# Messmer human ESC (Smart-seq2) {#messmer-hesc} ## Introduction This performs an analysis of the human embryonic stem cell (hESC) dataset generated with Smart-seq2 [@messmer2019transcriptional], which contains several plates of naive and primed hESCs. The chapter's code is based on the steps in the paper's [GitHub repository](https://github.com/MarioniLab/NaiveHESC2016/blob/master/analysis/preprocess.Rmd), with some additional steps for cell cycle effect removal contributed by Philippe Boileau. ## Data loading Converting the batch to a factor, to make life easier later on. ```r library(scRNAseq) sce.mess <- MessmerESCData() sce.mess$`experiment batch` <- factor(sce.mess$`experiment batch`) ``` ```r library(AnnotationHub) ens.hs.v97 <- AnnotationHub()[["AH73881"]] anno <- select(ens.hs.v97, keys=rownames(sce.mess), keytype="GENEID", columns=c("SYMBOL")) rowData(sce.mess) <- anno[match(rownames(sce.mess), anno$GENEID),] ``` ## Quality control Let's have a look at the QC statistics. ```r colSums(as.matrix(filtered)) ``` ``` ## low_lib_size low_n_features high_subsets_Mito_percent ## 107 99 22 ## high_altexps_ERCC_percent discard ## 117 156 ``` ```r gridExtra::grid.arrange( plotColData(original, x="experiment batch", y="sum", colour_by=I(filtered$discard), other_field="phenotype") + facet_wrap(~phenotype) + scale_y_log10(), plotColData(original, x="experiment batch", y="detected", colour_by=I(filtered$discard), other_field="phenotype") + facet_wrap(~phenotype) + scale_y_log10(), plotColData(original, x="experiment batch", y="subsets_Mito_percent", colour_by=I(filtered$discard), other_field="phenotype") + facet_wrap(~phenotype), plotColData(original, x="experiment batch", y="altexps_ERCC_percent", colour_by=I(filtered$discard), other_field="phenotype") + facet_wrap(~phenotype), ncol=1 ) ```
Distribution of QC metrics across batches (x-axis) and phenotypes (facets) for cells in the Messmer hESC dataset. Each point is a cell and is colored by whether it was discarded.

(\#fig:unref-messmer-hesc-qc)Distribution of QC metrics across batches (x-axis) and phenotypes (facets) for cells in the Messmer hESC dataset. Each point is a cell and is colored by whether it was discarded.

## Normalization ```r library(scran) set.seed(10000) clusters <- quickCluster(sce.mess) sce.mess <- computeSumFactors(sce.mess, cluster=clusters) sce.mess <- logNormCounts(sce.mess) ``` ```r par(mfrow=c(1,2)) plot(sce.mess$sum, sizeFactors(sce.mess), log = "xy", pch=16, xlab = "Library size (millions)", ylab = "Size factor", col = ifelse(sce.mess$phenotype == "naive", "black", "grey")) spike.sf <- librarySizeFactors(altExp(sce.mess, "ERCC")) plot(sizeFactors(sce.mess), spike.sf, log = "xy", pch=16, ylab = "Spike-in size factor", xlab = "Deconvolution size factor", col = ifelse(sce.mess$phenotype == "naive", "black", "grey")) ```
Deconvolution size factors plotted against the library size (left) and spike-in size factors plotted against the deconvolution size factors (right). Each point is a cell and is colored by its phenotype.

(\#fig:unref-messmer-hesc-norm)Deconvolution size factors plotted against the library size (left) and spike-in size factors plotted against the deconvolution size factors (right). Each point is a cell and is colored by its phenotype.

## Cell cycle phase assignment Here, we use multiple cores to speed up the processing. ```r set.seed(10001) hs_pairs <- readRDS(system.file("exdata", "human_cycle_markers.rds", package="scran")) assigned <- cyclone(sce.mess, pairs=hs_pairs, gene.names=rownames(sce.mess), BPPARAM=BiocParallel::MulticoreParam(10)) sce.mess$phase <- assigned$phases ``` ```r table(sce.mess$phase) ``` ``` ## ## G1 G2M S ## 460 406 322 ``` ```r smoothScatter(assigned$scores$G1, assigned$scores$G2M, xlab="G1 score", ylab="G2/M score", pch=16) ```
G1 `cyclone()` phase scores against the G2/M phase scores for each cell in the Messmer hESC dataset.

