 [4,] 0 0 0 > classifyTestsF(tstat,fstat.only=TRUE) [1] 8.333333 2.083333 4.000000 1.000000 attr(,"df1") [1] 3 attr(,"df2") [1] Inf > limma:::.classifyTestsP(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 1 0 [3,] 0 0 0 [4,] 0 0 0 > > ### avereps > > x <- matrix(rnorm(8*3),8,3) > colnames(x) <- c("S1","S2","S3") > rownames(x) <- c("b","a","a","c","c","b","b","b") > avereps(x) S1 S2 S3 b -0.2353018 0.5220094 0.2302895 a -0.4347701 0.6453498 -0.6758914 c 0.3482980 -0.4820695 -0.3841313 > > ### roast > > y <- matrix(rnorm(100*4),100,4) > sigma <- sqrt(2/rchisq(100,df=7)) > y <- y*sigma > design <- cbind(Intercept=1,Group=c(0,0,1,1)) > iset1 <- 1:5 > y[iset1,3:4] <- y[iset1,3:4]+3 > iset2 <- 6:10 > roast(y=y,iset1,design,contrast=2) Active.Prop P.Value Down 0 0.997999500 Up 1 0.002250563 UpOrDown 1 0.004500000 Mixed 1 0.004500000 > roast(y=y,iset1,design,contrast=2,array.weights=c(0.5,1,0.5,1)) Active.Prop P.Value Down 0 0.998749687 Up 1 0.001500375 UpOrDown 1 0.003000000 Mixed 1 0.003000000 > w <- matrix(runif(100*4),100,4) > roast(y=y,iset1,design,contrast=2,weights=w) Active.Prop P.Value Down 0 0.996999250 Up 1 0.003250813 UpOrDown 1 0.006500000 Mixed 1 0.006500000 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,gene.weights=runif(100)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.0055 0.0105 0.0055 0.0105 set2 5 0 0 Up 0.2025 0.2025 0.4715 0.4715 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,array.weights=c(0.5,1,0.5,1)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.0050 0.0095 0.005 0.0095 set2 5 0 0 Up 0.6845 0.6845 0.642 0.6420 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1.0 Up 0.0030 0.0055 0.003 0.0055 set2 5 0 0.2 Down 0.9615 0.9615 0.496 0.4960 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1.0 Up 0.0025 0.0045 0.0025 0.0045 set2 5 0 0.2 Down 0.8930 0.8930 0.4380 0.4380 > fry(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 Up 0.001568924 0.003137848 0.0001156464 0.0002312929 set2 5 Down 0.932105219 0.932105219 0.4315499569 0.4315499569 > rownames(y) <- paste0("Gene",1:100) > iset1A <- rownames(y)[1:5] > fry(y=y,index=iset1A,design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes Direction PValue PValue.Mixed set1 5 Up 0.001568924 0.0001156464 > > ### camera > > camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1),allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue set1 5 -0.2481655 Up 0.001050253 > camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue FDR set1 5 -0.2481655 Up 0.0009047749 0.00180955 set2 5 0.1719094 Down 0.9068364378 0.90683644 > camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1)) NGenes Direction PValue set1 5 Up 1.105329e-10 > camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2) NGenes Direction PValue FDR set1 5 Up 7.334400e-12 1.466880e-11 set2 5 Down 8.677115e-01 8.677115e-01 > camera(y=y,iset1A,design,contrast=2) NGenes Direction PValue set1 5 Up 7.3344e-12 > > ### with EList arg > > y <- new("EList",list(E=y)) > roast(y=y,iset1,design,contrast=2) Active.Prop P.Value Down 0 0.996999250 Up 1 0.003250813 UpOrDown 1 0.006500000 Mixed 1 0.006500000 > camera(y=y,iset1,design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue set1 5 -0.2481655 Up 0.0009047749 > camera(y=y,iset1,design,contrast=2) NGenes Direction PValue set1 5 Up 7.3344e-12 > > ### eBayes with trend > > fit <- lmFit(y,design) > fit <- eBayes(fit,trend=TRUE) > topTable(fit,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene2 3.729512 1.73488969 4.865697 0.0004854886 0.02902331 0.1596831 Gene3 3.488703 1.03931081 4.754954 0.0005804663 0.02902331 -0.0144071 Gene4 2.696676 1.74060725 3.356468 0.0063282637 0.21094212 -2.3434702 Gene1 2.391846 1.72305203 3.107124 0.0098781268 0.24695317 -2.7738874 Gene33 -1.492317 -0.07525287 -2.783817 0.0176475742 0.29965463 -3.3300835 Gene5 2.387967 1.63066783 2.773444 0.0179792778 0.29965463 -3.3478204 Gene80 -1.839760 -0.32802306 -2.503584 0.0291489863 0.37972679 -3.8049642 Gene39 1.366141 -0.27360750 2.451133 0.0320042242 0.37972679 -3.8925860 Gene95 -1.907074 1.26297763 -2.414217 0.0341754107 0.37972679 -3.9539571 Gene50 1.034777 0.01608433 2.054690 0.0642289403 0.59978803 -4.5350317 > fit$df.prior [1] 9.098442 > fit$s2.prior Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8 Gene9 Gene10 Gene11 Gene12 0.6901845 0.6977354 0.3860494 0.7014122 0.6341068 0.2926337 0.3077620 0.3058098 0.2985145 0.2832520 0.3232434 0.3279710 Gene13 Gene14 Gene15 Gene16 Gene17 Gene18 Gene19 Gene20 Gene21 Gene22 Gene23 Gene24 0.2816081 0.2943502 0.3127994 0.2894802 0.2812758 0.2840051 0.2839124 0.2954261 0.2838592 0.2812704 0.3157029 0.2844541 Gene25 Gene26 Gene27 Gene28 Gene29 Gene30 Gene31 Gene32 Gene33 Gene34 Gene35 Gene36 0.4778832 0.2818242 0.2930360 0.2940957 0.2941862 0.3234399 0.3164779 0.2853510 0.2988244 0.3450090 0.3048596 0.3089086 Gene37 Gene38 Gene39 Gene40 Gene41 Gene42 Gene43 Gene44 Gene45 Gene46 Gene47 Gene48 0.3104534 0.4551549 0.3220008 0.2813286 0.2826027 0.2822504 0.2823330 0.3170673 0.3146173 0.3146793 0.2916540 0.2975003 Gene49 Gene50 Gene51 Gene52 Gene53 Gene54 Gene55 Gene56 Gene57 Gene58 Gene59 Gene60 0.3538946 0.2907240 0.3199596 0.2816641 0.2814293 0.2996822 0.2812885 0.2896157 0.2955317 0.2815907 0.2919420 0.2849675 Gene61 Gene62 Gene63 Gene64 Gene65 Gene66 Gene67 Gene68 Gene69 Gene70 Gene71 Gene72 0.3540805 0.3491713 0.2975019 0.2939325 0.2986943 0.3265466 0.3402343 0.3394927 0.2813283 0.2814440 0.3089669 0.3030850 Gene73 Gene74 Gene75 Gene76 Gene77 Gene78 Gene79 Gene80 Gene81 Gene82 Gene83 Gene84 0.2859286 0.2813216 0.3475231 0.3334419 0.2949550 0.3108702 0.2959688 0.3295294 0.3413700 0.2946268 0.3029565 0.2920284 Gene85 Gene86 Gene87 Gene88 Gene89 Gene90 Gene91 Gene92 Gene93 Gene94 Gene95 Gene96 0.2926205 0.2818046 0.3425116 0.2882936 0.2945459 0.3077919 0.2892134 0.2823787 0.3048049 0.2961408 0.4590012 0.2812784 Gene97 Gene98 Gene99 Gene100 0.2846345 0.2819651 0.3137551 0.2856081 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2335 0.2603 0.2997 0.3375 0.3655 0.7812 > > y$E[1,1] <- NA > y$E[1,3] <- NA > fit <- lmFit(y,design) > fit <- eBayes(fit,trend=TRUE) > topTable(fit,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene3 3.488703 1.03931081 4.604490 0.0007644061 0.07644061 -0.2333915 Gene2 3.729512 1.73488969 4.158038 0.0016033158 0.08016579 -0.9438583 Gene4 2.696676 1.74060725 2.898102 0.0145292666 0.44537707 -3.0530813 Gene33 -1.492317 -0.07525287 -2.784004 0.0178150826 0.44537707 -3.2456324 Gene5 2.387967 1.63066783 2.495395 0.0297982959 0.46902627 -3.7272957 Gene80 -1.839760 -0.32802306 -2.491115 0.0300256116 0.46902627 -3.7343584 Gene39 1.366141 -0.27360750 2.440729 0.0328318388 0.46902627 -3.8172597 Gene1 2.638272 1.47993643 2.227507 0.0530016060 0.58890673 -3.9537576 Gene95 -1.907074 1.26297763 -2.288870 0.0429197808 0.53649726 -4.0642439 Gene50 1.034777 0.01608433 2.063663 0.0635275235 0.60439978 -4.4204731 > fit$df.residual[1] [1] 0 > fit$df.prior [1] 8.971891 > fit$s2.prior [1] 0.7014084 0.9646561 0.4276287 0.9716476 0.8458852 0.2910492 0.3097052 0.3074225 0.2985517 0.2786374 0.3267121 [12] 0.3316013 0.2766404 0.2932679 0.3154347 0.2869186 0.2761395 0.2799884 0.2795119 0.2946468 0.2794412 0.2761282 [23] 0.3186442 0.2806092 0.4596465 0.2767847 0.2924541 0.2939204 0.2930568 0.3269177 0.3194905 0.2814293 0.2989389 [34] 0.3483845 0.3062977 0.3110287 0.3127934 0.4418052 0.3254067 0.2761732 0.2780422 0.2773311 0.2776653 0.3201314 [45] 0.3174515 0.3175199 0.2897731 0.2972785 0.3567262 0.2885556 0.3232426 0.2767207 0.2762915 0.3000062 0.2761306 [56] 0.2870975 0.2947817 0.2766152 0.2901489 0.2813183 0.3568982 0.3724440 0.2972804 0.2927300 0.2987764 0.3301406 [67] 0.3437962 0.3430762 0.2761729 0.2763094 0.3110958 0.3041715 0.2822004 0.2761654 0.3507694 0.3371214 0.2940441 [78] 0.3132660 0.2953388 0.3331880 0.3448949 0.2946558 0.3040162 0.2902616 0.2910320 0.2769211 0.3459946 0.2859057 [89] 0.2935193 0.3097398 0.2865663 0.2774968 0.3062327 0.2955576 0.5425422 0.2761214 0.2808585 0.2771484 0.3164981 [100] 0.2817725 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2296 0.2581 0.3003 0.3453 0.3652 0.9158 > > ### eBayes with robust > > fitr <- lmFit(y,design) > fitr <- eBayes(fitr,robust=TRUE) > summary(fitr$df.prior) Min. 1st Qu. Median Mean 3rd Qu. Max. 6.717 9.244 9.244 9.194 9.244 9.244 > topTable(fitr,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene2 3.729512 1.73488969 7.108463 1.752774e-05 0.001752774 3.3517310 Gene3 3.488703 1.03931081 5.041209 3.526138e-04 0.017630688 0.4056329 Gene4 2.696676 1.74060725 4.697690 6.150508e-04 0.020501693 -0.1463315 Gene5 2.387967 1.63066783 3.451807 5.245019e-03 0.131125480 -2.2678836 Gene1 2.638272 1.47993643 3.317593 8.651142e-03 0.173022847 -2.4400000 Gene33 -1.492317 -0.07525287 -2.716431 1.970991e-02 0.297950865 -3.5553166 Gene95 -1.907074 1.26297763 -2.685067 2.085656e-02 0.297950865 -3.6094982 Gene80 -1.839760 -0.32802306 -2.535926 2.727440e-02 0.340929958 -3.8653107 Gene39 1.366141 -0.27360750 2.469570 3.071854e-02 0.341317083 -3.9779817 Gene50 1.034777 0.01608433 1.973040 7.357960e-02 0.632875126 -4.7877548 > fitr <- eBayes(fitr,trend=TRUE,robust=TRUE) > summary(fitr$df.prior) Min. 1st Qu. Median Mean 3rd Qu. Max. 7.809 8.972 8.972 8.949 8.972 8.972 > topTable(fitr,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene2 3.729512 1.73488969 4.754160 0.0005999064 0.05999064 -0.0218247 Gene3 3.488703 1.03931081 3.761219 0.0031618743 0.15809372 -1.6338257 Gene4 2.696676 1.74060725 3.292262 0.0071993347 0.23997782 -2.4295326 Gene33 -1.492317 -0.07525287 -3.063180 0.0108203134 0.27050784 -2.8211394 Gene50 1.034777 0.01608433 2.645717 0.0228036320 0.38815282 -3.5304767 Gene5 2.387967 1.63066783 2.633901 0.0232891695 0.38815282 -3.5503445 Gene1 2.638272 1.47993643 2.204116 0.0550613420 0.58959402 -4.0334169 Gene80 -1.839760 -0.32802306 -2.332729 0.0397331916 0.56761702 -4.0496640 Gene39 1.366141 -0.27360750 2.210665 0.0492211477 0.58959402 -4.2469578 Gene95 -1.907074 1.26297763 -2.106861 0.0589594023 0.58959402 -4.4117140 > > ### voom > > y <- matrix(rpois(100*4,lambda=20),100,4) > design <- cbind(Int=1,x=c(0,0,1,1)) > v <- voom(y,design) > names(v) [1] "E" "weights" "design" "targets" > summary(v$E) V1 V2 V3 V4 Min. :12.38 Min. :12.32 Min. :12.17 Min. :12.08 1st Qu.:13.11 1st Qu.:13.05 1st Qu.:13.11 1st Qu.:13.03 Median :13.34 Median :13.28 Median :13.35 Median :13.35 Mean :13.29 Mean :13.29 Mean :13.28 Mean :13.28 3rd Qu.:13.48 3rd Qu.:13.54 3rd Qu.:13.48 3rd Qu.:13.50 Max. :14.01 Max. :13.95 Max. :14.03 Max. :14.05 > summary(v$weights) V1 V2 V3 V4 Min. : 7.729 Min. : 7.729 Min. : 7.729 Min. : 7.729 1st Qu.:13.859 1st Qu.:15.067 1st Qu.:14.254 1st Qu.:13.592 Median :15.913 Median :16.621 Median :16.081 Median :16.028 Mean :16.773 Mean :18.525 Mean :18.472 Mean :17.112 3rd Qu.:18.214 3rd Qu.:20.002 3rd Qu.:18.475 3rd Qu.:18.398 Max. :34.331 Max. :34.331 Max. :34.331 Max. :34.331 > > ### goana > > EB <- c("133746","1339","134","1340","134083","134111","134147","134187","134218","134266", + "134353","134359","134391","134429","134430","1345","134510","134526","134549","1346", + "134637","1347","134701","134728","1348","134829","134860","134864","1349","134957", + "135","1350","1351","135112","135114","135138","135152","135154","1352","135228", + "135250","135293","135295","1353","135458","1355","1356","135644","135656","1357", + "1358","135892","1359","135924","135935","135941","135946","135948","136","1360", + "136051","1361","1362","136227","136242","136259","1363","136306","136319","136332", + "136371","1364","1365","136541","1366","136647","1368","136853","1369","136991", + "1370","137075","1371","137209","1373","137362","1374","137492","1375","1376", + "137682","137695","137735","1378","137814","137868","137872","137886","137902","137964") > go <- goana(fit,FDR=0.8,geneid=EB) > topGO(go,number=10,truncate.term=30) Term Ont N Up Down P.Up P.Down GO:0032502 developmental process BP 24 4 7 0.871310423 0.001532528 GO:0070062 extracellular exosome CC 8 0 4 1.000000000 0.003047199 GO:0065010 extracellular membrane-boun... CC 8 0 4 1.000000000 0.003047199 GO:0043230 extracellular organelle CC 8 0 4 1.000000000 0.003047199 GO:1903561 extracellular vesicle CC 8 0 4 1.000000000 0.003047199 GO:0006915 apoptotic process BP 5 4 1 0.009503355 0.416247633 GO:0040011 locomotion BP 5 4 0 0.009503355 1.000000000 GO:0012501 programmed cell death BP 5 4 1 0.009503355 0.416247633 GO:0042981 regulation of apoptotic pro... BP 5 4 1 0.009503355 0.416247633 GO:0040012 regulation of locomotion BP 5 4 0 0.009503355 1.000000000 > topGO(go,number=10,truncate.term=30,sort="down") Term Ont N Up Down P.Up P.Down GO:0032502 developmental process BP 24 4 7 0.8713104 0.001532528 GO:0070062 extracellular exosome CC 8 0 4 1.0000000 0.003047199 GO:0065010 extracellular membrane-boun... CC 8 0 4 1.0000000 0.003047199 GO:0043230 extracellular organelle CC 8 0 4 1.0000000 0.003047199 GO:1903561 extracellular vesicle CC 8 0 4 1.0000000 0.003047199 GO:0032501 multicellular organismal pr... BP 33 7 7 0.7048432 0.013750585 GO:0031982 vesicle CC 19 3 5 0.8739689 0.020081679 GO:0051604 protein maturation BP 7 1 3 0.8497705 0.020760307 GO:0016485 protein processing BP 7 1 3 0.8497705 0.020760307 GO:0009887 animal organ morphogenesis BP 3 0 2 1.0000000 0.025788497 > > proc.time() user system elapsed 5.606 0.407 9.221
limma.Rcheck/tests/limma-Tests.Rout.save
R version 4.3.0 (2023-04-21 ucrt) -- "Already Tomorrow" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(limma) > options(warnPartialMatchArgs=TRUE,warnPartialMatchAttr=TRUE,warnPartialMatchDollar=TRUE,width=120) > > set.seed(0); u <- runif(100) > > ### strsplit2 > > x <- c("ab;cd;efg","abc;def","z","") > strsplit2(x,split=";") [,1] [,2] [,3] [1,] "ab" "cd" "efg" [2,] "abc" "def" "" [3,] "z" "" "" [4,] "" "" "" > > ### removeext > > removeExt(c("slide1.spot","slide.2.spot")) [1] "slide1" "slide.2" > removeExt(c("slide1.spot","slide")) [1] "slide1.spot" "slide" > > ### printorder > > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4) $printorder [1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 [29] 26 25 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1 12 11 [57] 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 [85] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 [113] 14 13 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37 48 47 [141] 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 [169] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 [197] 50 49 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73 84 83 [225] 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55 [253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 [281] 86 85 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61 72 71 [309] 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 [337] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 [365] 74 73 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 102 101 100 99 98 97 108 107 [393] 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127 [421] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 [449] 110 109 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133 144 143 [477] 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 [505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 [533] 98 97 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 132 131 [561] 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 150 149 148 147 146 145 156 155 154 153 152 151 [589] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 [617] 182 181 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 168 167 [645] 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187 [673] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 [701] 170 169 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145 156 155 [729] 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 [757] 186 185 184 183 182 181 192 191 190 189 188 187 $plate [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [58] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [115] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [172] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [229] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [286] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [343] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [400] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [457] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [514] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [571] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [628] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [685] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [742] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $plate.r [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 [39] 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 [77] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [115] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 [153] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [191] 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 [229] 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 [267] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 [305] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 [343] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 [381] 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 [419] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 [457] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 [495] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 9 9 9 [533] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 [571] 9 9 9 9 9 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 [609] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 [647] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 [685] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 [723] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 [761] 13 13 13 13 13 13 13 13 $plate.c [1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 [39] 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 [77] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 [115] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 [153] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 [191] 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 [229] 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 [267] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 [305] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 [343] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 [381] 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 [419] 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 [457] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 [495] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 [533] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 [571] 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 [609] 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 [647] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 [685] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 [723] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 [761] 19 19 24 24 23 23 22 22 $plateposition [1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05" "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" [15] "p1D08" "p1D08" "p1D07" "p1D07" "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14" "p1D14" [29] "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16" "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" [43] "p1D24" "p1D24" "p1D23" "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01" "p1C06" "p1C06" [57] "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08" "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" [71] "p1C10" "p1C10" "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17" "p1C17" "p1C16" "p1C16" [85] "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19" "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" [99] "p1B02" "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04" "p1B09" "p1B09" "p1B08" "p1B08" [113] "p1B07" "p1B07" "p1B12" "p1B12" "p1B11" "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13" [127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20" "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" [141] "p1B23" "p1B23" "p1B22" "p1B22" "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05" "p1A05" [155] "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07" "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" [169] "p1A15" "p1A15" "p1A14" "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16" "p1A21" "p1A21" [183] "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23" "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" [197] "p1H01" "p1H01" "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08" "p1H08" "p1H07" "p1H07" [211] "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10" "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" [225] "p1H17" "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19" "p1H24" "p1H24" "p1H23" "p1H23" [239] "p1H22" "p1H22" "p1G03" "p1G03" "p1G02" "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04" [253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11" "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" [267] "p1G14" "p1G14" "p1G13" "p1G13" "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20" "p1G20" [281] "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22" "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" [295] "p1F06" "p1F06" "p1F05" "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07" "p1F12" "p1F12" [309] "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14" "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" [323] "p1F16" "p1F16" "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23" "p1F23" "p1F22" "p1F22" [337] "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01" "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" [351] "p1E08" "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10" "p1E15" "p1E15" "p1E14" "p1E14" [365] "p1E13" "p1E13" "p1E18" "p1E18" "p1E17" "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19" [379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02" "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" [393] "p1L05" "p1L05" "p1L04" "p1L04" "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11" "p1L11" [407] "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13" "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" [421] "p1L21" "p1L21" "p1L20" "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22" "p1K03" "p1K03" [435] "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05" "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" [449] "p1K07" "p1K07" "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14" "p1K14" "p1K13" "p1K13" [463] "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16" "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" [477] "p1K23" "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01" "p1J06" "p1J06" "p1J05" "p1J05" [491] "p1J04" "p1J04" "p1J09" "p1J09" "p1J08" "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10" [505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17" "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" [519] "p1J20" "p1J20" "p1J19" "p1J19" "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02" "p1I02" [533] "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04" "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" [547] "p1I12" "p1I12" "p1I11" "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13" "p1I18" "p1I18" [561] "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20" "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" [575] "p1I22" "p1I22" "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05" "p1P05" "p1P04" "p1P04" [589] "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07" "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" [603] "p1P14" "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16" "p1P21" "p1P21" "p1P20" "p1P20" [617] "p1P19" "p1P19" "p1P24" "p1P24" "p1P23" "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01" [631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08" "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" [645] "p1O11" "p1O11" "p1O10" "p1O10" "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17" "p1O17" [659] "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19" "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" [673] "p1N03" "p1N03" "p1N02" "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04" "p1N09" "p1N09" [687] "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11" "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" [701] "p1N13" "p1N13" "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20" "p1N20" "p1N19" "p1N19" [715] "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22" "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" [729] "p1M05" "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07" "p1M12" "p1M12" "p1M11" "p1M11" [743] "p1M10" "p1M10" "p1M15" "p1M15" "p1M14" "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16" [757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23" "p1M23" "p1M22" "p1M22" > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6)) $printorder [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 [39] 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 [77] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [115] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 [153] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 [191] 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 [229] 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [267] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [305] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 [343] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 [381] 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 [419] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 [457] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 [495] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 [533] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 [571] 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 [609] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [647] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 [685] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 [723] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 [761] 41 42 43 44 45 46 47 48 $plate [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 [58] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [115] 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 [172] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 [229] 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [286] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 [343] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [400] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [457] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 [514] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [571] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 [628] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 [685] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [742] 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $plate.r [1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 [39] 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 [77] 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 [115] 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 [153] 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 [191] 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 [229] 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 [267] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 [305] 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 [343] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 [381] 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 [419] 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 [457] 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 [495] 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 [533] 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 [571] 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 [609] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 [647] 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 [685] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 [723] 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 [761] 9 9 13 13 13 13 13 13 $plate.c [1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 [39] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 [77] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 [115] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 [153] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 [191] 17 21 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 [229] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 [267] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 [305] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 [343] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 [381] 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 [419] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 [457] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 [495] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 [533] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 [571] 3 7 11 15 19 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 [609] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 [647] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 [685] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 [723] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 [761] 20 24 4 8 12 16 20 24 $plateposition [1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09" "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" [15] "p1L09" "p1L13" "p1L17" "p1L21" "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09" "p2D13" [29] "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21" "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" [43] "p2P01" "p2P05" "p2P09" "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21" "p1G01" "p1G05" [57] "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09" "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" [71] "p1O17" "p1O21" "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09" "p2G13" "p2G17" "p2G21" [85] "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21" "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" [99] "p1B09" "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21" "p1J01" "p1J05" "p1J09" "p1J13" [113] "p1J17" "p1J21" "p1N01" "p1N05" "p1N09" "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21" [127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09" "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" [141] "p2N09" "p2N13" "p2N17" "p2N21" "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09" "p1E13" [155] "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21" "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" [169] "p2A01" "p2A05" "p2A09" "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21" "p2I01" "p2I05" [183] "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09" "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" [197] "p1D18" "p1D22" "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10" "p1L14" "p1L18" "p1L22" [211] "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22" "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" [225] "p2H10" "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22" "p2P02" "p2P06" "p2P10" "p2P14" [239] "p2P18" "p2P22" "p1C02" "p1C06" "p1C10" "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22" [253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10" "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" [267] "p2C10" "p2C14" "p2C18" "p2C22" "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10" "p2K14" [281] "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22" "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" [295] "p1F02" "p1F06" "p1F10" "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22" "p1N02" "p1N06" [309] "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10" "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" [323] "p2F18" "p2F22" "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10" "p2N14" "p2N18" "p2N22" [337] "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22" "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" [351] "p1I10" "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22" "p2A02" "p2A06" "p2A10" "p2A14" [365] "p2A18" "p2A22" "p2E02" "p2E06" "p2E10" "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22" [379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11" "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" [393] "p1H11" "p1H15" "p1H19" "p1H23" "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11" "p1P15" [407] "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23" "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" [421] "p2L03" "p2L07" "p2L11" "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23" "p1C03" "p1C07" [435] "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11" "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" [449] "p1K19" "p1K23" "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11" "p2C15" "p2C19" "p2C23" [463] "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23" "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" [477] "p2O11" "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23" "p1F03" "p1F07" "p1F11" "p1F15" [491] "p1F19" "p1F23" "p1J03" "p1J07" "p1J11" "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23" [505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11" "