(\#fig:unref-messmer-hesc-cyclone)G1 `cyclone()` phase scores against the G2/M phase scores for each cell in the Messmer hESC dataset.

## Feature selection ```r dec <- modelGeneVarWithSpikes(sce.mess, "ERCC", block = sce.mess$`experiment batch`) top.hvgs <- getTopHVGs(dec, prop = 0.1) ``` ```r par(mfrow=c(1,3)) for (i in seq_along(dec$per.block)) { current <- dec$per.block[[i]] plot(current$mean, current$total, xlab="Mean log-expression", ylab="Variance", pch=16, cex=0.5, main=paste("Batch", i)) fit <- metadata(current) points(fit$mean, fit$var, col="red", pch=16) curve(fit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance of the log-normalized expression values in the Messmer hESC dataset, plotted against the mean for each batch. Each point represents a gene with spike-ins shown in red and the fitted trend shown in blue.

(\#fig:unref-messmer-hesc-var)Per-gene variance of the log-normalized expression values in the Messmer hESC dataset, plotted against the mean for each batch. Each point represents a gene with spike-ins shown in red and the fitted trend shown in blue.

## Batch correction We eliminate the obvious batch effect between batches with linear regression, which is possible due to the replicated nature of the experimental design. We set `keep=1:2` to retain the effect of the first two coefficients in `design` corresponding to our phenotype of interest. ```r library(batchelor) sce.mess <- correctExperiments(sce.mess, PARAM = RegressParam( design = model.matrix(~sce.mess$phenotype + sce.mess$`experiment batch`), keep = 1:2 ) ) ``` ## Dimensionality Reduction We could have set `d=` and `subset.row=` in `correctExperiments()` to automatically perform a PCA on the the residual matrix with the subset of HVGs, but we'll just explicitly call `runPCA()` here to keep things simple. ```r set.seed(1101001) sce.mess <- runPCA(sce.mess, subset_row = top.hvgs, exprs_values = "corrected") sce.mess <- runTSNE(sce.mess, dimred = "PCA", perplexity = 40) ``` From a naive PCA, the cell cycle appears to be a major source of biological variation within each phenotype. ```r gridExtra::grid.arrange( plotTSNE(sce.mess, colour_by = "phenotype") + ggtitle("By phenotype"), plotTSNE(sce.mess, colour_by = "experiment batch") + ggtitle("By batch "), plotTSNE(sce.mess, colour_by = "CDK1", swap_rownames="SYMBOL") + ggtitle("By CDK1"), plotTSNE(sce.mess, colour_by = "phase") + ggtitle("By phase"), ncol = 2 ) ```
Obligatory $t$-SNE plots of the Messmer hESC dataset, where each point is a cell and is colored by various attributes.

(\#fig:unref-messmer-hesc-tsne)Obligatory $t$-SNE plots of the Messmer hESC dataset, where each point is a cell and is colored by various attributes.

We perform contrastive PCA (cPCA) and sparse cPCA (scPCA) on the corrected log-expression data to obtain the same number of PCs. Given that the naive hESCs are actually reprogrammed primed hESCs, we will use the single batch of primed-only hESCs as the "background" dataset to remove the cell cycle effect. ```r library(scPCA) is.bg <- sce.mess$`experiment batch`=="3" target <- sce.mess[,!is.bg] background <- sce.mess[,is.bg] mat.target <- t(assay(target, "corrected")[top.hvgs,]) mat.background <- t(assay(background, "corrected")[top.hvgs,]) set.seed(1010101001) con_out <- scPCA( target = mat.target, background = mat.background, penalties = 0, # no penalties = non-sparse cPCA. n_eigen = 50, contrasts = 100 ) reducedDim(target, "cPCA") <- con_out$x ``` ```r set.seed(101010101) sparse_con_out <- scPCA( target = mat.target, background = mat.background, penalties = 1e-4, n_eigen = 50, contrasts = 100, alg = "rand_var_proj" # for speed. ) reducedDim(target, "scPCA") <- sparse_con_out$x ``` We see greater intermingling between phases within both the naive and primed cells after cPCA and scPCA. ```r set.seed(1101001) target <- runTSNE(target, dimred = "cPCA", perplexity = 40, name="cPCA+TSNE") target <- runTSNE(target, dimred = "scPCA", perplexity = 40, name="scPCA+TSNE") ``` ```r gridExtra::grid.arrange( plotReducedDim(target, "cPCA+TSNE", colour_by = "phase") + ggtitle("After cPCA"), plotReducedDim(target, "scPCA+TSNE", colour_by = "phase") + ggtitle("After scPCA"), ncol=2 ) ```
More $t$-SNE plots of the Messmer hESC dataset after cPCA and scPCA, where each point is a cell and is colored by its assigned cell cycle phase.

(\#fig:unref-messmer-hesc-cpca-tsne)More $t$-SNE plots of the Messmer hESC dataset after cPCA and scPCA, where each point is a cell and is colored by its assigned cell cycle phase.