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" [519] "p2J11" "p2J15" "p2J19" "p2J23" "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11" "p1A15" [533] "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23" "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" [547] "p1M03" "p1M07" "p1M11" "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23" "p2E03" "p2E07" [561] "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11" "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" [575] "p2M19" "p2M23" "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12" "p1H16" "p1H20" "p1H24" [589] "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24" "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" [603] "p2D12" "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24" "p2L04" "p2L08" "p2L12" "p2L16" [617] "p2L20" "p2L24" "p2P04" "p2P08" "p2P12" "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24" [631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12" "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" [645] "p1O12" "p1O16" "p1O20" "p1O24" "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12" "p2G16" [659] "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24" "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" [673] "p1B04" "p1B08" "p1B12" "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24" "p1J04" "p1J08" [687] "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12" "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" [701] "p2B20" "p2B24" "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12" "p2J16" "p2J20" "p2J24" [715] "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24" "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" [729] "p1E12" "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24" "p1M04" "p1M08" "p1M12" "p1M16" [743] "p1M20" "p1M24" "p2A04" "p2A08" "p2A12" "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24" [757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12" "p2M16" "p2M20" "p2M24" > > ### merge.rglist > > R <- G <- matrix(11:14,4,2) > rownames(R) <- rownames(G) <- c("a","a","b","c") > RG1 <- new("RGList",list(R=R,G=G)) > R <- G <- matrix(21:24,4,2) > rownames(R) <- rownames(G) <- c("b","a","a","c") > RG2 <- new("RGList",list(R=R,G=G)) > merge(RG1,RG2) An object of class "RGList" $R [,1] [,2] [,3] [,4] a 11 11 22 22 a 12 12 23 23 b 13 13 21 21 c 14 14 24 24 $G [,1] [,2] [,3] [,4] a 11 11 22 22 a 12 12 23 23 b 13 13 21 21 c 14 14 24 24 > merge(RG2,RG1) An object of class "RGList" $R [,1] [,2] [,3] [,4] b 21 21 13 13 a 22 22 11 11 a 23 23 12 12 c 24 24 14 14 $G [,1] [,2] [,3] [,4] b 21 21 13 13 a 22 22 11 11 a 23 23 12 12 c 24 24 14 14 > > ### background correction > > RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2))) > backgroundCorrect(RG) An object of class "RGList" $R [,1] [1,] -1 [2,] 0 [3,] 1 [4,] 2 $G [,1] [1,] -1 [2,] 0 [3,] 1 [4,] 2 > backgroundCorrect(RG, method="half") An object of class "RGList" $R [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 $G [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 > backgroundCorrect(RG, method="minimum") An object of class "RGList" $R [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 $G [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 > backgroundCorrect(RG, offset=5) An object of class "RGList" $R [,1] [1,] 4 [2,] 5 [3,] 6 [4,] 7 $G [,1] [1,] 4 [2,] 5 [3,] 6 [4,] 7 > > ### loessFit > > x <- 1:100 > y <- rnorm(100) > out <- loessFit(y,x) > f1 <- quantile(out$fitted) > r1 <- quantile(out$residuals) > w <- rep(1,100) > w[1:50] <- 0.5 > out <- loessFit(y,x,weights=w,method="weightedLowess") > f2 <- quantile(out$fitted) > r2 <- quantile(out$residuals) > out <- loessFit(y,x,weights=w,method="locfit") > f3 <- quantile(out$fitted) > r3 <- quantile(out$residuals) > out <- loessFit(y,x,weights=w,method="loess") > f4 <- quantile(out$fitted) > r4 <- quantile(out$residuals) > w <- rep(1,100) > w[2*(1:50)] <- 0 > out <- loessFit(y,x,weights=w,method="weightedLowess") > f5 <- quantile(out$fitted) > r5 <- quantile(out$residuals) > data.frame(f1,f2,f3,f4,f5) f1 f2 f3 f4 f5 0% -0.78835384 -0.687432210 -0.78957137 -0.76756060 -0.63778292 25% -0.18340154 -0.179683572 -0.18979269 -0.16773223 -0.38064318 50% -0.11492924 -0.114796040 -0.12087983 -0.07185314 -0.15971879 75% 0.01507921 -0.008145125 -0.01857508 0.04030634 0.07839396 100% 0.21653837 0.145106033 0.19214597 0.21417361 0.51836274 > data.frame(r1,r2,r3,r4,r5) r1 r2 r3 r4 r5 0% -2.04434053 -2.05132680 -2.02404318 -2.101242874 -2.22280633 25% -0.59321065 -0.57200209 -0.58975649 -0.577887481 -0.71037756 50% 0.05874864 0.04514326 0.08335198 -0.001769806 0.06785517 75% 0.56010750 0.55124530 0.57618740 0.561454370 0.65383830 100% 2.57936026 2.64549799 2.57549257 2.402324533 2.28648835 > > ### normalizeWithinArrays > > RG <- new("RGList",list()) > RG$R <- matrix(rexp(100*2),100,2) > RG$G <- matrix(rexp(100*2),100,2) > RG$Rb <- matrix(rnorm(100*2,sd=0.02),100,2) > RG$Gb <- matrix(rnorm(100*2,sd=0.02),100,2) > RGb <- backgroundCorrect(RG,method="normexp",normexp.method="saddle") Array 1 corrected Array 2 corrected Array 1 corrected Array 2 corrected > summary(cbind(RGb$R,RGb$G)) V1 V2 V3 V4 Min. :0.01626 Min. :0.01213 Min. :0.0000 Min. :0.0000 1st Qu.:0.35497 1st Qu.:0.29133 1st Qu.:0.2745 1st Qu.:0.3953 Median :0.71793 Median :0.70294 Median :0.6339 Median :0.8223 Mean :0.90184 Mean :1.00122 Mean :0.9454 Mean :1.1324 3rd Qu.:1.16891 3rd Qu.:1.33139 3rd Qu.:1.4059 3rd Qu.:1.4221 Max. :4.56267 Max. :6.37947 Max. :5.0486 Max. :6.6295 > RGb <- backgroundCorrect(RG,method="normexp",normexp.method="mle") Array 1 corrected Array 2 corrected Array 1 corrected Array 2 corrected > summary(cbind(RGb$R,RGb$G)) V1 V2 V3 V4 Min. :0.01701 Min. :0.01255 Min. :0.0000 Min. :0.0000 1st Qu.:0.35423 1st Qu.:0.29118 1st Qu.:0.2745 1st Qu.:0.3953 Median :0.71719 Median :0.70280 Median :0.6339 Median :0.8223 Mean :0.90118 Mean :1.00110 Mean :0.9454 Mean :1.1324 3rd Qu.:1.16817 3rd Qu.:1.33124 3rd Qu.:1.4059 3rd Qu.:1.4221 Max. :4.56193 Max. :6.37932 Max. :5.0486 Max. :6.6295 > MA <- normalizeWithinArrays(RGb,method="loess") > summary(MA$M) V1 V2 Min. :-5.8801 Min. :-5.66985 1st Qu.:-1.1850 1st Qu.:-1.57014 Median :-0.2164 Median : 0.04823 Mean : 0.0349 Mean :-0.05481 3rd Qu.: 1.4964 3rd Qu.: 1.45113 Max. : 7.0751 Max. : 6.19744 > #MA <- normalizeWithinArrays(RG[,1:2], mouse.setup, method="robustspline") > #MA$M[1:5,] > #MA <- normalizeWithinArrays(mouse.data, mouse.setup) > #MA$M[1:5,] > > ### normalizeBetweenArrays > > MA2 <- normalizeBetweenArrays(MA,method="scale") > MA$M[1:5,] [,1] [,2] [1,] -1.1669590 4.5558123 [2,] 0.8969743 0.3296544 [3,] 2.8245754 1.4249960 [4,] -1.8532747 0.4804851 [5,] 1.9159023 -5.5087631 > MA$A[1:5,] [,1] [,2] [1,] -2.48465011 -2.4041550 [2,] -0.79230447 -0.9002250 [3,] -0.76237200 0.2071043 [4,] 0.09281027 -1.3880965 [5,] 0.22385828 -3.0855818 > MA2 <- normalizeBetweenArrays(MA,method="quantile") > MA$M[1:5,] [,1] [,2] [1,] -1.1669590 4.5558123 [2,] 0.8969743 0.3296544 [3,] 2.8245754 1.4249960 [4,] -1.8532747 0.4804851 [5,] 1.9159023 -5.5087631 > MA$A[1:5,] [,1] [,2] [1,] -2.48465011 -2.4041550 [2,] -0.79230447 -0.9002250 [3,] -0.76237200 0.2071043 [4,] 0.09281027 -1.3880965 [5,] 0.22385828 -3.0855818 > > ### unwrapdups > > M <- matrix(1:12,6,2) > unwrapdups(M,ndups=1) [,1] [,2] [1,] 1 7 [2,] 2 8 [3,] 3 9 [4,] 4 10 [5,] 5 11 [6,] 6 12 > unwrapdups(M,ndups=2) [,1] [,2] [,3] [,4] [1,] 1 2 7 8 [2,] 3 4 9 10 [3,] 5 6 11 12 > unwrapdups(M,ndups=3) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 1 2 3 7 8 9 [2,] 4 5 6 10 11 12 > unwrapdups(M,ndups=2,spacing=3) [,1] [,2] [,3] [,4] [1,] 1 4 7 10 [2,] 2 5 8 11 [3,] 3 6 9 12 > > ### trigammaInverse > > trigammaInverse(c(1e-6,NA,5,1e6)) [1] 1.000000e+06 NA 4.961687e-01 1.000001e-03 > > ### lmFit, eBayes, topTable > > M <- matrix(rnorm(10*6,sd=0.3),10,6) > rownames(M) <- LETTERS[1:10] > M[1,1:3] <- M[1,1:3] + 2 > design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1)) > contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1)) > fit <- lmFit(M,design) > fit2 <- eBayes(contrasts.fit(fit,contrasts=contrast.matrix)) > topTable(fit2) First3 Last3 Last3.First3 AveExpr F P.Value adj.P.Val A 1.77602021 0.06025114 -1.71576906 0.918135675 50.91471061 7.727200e-23 7.727200e-22 D -0.05454069 0.39127869 0.44581938 0.168369004 2.51638838 8.075072e-02 3.758388e-01 F -0.16249607 -0.33009728 -0.16760121 -0.246296671 2.18256779 1.127516e-01 3.758388e-01 G 0.30852468 -0.06873462 -0.37725930 0.119895035 1.61088775 1.997102e-01 4.992756e-01 H -0.16942269 0.20578118 0.37520387 0.018179245 1.14554368 3.180510e-01 6.361019e-01 J 0.21417623 0.07074940 -0.14342683 0.142462814 0.82029274 4.403027e-01 7.338379e-01 C -0.12236781 0.15095948 0.27332729 0.014295836 0.60885003 5.439761e-01 7.382414e-01 B -0.11982833 0.13529287 0.25512120 0.007732271 0.52662792 5.905931e-01 7.382414e-01 E 0.01897934 0.10434934 0.08536999 0.061664340 0.18136849 8.341279e-01 9.268088e-01 I -0.04720963 0.03996397 0.08717360 -0.003622829 0.06168476 9.401792e-01 9.401792e-01 > topTable(fit2,coef=3,resort.by="logFC") logFC AveExpr t P.Value adj.P.Val B D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 > topTable(fit2,coef=3,resort.by="p") logFC AveExpr t P.Value adj.P.Val B A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 > topTable(fit2,coef=3,sort.by="logFC",resort.by="t") logFC AveExpr t P.Value adj.P.Val B D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 > topTable(fit2,coef=3,resort.by="B") logFC AveExpr t P.Value adj.P.Val B A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 > topTable(fit2,coef=3,lfc=1) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p.value=0.2) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p.value=0.2,lfc=0.5) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p.value=0.2,lfc=0.5,sort.by="none") logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > contrasts.fit(fit[1:3,],contrast.matrix[,0]) An object of class "MArrayLM" $coefficients A B C $rank [1] 2 $assign NULL $qr $qr First3Arrays Last3Arrays [1,] -1.7320508 0.0000000 [2,] 0.5773503 -1.7320508 [3,] 0.5773503 0.0000000 [4,] 0.0000000 0.5773503 [5,] 0.0000000 0.5773503 [6,] 0.0000000 0.5773503 $qraux [1] 1.57735 1.00000 $pivot [1] 1 2 $tol [1] 1e-07 $rank [1] 2 $df.residual [1] 4 4 4 $sigma A B C 0.3299787 0.3323336 0.2315815 $cov.coefficients <0 x 0 matrix> $stdev.unscaled A B C $pivot [1] 1 2 $Amean A B C 0.918135675 0.007732271 0.014295836 $method [1] "ls" $design First3Arrays Last3Arrays [1,] 1 0 [2,] 1 0 [3,] 1 0 [4,] 0 1 [5,] 0 1 [6,] 0 1 $contrasts [1,] [2,] > fit$coefficients[1,1] <- NA > contrasts.fit(fit[1:3,],contrast.matrix)$coefficients First3 Last3 Last3-First3 A NA 0.06025114 NA B -0.1198283 0.13529287 0.2551212 C -0.1223678 0.15095948 0.2733273 > > designlist <- list(Null=matrix(1,6,1),Two=design,Three=cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1))) > out <- selectModel(M,designlist) > table(out$pref) Null Two Three 5 3 2 > > ### marray object > > #suppressMessages(suppressWarnings(gotmarray <- require(marray,quietly=TRUE))) > #if(gotmarray) { > # data(swirl) > # snorm = maNorm(swirl) > # fit <- lmFit(snorm, design = c(1,-1,-1,1)) > # fit <- eBayes(fit) > # topTable(fit,resort.by="AveExpr") > #} > > ### duplicateCorrelation > > cor.out <- duplicateCorrelation(M) > cor.out$consensus.correlation [1] -0.09290714 > cor.out$atanh.correlations [1] -0.4419130 0.4088967 -0.1964978 -0.6093769 0.3730118 > > ### gls.series > > fit <- gls.series(M,design,correlation=cor.out$cor) > fit$coefficients First3Arrays Last3Arrays [1,] 0.82809594 0.09777201 [2,] -0.08845425 0.27111909 [3,] -0.07175836 -0.11287397 [4,] 0.06955100 0.06852328 [5,] 0.08348330 0.05535668 > fit$stdev.unscaled First3Arrays Last3Arrays [1,] 0.3888215 0.3888215 [2,] 0.3888215 0.3888215 [3,] 0.3888215 0.3888215 [4,] 0.3888215 0.3888215 [5,] 0.3888215 0.3888215 > fit$sigma [1] 0.7630059 0.2152728 0.3350370 0.3227781 0.3405473 > fit$df.residual [1] 10 10 10 10 10 > > ### mrlm > > fit <- mrlm(M,design) Warning message: In rlm.default(x = X, y = y, weights = w, ...) : 'rlm' failed to converge in 20 steps > fit$coefficients First3Arrays Last3Arrays A 1.75138894 0.06025114 B -0.11982833 0.10322039 C -0.09302502 0.15095948 D -0.05454069 0.33700045 E 0.07927938 0.10434934 F -0.16249607 -0.34010852 G 0.30852468 -0.06873462 H -0.16942269 0.24392984 I -0.04720963 0.03996397 J 0.21417623 -0.05679272 > fit$stdev.unscaled First3Arrays Last3Arrays A 0.5933418 0.5773503 B 0.5773503 0.6096497 C 0.6017444 0.5773503 D 0.5773503 0.6266021 E 0.6307703 0.5773503 F 0.5773503 0.5846707 G 0.5773503 0.5773503 H 0.5773503 0.6544564 I 0.5773503 0.5773503 J 0.5773503 0.6689776 > fit$sigma [1] 0.2894294 0.2679396 0.2090236 0.1461395 0.2309018 0.2827476 0.2285945 0.2267556 0.3537469 0.2172409 > fit$df.residual [1] 4 4 4 4 4 4 4 4 4 4 > > # Similar to Mette Langaas 19 May 2004 > set.seed(123) > narrays <- 9 > ngenes <- 5 > mu <- 0 > alpha <- 2 > beta <- -2 > epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays) > X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1)) > dimnames(X) <- list(1:9,c("mu","alpha","beta")) > yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3] > ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon > ymat[5,1:2] <- NA > fit <- lmFit(ymat,design=X) > test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1)) > dimnames(test.contr) <- list(c("mu","alpha","beta"),c("alpha-beta","mu+alpha","mu+beta")) > fit2 <- contrasts.fit(fit,contrasts=test.contr) > eBayes(fit2) An object of class "MArrayLM" $coefficients alpha-beta mu+alpha mu+beta [1,] 3.537333 1.677465 -1.859868 [2,] 4.355578 2.372554 -1.983024 [3,] 3.197645 1.053584 -2.144061 [4,] 2.697734 1.611443 -1.086291 [5,] 3.502304 2.051995 -1.450309 $stdev.unscaled alpha-beta mu+alpha mu+beta [1,] 0.8164966 0.5773503 0.5773503 [2,] 0.8164966 0.5773503 0.5773503 [3,] 0.8164966 0.5773503 0.5773503 [4,] 0.8164966 0.5773503 0.5773503 [5,] 1.1547005 0.8368633 0.8368633 $sigma [1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509 $df.residual [1] 6 6 6 6 4 $cov.coefficients alpha-beta mu+alpha mu+beta alpha-beta 0.6666667 3.333333e-01 -3.333333e-01 mu+alpha 0.3333333 3.333333e-01 1.110223e-16 mu+beta -0.3333333 1.110223e-16 3.333333e-01 $pivot [1] 1 2 3 $rank [1] 3 $Amean [1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593 $method [1] "ls" $design mu alpha beta 1 1 0 0 2 1 0 0 3 1 0 0 4 1 1 0 5 1 1 0 6 1 1 0 7 1 0 1 8 1 0 1 9 1 0 1 $contrasts alpha-beta mu+alpha mu+beta mu 0 1 1 alpha 1 1 0 beta -1 0 1 $df.prior [1] 9.306153 $s2.prior [1] 0.923179 $var.prior [1] 17.33142 17.33142 12.26855 $proportion [1] 0.01 $s2.post [1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980 $t alpha-beta mu+alpha mu+beta [1,] 3.847656 2.580411 -2.860996 [2,] 6.637308 5.113018 -4.273553 [3,] 3.692066 1.720376 -3.500994 [4,] 3.464003 2.926234 -1.972606 [5,] 3.175181 2.566881 -1.814221 $df.total [1] 15.30615 15.30615 15.30615 15.30615 13.30615 $p.value alpha-beta mu+alpha mu+beta [1,] 1.529450e-03 0.0206493481 0.0117123495 [2,] 7.144893e-06 0.0001195844 0.0006385076 [3,] 2.109270e-03 0.1055117477 0.0031325769 [4,] 3.381970e-03 0.0102514264 0.0668844448 [5,] 7.124839e-03 0.0230888584 0.0922478630 $lods alpha-beta mu+alpha mu+beta [1,] -1.013417 -3.702133 -3.0332393 [2,] 3.981496 1.283349 -0.2615911 [3,] -1.315036 -5.168621 -1.7864101 [4,] -1.757103 -3.043209 -4.6191869 [5,] -2.257358 -3.478267 -4.5683738 $F [1] 7.421911 22.203107 7.608327 6.227010 5.060579 $F.p.value [1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02 > > ### uniquegenelist > > uniquegenelist(letters[1:8],ndups=2) [1] "a" "c" "e" "g" > uniquegenelist(letters[1:8],ndups=2,spacing=2) [1] "a" "b" "e" "f" > > ### classifyTests > > tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE) > classifyTestsF(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 0 0 [3,] -1 -1 1 [4,] 0 0 0 > classifyTestsF(tstat,fstat.only=TRUE) [1] 8.333333 2.083333 4.000000 1.000000 attr(,"df1") [1] 3 attr(,"df2") [1] Inf > limma:::.classifyTestsP(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 1 0 [3,] 0 0 0 [4,] 0 0 0 > > ### avereps > > x <- matrix(rnorm(8*3),8,3) > colnames(x) <- c("S1","S2","S3") > rownames(x) <- c("b","a","a","c","c","b","b","b") > avereps(x) S1 S2 S3 b -0.2353018 0.5220094 0.2302895 a -0.4347701 0.6453498 -0.6758914 c 0.3482980 -0.4820695 -0.3841313 > > ### roast > > y <- matrix(rnorm(100*4),100,4) > sigma <- sqrt(2/rchisq(100,df=7)) > y <- y*sigma > design <- cbind(Intercept=1,Group=c(0,0,1,1)) > iset1 <- 1:5 > y[iset1,3:4] <- y[iset1,3:4]+3 > iset2 <- 6:10 > roast(y=y,iset1,design,contrast=2) Active.Prop P.Value Down 0 0.997999500 Up 1 0.002250563 UpOrDown 1 0.004500000 Mixed 1 0.004500000 > roast(y=y,iset1,design,contrast=2,array.weights=c(0.5,1,0.5,1)) Active.Prop P.Value Down 0 0.998749687 Up 1 0.001500375 UpOrDown 1 0.003000000 Mixed 1 0.003000000 > w <- matrix(runif(100*4),100,4) > roast(y=y,iset1,design,contrast=2,weights=w) Active.Prop