We can quantify the change in the separation between phases within each phenotype using the silhouette coefficient. ```r library(bluster) naive <- target[,target$phenotype=="naive"] primed <- target[,target$phenotype=="primed"] N <- approxSilhouette(reducedDim(naive, "PCA"), naive$phase) P <- approxSilhouette(reducedDim(primed, "PCA"), primed$phase) c(naive=mean(N$width), primed=mean(P$width)) ``` ``` ## naive primed ## 0.02032 0.03025 ``` ```r cN <- approxSilhouette(reducedDim(naive, "cPCA"), naive$phase) cP <- approxSilhouette(reducedDim(primed, "cPCA"), primed$phase) c(naive=mean(cN$width), primed=mean(cP$width)) ``` ``` ## naive primed ## 0.007696 0.011941 ``` ```r scN <- approxSilhouette(reducedDim(naive, "scPCA"), naive$phase) scP <- approxSilhouette(reducedDim(primed, "scPCA"), primed$phase) c(naive=mean(scN$width), primed=mean(scP$width)) ``` ``` ## naive primed ## 0.006614 0.014601 ``` ## Session Info {-}
``` R version 4.4.0 beta (2024-04-15 r86425) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 22.04.4 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] bluster_1.14.0 scPCA_1.18.0 [3] batchelor_1.20.0 scran_1.32.0 [5] scater_1.32.0 ggplot2_3.5.1 [7] scuttle_1.14.0 AnnotationHub_3.12.0 [9] BiocFileCache_2.12.0 dbplyr_2.5.0 [11] ensembldb_2.28.0 AnnotationFilter_1.28.0 [13] GenomicFeatures_1.56.0 AnnotationDbi_1.66.0 [15] scRNAseq_2.18.0 SingleCellExperiment_1.26.0 [17] SummarizedExperiment_1.34.0 Biobase_2.64.0 [19] GenomicRanges_1.56.0 GenomeInfoDb_1.40.0 [21] IRanges_2.38.0 S4Vectors_0.42.0 [23] BiocGenerics_0.50.0 MatrixGenerics_1.16.0 [25] matrixStats_1.3.0 BiocStyle_2.32.0 [27] rebook_1.14.0 loaded via a namespace (and not attached): [1] BiocIO_1.14.0 bitops_1.0-7 [3] filelock_1.0.3 tibble_3.2.1 [5] CodeDepends_0.6.6 graph_1.82.0 [7] XML_3.99-0.16.1 lifecycle_1.0.4 [9] httr2_1.0.1 Rdpack_2.6 [11] edgeR_4.2.0 globals_0.16.3 [13] lattice_0.22-6 alabaster.base_1.4.0 [15] magrittr_2.0.3 limma_3.60.0 [17] sass_0.4.9 rmarkdown_2.26 [19] jquerylib_0.1.4 yaml_2.3.8 [21] metapod_1.12.0 cowplot_1.1.3 [23] DBI_1.2.2 ResidualMatrix_1.14.0 [25] abind_1.4-5 zlibbioc_1.50.0 [27] Rtsne_0.17 purrr_1.0.2 [29] RCurl_1.98-1.14 rappdirs_0.3.3 [31] GenomeInfoDbData_1.2.12 ggrepel_0.9.5 [33] irlba_2.3.5.1 listenv_0.9.1 [35] alabaster.sce_1.4.0 RSpectra_0.16-1 [37] parallelly_1.37.1 dqrng_0.3.2 [39] DelayedMatrixStats_1.26.0 codetools_0.2-20 [41] DelayedArray_0.30.0 tidyselect_1.2.1 [43] UCSC.utils_1.0.0 farver_2.1.1 [45] ScaledMatrix_1.12.0 viridis_0.6.5 [47] GenomicAlignments_1.40.0 jsonlite_1.8.8 [49] BiocNeighbors_1.22.0 tools_4.4.0 [51] Rcpp_1.0.12 glue_1.7.0 [53] gridExtra_2.3 SparseArray_1.4.0 [55] xfun_0.43 dplyr_1.1.4 [57] HDF5Array_1.32.0 gypsum_1.0.0 [59] withr_3.0.0 BiocManager_1.30.22 [61] fastmap_1.1.1 sparsepca_0.1.2 [63] rhdf5filters_1.16.0 fansi_1.0.6 [65] digest_0.6.35 rsvd_1.0.5 [67] R6_2.5.1 mime_0.12 [69] colorspace_2.1-0 RSQLite_2.3.6 [71] paws.storage_0.5.0 utf8_1.2.4 [73] generics_0.1.3 data.table_1.15.4 [75] rtracklayer_1.64.0 httr_1.4.7 [77] S4Arrays_1.4.0 pkgconfig_2.0.3 [79] gtable_0.3.5 blob_1.2.4 [81] XVector_0.44.0 htmltools_0.5.8.1 [83] bookdown_0.39 ProtGenerics_1.36.0 [85] scales_1.3.0 alabaster.matrix_1.4.0 [87] png_0.1-8 knitr_1.46 [89] rjson_0.2.21 curl_5.2.1 [91] cachem_1.0.8 rhdf5_2.48.0 [93] stringr_1.5.1 BiocVersion_3.19.1 [95] KernSmooth_2.23-22 parallel_4.4.0 [97] vipor_0.4.7 restfulr_0.0.15 [99] pillar_1.9.0 grid_4.4.0 [101] alabaster.schemas_1.4.0 vctrs_0.6.5 [103] origami_1.0.7 BiocSingular_1.20.0 [105] beachmat_2.20.0 cluster_2.1.6 [107] beeswarm_0.4.0 evaluate_0.23 [109] cli_3.6.2 locfit_1.5-9.9 [111] compiler_4.4.0 Rsamtools_2.20.0 [113] rlang_1.1.3 crayon_1.5.2 [115] paws.common_0.7.2 future.apply_1.11.2 [117] labeling_0.4.3 ggbeeswarm_0.7.2 [119] stringi_1.8.3 alabaster.se_1.4.0 [121] viridisLite_0.4.2 BiocParallel_1.38.0 [123] assertthat_0.2.1 munsell_0.5.1 [125] Biostrings_2.72.0 coop_0.6-3 [127] lazyeval_0.2.2 Matrix_1.7-0 [129] dir.expiry_1.12.0 ExperimentHub_2.12.0 [131] future_1.33.2 sparseMatrixStats_1.16.0 [133] bit64_4.0.5 Rhdf5lib_1.26.0 [135] KEGGREST_1.44.0 statmod_1.5.0 [137] alabaster.ranges_1.4.0 highr_0.10 [139] kernlab_0.9-32 rbibutils_2.2.16 [141] igraph_2.0.3 memoise_2.0.1 [143] bslib_0.7.0 bit_4.0.5 ```