P.Value Down 0 0.996999250 Up 1 0.003250813 UpOrDown 1 0.006500000 Mixed 1 0.006500000 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,gene.weights=runif(100)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.0055 0.0105 0.0055 0.0105 set2 5 0 0 Up 0.2025 0.2025 0.4715 0.4715 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,array.weights=c(0.5,1,0.5,1)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.0050 0.0095 0.005 0.0095 set2 5 0 0 Up 0.6845 0.6845 0.642 0.6420 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1.0 Up 0.0030 0.0055 0.003 0.0055 set2 5 0 0.2 Down 0.9615 0.9615 0.496 0.4960 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1.0 Up 0.0025 0.0045 0.0025 0.0045 set2 5 0 0.2 Down 0.8930 0.8930 0.4380 0.4380 > fry(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 Up 0.001568924 0.003137848 0.0001156464 0.0002312929 set2 5 Down 0.932105219 0.932105219 0.4315499569 0.4315499569 > rownames(y) <- paste0("Gene",1:100) > iset1A <- rownames(y)[1:5] > fry(y=y,index=iset1A,design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes Direction PValue PValue.Mixed set1 5 Up 0.001568924 0.0001156464 > > ### camera > > camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1),allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue set1 5 -0.2481655 Up 0.001050253 > camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue FDR set1 5 -0.2481655 Up 0.0009047749 0.00180955 set2 5 0.1719094 Down 0.9068364378 0.90683644 > camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1)) NGenes Direction PValue set1 5 Up 1.105329e-10 > camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2) NGenes Direction PValue FDR set1 5 Up 7.334400e-12 1.466880e-11 set2 5 Down 8.677115e-01 8.677115e-01 > camera(y=y,iset1A,design,contrast=2) NGenes Direction PValue set1 5 Up 7.3344e-12 > > ### with EList arg > > y <- new("EList",list(E=y)) > roast(y=y,iset1,design,contrast=2) Active.Prop P.Value Down 0 0.996999250 Up 1 0.003250813 UpOrDown 1 0.006500000 Mixed 1 0.006500000 > camera(y=y,iset1,design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue set1 5 -0.2481655 Up 0.0009047749 > camera(y=y,iset1,design,contrast=2) NGenes Direction PValue set1 5 Up 7.3344e-12 > > ### eBayes with trend > > fit <- lmFit(y,design) > fit <- eBayes(fit,trend=TRUE) > topTable(fit,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene2 3.729512 1.73488969 4.865697 0.0004854886 0.02902331 0.1596831 Gene3 3.488703 1.03931081 4.754954 0.0005804663 0.02902331 -0.0144071 Gene4 2.696676 1.74060725 3.356468 0.0063282637 0.21094212 -2.3434702 Gene1 2.391846 1.72305203 3.107124 0.0098781268 0.24695317 -2.7738874 Gene33 -1.492317 -0.07525287 -2.783817 0.0176475742 0.29965463 -3.3300835 Gene5 2.387967 1.63066783 2.773444 0.0179792778 0.29965463 -3.3478204 Gene80 -1.839760 -0.32802306 -2.503584 0.0291489863 0.37972679 -3.8049642 Gene39 1.366141 -0.27360750 2.451133 0.0320042242 0.37972679 -3.8925860 Gene95 -1.907074 1.26297763 -2.414217 0.0341754107 0.37972679 -3.9539571 Gene50 1.034777 0.01608433 2.054690 0.0642289403 0.59978803 -4.5350317 > fit$df.prior [1] 9.098442 > fit$s2.prior Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8 Gene9 Gene10 Gene11 Gene12 0.6901845 0.6977354 0.3860494 0.7014122 0.6341068 0.2926337 0.3077620 0.3058098 0.2985145 0.2832520 0.3232434 0.3279710 Gene13 Gene14 Gene15 Gene16 Gene17 Gene18 Gene19 Gene20 Gene21 Gene22 Gene23 Gene24 0.2816081 0.2943502 0.3127994 0.2894802 0.2812758 0.2840051 0.2839124 0.2954261 0.2838592 0.2812704 0.3157029 0.2844541 Gene25 Gene26 Gene27 Gene28 Gene29 Gene30 Gene31 Gene32 Gene33 Gene34 Gene35 Gene36 0.4778832 0.2818242 0.2930360 0.2940957 0.2941862 0.3234399 0.3164779 0.2853510 0.2988244 0.3450090 0.3048596 0.3089086 Gene37 Gene38 Gene39 Gene40 Gene41 Gene42 Gene43 Gene44 Gene45 Gene46 Gene47 Gene48 0.3104534 0.4551549 0.3220008 0.2813286 0.2826027 0.2822504 0.2823330 0.3170673 0.3146173 0.3146793 0.2916540 0.2975003 Gene49 Gene50 Gene51 Gene52 Gene53 Gene54 Gene55 Gene56 Gene57 Gene58 Gene59 Gene60 0.3538946 0.2907240 0.3199596 0.2816641 0.2814293 0.2996822 0.2812885 0.2896157 0.2955317 0.2815907 0.2919420 0.2849675 Gene61 Gene62 Gene63 Gene64 Gene65 Gene66 Gene67 Gene68 Gene69 Gene70 Gene71 Gene72 0.3540805 0.3491713 0.2975019 0.2939325 0.2986943 0.3265466 0.3402343 0.3394927 0.2813283 0.2814440 0.3089669 0.3030850 Gene73 Gene74 Gene75 Gene76 Gene77 Gene78 Gene79 Gene80 Gene81 Gene82 Gene83 Gene84 0.2859286 0.2813216 0.3475231 0.3334419 0.2949550 0.3108702 0.2959688 0.3295294 0.3413700 0.2946268 0.3029565 0.2920284 Gene85 Gene86 Gene87 Gene88 Gene89 Gene90 Gene91 Gene92 Gene93 Gene94 Gene95 Gene96 0.2926205 0.2818046 0.3425116 0.2882936 0.2945459 0.3077919 0.2892134 0.2823787 0.3048049 0.2961408 0.4590012 0.2812784 Gene97 Gene98 Gene99 Gene100 0.2846345 0.2819651 0.3137551 0.2856081 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2335 0.2603 0.2997 0.3375 0.3655 0.7812 > > y$E[1,1] <- NA > y$E[1,3] <- NA > fit <- lmFit(y,design) > fit <- eBayes(fit,trend=TRUE) > topTable(fit,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene3 3.488703 1.03931081 4.604490 0.0007644061 0.07644061 -0.2333915 Gene2 3.729512 1.73488969 4.158038 0.0016033158 0.08016579 -0.9438583 Gene4 2.696676 1.74060725 2.898102 0.0145292666 0.44537707 -3.0530813 Gene33 -1.492317 -0.07525287 -2.784004 0.0178150826 0.44537707 -3.2456324 Gene5 2.387967 1.63066783 2.495395 0.0297982959 0.46902627 -3.7272957 Gene80 -1.839760 -0.32802306 -2.491115 0.0300256116 0.46902627 -3.7343584 Gene39 1.366141 -0.27360750 2.440729 0.0328318388 0.46902627 -3.8172597 Gene1 2.638272 1.47993643 2.227507 0.0530016060 0.58890673 -3.9537576 Gene95 -1.907074 1.26297763 -2.288870 0.0429197808 0.53649726 -4.0642439 Gene50 1.034777 0.01608433 2.063663 0.0635275235 0.60439978 -4.4204731 > fit$df.residual[1] [1] 0 > fit$df.prior [1] 8.971891 > fit$s2.prior [1] 0.7014084 0.9646561 0.4276287 0.9716476 0.8458852 0.2910492 0.3097052 0.3074225 0.2985517 0.2786374 0.3267121 [12] 0.3316013 0.2766404 0.2932679 0.3154347 0.2869186 0.2761395 0.2799884 0.2795119 0.2946468 0.2794412 0.2761282 [23] 0.3186442 0.2806092 0.4596465 0.2767847 0.2924541 0.2939204 0.2930568 0.3269177 0.3194905 0.2814293 0.2989389 [34] 0.3483845 0.3062977 0.3110287 0.3127934 0.4418052 0.3254067 0.2761732 0.2780422 0.2773311 0.2776653 0.3201314 [45] 0.3174515 0.3175199 0.2897731 0.2972785 0.3567262 0.2885556 0.3232426 0.2767207 0.2762915 0.3000062 0.2761306 [56] 0.2870975 0.2947817 0.2766152 0.2901489 0.2813183 0.3568982 0.3724440 0.2972804 0.2927300 0.2987764 0.3301406 [67] 0.3437962 0.3430762 0.2761729 0.2763094 0.3110958 0.3041715 0.2822004 0.2761654 0.3507694 0.3371214 0.2940441 [78] 0.3132660 0.2953388 0.3331880 0.3448949 0.2946558 0.3040162 0.2902616 0.2910320 0.2769211 0.3459946 0.2859057 [89] 0.2935193 0.3097398 0.2865663 0.2774968 0.3062327 0.2955576 0.5425422 0.2761214 0.2808585 0.2771484 0.3164981 [100] 0.2817725 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2296 0.2581 0.3003 0.3453 0.3652 0.9158 > > ### eBayes with robust > > fitr <- lmFit(y,design) > fitr <- eBayes(fitr,robust=TRUE) > summary(fitr$df.prior) Min. 1st Qu. Median Mean 3rd Qu. Max. 6.717 9.244 9.244 9.194 9.244 9.244 > topTable(fitr,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene2 3.729512 1.73488969 7.108463 1.752774e-05 0.001752774 3.3517310 Gene3 3.488703 1.03931081 5.041209 3.526138e-04 0.017630688 0.4056329 Gene4 2.696676 1.74060725 4.697690 6.150508e-04 0.020501693 -0.1463315 Gene5 2.387967 1.63066783 3.451807 5.245019e-03 0.131125480 -2.2678836 Gene1 2.638272 1.47993643 3.317593 8.651142e-03 0.173022847 -2.4400000 Gene33 -1.492317 -0.07525287 -2.716431 1.970991e-02 0.297950865 -3.5553166 Gene95 -1.907074 1.26297763 -2.685067 2.085656e-02 0.297950865 -3.6094982 Gene80 -1.839760 -0.32802306 -2.535926 2.727440e-02 0.340929958 -3.8653107 Gene39 1.366141 -0.27360750 2.469570 3.071854e-02 0.341317083 -3.9779817 Gene50 1.034777 0.01608433 1.973040 7.357960e-02 0.632875126 -4.7877548 > fitr <- eBayes(fitr,trend=TRUE,robust=TRUE) > summary(fitr$df.prior) Min. 1st Qu. Median Mean 3rd Qu. Max. 7.809 8.972 8.972 8.949 8.972 8.972 > topTable(fitr,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene2 3.729512 1.73488969 4.754160 0.0005999064 0.05999064 -0.0218247 Gene3 3.488703 1.03931081 3.761219 0.0031618743 0.15809372 -1.6338257 Gene4 2.696676 1.74060725 3.292262 0.0071993347 0.23997782 -2.4295326 Gene33 -1.492317 -0.07525287 -3.063180 0.0108203134 0.27050784 -2.8211394 Gene50 1.034777 0.01608433 2.645717 0.0228036320 0.38815282 -3.5304767 Gene5 2.387967 1.63066783 2.633901 0.0232891695 0.38815282 -3.5503445 Gene1 2.638272 1.47993643 2.204116 0.0550613420 0.58959402 -4.0334169 Gene80 -1.839760 -0.32802306 -2.332729 0.0397331916 0.56761702 -4.0496640 Gene39 1.366141 -0.27360750 2.210665 0.0492211477 0.58959402 -4.2469578 Gene95 -1.907074 1.26297763 -2.106861 0.0589594023 0.58959402 -4.4117140 > > ### voom > > y <- matrix(rpois(100*4,lambda=20),100,4) > design <- cbind(Int=1,x=c(0,0,1,1)) > v <- voom(y,design) > names(v) [1] "E" "weights" "design" "targets" > summary(v$E) V1 V2 V3 V4 Min. :12.38 Min. :12.32 Min. :12.17 Min. :12.08 1st Qu.:13.11 1st Qu.:13.05 1st Qu.:13.11 1st Qu.:13.03 Median :13.34 Median :13.28 Median :13.35 Median :13.35 Mean :13.29 Mean :13.29 Mean :13.28 Mean :13.28 3rd Qu.:13.48 3rd Qu.:13.54 3rd Qu.:13.48 3rd Qu.:13.50 Max. :14.01 Max. :13.95 Max. :14.03 Max. :14.05 > summary(v$weights) V1 V2 V3 V4 Min. : 7.729 Min. : 7.729 Min. : 7.729 Min. : 7.729 1st Qu.:13.859 1st Qu.:15.067 1st Qu.:14.254 1st Qu.:13.592 Median :15.913 Median :16.621 Median :16.081 Median :16.028 Mean :16.773 Mean :18.525 Mean :18.472 Mean :17.112 3rd Qu.:18.214 3rd Qu.:20.002 3rd Qu.:18.475 3rd Qu.:18.398 Max. :34.331 Max. :34.331 Max. :34.331 Max. :34.331 > > ### goana > > EB <- c("133746","1339","134","1340","134083","134111","134147","134187","134218","134266", + "134353","134359","134391","134429","134430","1345","134510","134526","134549","1346", + "134637","1347","134701","134728","1348","134829","134860","134864","1349","134957", + "135","1350","1351","135112","135114","135138","135152","135154","1352","135228", + "135250","135293","135295","1353","135458","1355","1356","135644","135656","1357", + "1358","135892","1359","135924","135935","135941","135946","135948","136","1360", + "136051","1361","1362","136227","136242","136259","1363","136306","136319","136332", + "136371","1364","1365","136541","1366","136647","1368","136853","1369","136991", + "1370","137075","1371","137209","1373","137362","1374","137492","1375","1376", + "137682","137695","137735","1378","137814","137868","137872","137886","137902","137964") > go <- goana(fit,FDR=0.8,geneid=EB) > topGO(go,number=10,truncate.term=30) Term Ont N Up Down P.Up P.Down GO:0032502 developmental process BP 24 4 7 0.871310423 0.001532528 GO:0070062 extracellular exosome CC 8 0 4 1.000000000 0.003047199 GO:0065010 extracellular membrane-boun... CC 8 0 4 1.000000000 0.003047199 GO:0043230 extracellular organelle CC 8 0 4 1.000000000 0.003047199 GO:1903561 extracellular vesicle CC 8 0 4 1.000000000 0.003047199 GO:0006915 apoptotic process BP 5 4 1 0.009503355 0.416247633 GO:0040011 locomotion BP 5 4 0 0.009503355 1.000000000 GO:0012501 programmed cell death BP 5 4 1 0.009503355 0.416247633 GO:0042981 regulation of apoptotic pro... BP 5 4 1 0.009503355 0.416247633 GO:0040012 regulation of locomotion BP 5 4 0 0.009503355 1.000000000 > topGO(go,number=10,truncate.term=30,sort="down") Term Ont N Up Down P.Up P.Down GO:0032502 developmental process BP 24 4 7 0.8713104 0.001532528 GO:0070062 extracellular exosome CC 8 0 4 1.0000000 0.003047199 GO:0065010 extracellular membrane-boun... CC 8 0 4 1.0000000 0.003047199 GO:0043230 extracellular organelle CC 8 0 4 1.0000000 0.003047199 GO:1903561 extracellular vesicle CC 8 0 4 1.0000000 0.003047199 GO:0032501 multicellular organismal pr... BP 33 7 7 0.7048432 0.013750585 GO:0031982 vesicle CC 19 3 5 0.8739689 0.020081679 GO:0051604 protein maturation BP 7 1 3 0.8497705 0.020760307 GO:0016485 protein processing BP 7 1 3 0.8497705 0.020760307 GO:0009887 animal organ morphogenesis BP 3 0 2 1.0000000 0.025788497 > > proc.time() user system elapsed 2.87 0.51 3.51
limma.Rcheck/limma-Ex.timings
name | user | system | elapsed | |
EList | 0.009 | 0.001 | 0.015 | |
LargeDataObject | 0.000 | 0.000 | 0.001 | |
PrintLayout | 0.001 | 0.001 | 0.001 | |
TestResults | 0 | 0 | 0 | |
alias2Symbol | 5.834 | 0.284 | 9.443 | |
arrayWeights | 0.014 | 0.001 | 0.026 | |
arrayWeightsQuick | 0 | 0 | 0 | |
asMatrixWeights | 0.000 | 0.001 | 0.001 | |
auROC | 0.001 | 0.000 | 0.002 | |
avearrays | 0.001 | 0.000 | 0.001 | |
avereps | 0.000 | 0.001 | 0.001 | |
backgroundcorrect | 0.006 | 0.001 | 0.011 | |
barcodeplot | 0.042 | 0.006 | 0.073 | |
beadCountWeights | 0 | 0 | 0 | |
blockDiag | 0.001 | 0.000 | 0.001 | |
camera | 0.031 | 0.002 | 0.051 | |
cbind | 0.004 | 0.000 | 0.008 | |
changelog | 0.031 | 0.062 | 0.142 | |
channel2M | 0.001 | 0.001 | 0.001 | |
chooseLowessSpan | 0.006 | 0.002 | 0.009 | |
classifytestsF | 0.003 | 0.001 | 0.004 | |
contrastAsCoef | 0.004 | 0.001 | 0.013 | |
contrasts.fit | 0.014 | 0.002 | 0.024 | |
controlStatus | 0.003 | 0.001 | 0.006 | |
coolmap | 0.110 | 0.014 | 0.186 | |
cumOverlap | 0.001 | 0.000 | 0.001 | |
detectionPValue | 0 | 0 | 0 | |
diffSplice | 0.000 | 0.000 | 0.001 | |
dim | 0.001 | 0.001 | 0.002 | |
dupcor | 0.157 | 0.006 | 0.244 | |
ebayes | 0.010 | 0.001 | 0.016 | |
fitGammaIntercept | 0.000 | 0.000 | 0.004 | |
fitfdist | 0 | 0 | 0 | |
fitmixture | 0.020 | 0.002 | 0.037 | |
genas | 0.066 | 0.007 | 0.108 | |
geneSetTest | 0.001 | 0.000 | 0.001 | |
getSpacing | 0.001 | 0.000 | 0.000 | |
getlayout | 0 | 0 | 0 | |
goana | 0.000 | 0.001 | 0.001 | |
goanaTrend | 0.055 | 0.002 | 0.086 | |
head | 0.004 | 0.001 | 0.007 | |
heatdiagram | 0 | 0 | 0 | |
helpMethods | 0 | 0 | 0 | |
ids2indices | 0.000 | 0.000 | 0.001 | |
imageplot | 0.025 | 0.003 | 0.042 | |
intraspotCorrelation | 0 | 0 | 0 | |
isfullrank | 0.000 | 0.001 | 0.001 | |
isnumeric | 0.001 | 0.000 | 0.002 | |
kooperberg | 0.000 | 0.000 | 0.001 | |
limmaUsersGuide | 0.001 | 0.000 | 0.002 | |
lm.series | 0 | 0 | 0 | |
lmFit | 0.326 | 0.029 | 0.533 | |
lmscFit | 0.001 | 0.000 | 0.000 | |
loessfit | 0.010 | 0.002 | 0.017 | |
logcosh | 0.001 | 0.000 | 0.001 | |
logsumexp | 0.001 | 0.000 | 0.001 | |
ma3x3 | 0.001 | 0.000 | 0.003 | |
makeContrasts | 0.001 | 0.001 | 0.002 | |
makeunique | 0.001 | 0.001 | 0.001 | |
mdplot | 0.005 | 0.001 | 0.011 | |
merge | 0.005 | 0.001 | 0.007 | |
mergeScansRG | 0.001 | 0.000 | 0.000 | |
modelMatrix | 0.002 | 0.001 | 0.002 | |
modifyWeights | 0.001 | 0.001 | 0.001 | |
nec | 0.000 | 0.001 | 0.000 | |
normalizeMedianAbsValues | 0.001 | 0.001 | 0.001 | |
normalizeRobustSpline | 0.024 | 0.006 | 0.042 | |
normalizeVSN | 0.655 | 0.055 | 1.080 | |
normalizebetweenarrays | 0.002 | 0.000 | 0.002 | |
normalizeprintorder | 0 | 0 | 0 | |
normexpfit | 0.002 | 0.001 | 0.001 | |
normexpfitcontrol | 0 | 0 | 0 | |
normexpfitdetectionp | 0 | 0 | 0 | |
normexpsignal | 0 | 0 | 0 | |
plotDensities | 0.000 | 0.000 | 0.001 | |
plotExonJunc | 0.000 | 0.001 | 0.000 | |
plotExons | 0 | 0 | 0 | |
plotMD | 0.082 | 0.010 | 0.137 | |
plotMDS | 0.056 | 0.003 | 0.121 | |
plotRLDF | 0.008 | 0.002 | 0.017 | |
plotSplice | 0 | 0 | 0 | |
plotWithHighlights | 0.012 | 0.002 | 0.032 | |
plotma | 0.102 | 0.009 | 0.169 | |
poolvar | 0.001 | 0.001 | 0.001 | |
predFCm | 0.014 | 0.001 | 0.023 | |
printorder | 0.004 | 0.009 | 0.019 | |
printtipWeights | 0 | 0 | 0 | |
propTrueNull | 0.002 | 0.000 | 0.005 | |
propexpr | 0 | 0 | 0 | |
protectMetachar | 0.000 | 0.001 | 0.000 | |
qqt | 0.008 | 0.001 | 0.015 | |
qualwt | 0 | 0 | 0 | |
rankSumTestwithCorrelation | 0.007 | 0.001 | 0.013 | |
read.idat | 0 | 0 | 0 | |
read.ilmn | 0 | 0 | 0 | |
read.maimages | 0 | 0 | 0 | |
readImaGeneHeader | 0.000 | 0.000 | 0.001 | |
readgal | 0.000 | 0.000 | 0.001 | |
removeBatchEffect | 0.011 | 0.001 | 0.021 | |
removeext | 0.001 | 0.000 | 0.003 | |
roast | 0.065 | 0.003 | 0.104 | |
romer | 0.015 | 0.001 | 0.021 | |
sampleInfoFromGEO | 0 | 0 | 0 | |
selectmodel | 0.011 | 0.001 | 0.015 | |
squeezeVar | 0.001 | 0.001 | 0.004 | |
strsplit2 | 0.001 | 0.000 | 0.000 | |
subsetting | 0.003 | 0.001 | 0.005 | |
targetsA2C | 0.004 | 0.001 | 0.008 | |
topGO | 0 | 0 | 0 | |
topRomer | 0.000 | 0.000 | 0.001 | |
topSplice | 0 | 0 | 0 | |
toptable | 0 | 0 | 0 | |
tricubeMovingAverage | 0.002 | 0.001 | 0.008 | |
trigammainverse | 0.000 | 0.000 | 0.001 | |
trimWhiteSpace | 0 | 0 | 0 | |
uniquegenelist | 0.001 | 0.001 | 0.004 | |
unwrapdups | 0.000 | 0.001 | 0.001 | |
venn | 0.022 | 0.002 | 0.036 | |
volcanoplot | 0.000 | 0.000 | 0.001 | |
voom | 0.000 | 0.000 | 0.001 | |
weightedLowess | 0.006 | 0.001 | 0.013 | |
weightedmedian | 0.001 | 0.000 | 0.000 | |
writefit | 0 | 0 | 0 | |
zscore | 0.001 | 0.000 | 0.001 | |
zscoreT | 0 | 0 | 0 | |