# Grun mouse HSC (CEL-seq) ## Introduction This performs an analysis of the mouse haematopoietic stem cell (HSC) dataset generated with CEL-seq [@grun2016denovo]. Despite its name, this dataset actually contains both sorted HSCs and a population of micro-dissected bone marrow cells. ## Data loading ```r library(scRNAseq) sce.grun.hsc <- GrunHSCData(ensembl=TRUE) ``` ```r library(AnnotationHub) ens.mm.v97 <- AnnotationHub()[["AH73905"]] anno <- select(ens.mm.v97, keys=rownames(sce.grun.hsc), keytype="GENEID", columns=c("SYMBOL", "SEQNAME")) rowData(sce.grun.hsc) <- anno[match(rownames(sce.grun.hsc), anno$GENEID),] ``` After loading and annotation, we inspect the resulting `SingleCellExperiment` object: ```r sce.grun.hsc ``` ``` ## class: SingleCellExperiment ## dim: 21817 1915 ## metadata(0): ## assays(1): counts ## rownames(21817): ENSMUSG00000109644 ENSMUSG00000007777 ... ## ENSMUSG00000055670 ENSMUSG00000039068 ## rowData names(3): GENEID SYMBOL SEQNAME ## colnames(1915): JC4_349_HSC_FE_S13_ JC4_350_HSC_FE_S13_ ... ## JC48P6_1203_HSC_FE_S8_ JC48P6_1204_HSC_FE_S8_ ## colData names(2): sample protocol ## reducedDimNames(0): ## mainExpName: NULL ## altExpNames(0): ``` ## Quality control ```r unfiltered <- sce.grun.hsc ``` For some reason, no mitochondrial transcripts are available, and we have no spike-in transcripts, so we only use the number of detected genes and the library size for quality control. We block on the protocol used for cell extraction, ignoring the micro-dissected cells when computing this threshold. This is based on our judgement that a majority of micro-dissected plates consist of a majority of low-quality cells, compromising the assumptions of outlier detection. ```r library(scuttle) stats <- perCellQCMetrics(sce.grun.hsc) qc <- quickPerCellQC(stats, batch=sce.grun.hsc$protocol, subset=grepl("sorted", sce.grun.hsc$protocol)) sce.grun.hsc <- sce.grun.hsc[,!qc$discard] ``` We examine the number of cells discarded for each reason. ```r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features discard ## 465 482 488 ``` We create some diagnostic plots for each metric (Figure \@ref(fig:unref-hgrun-qc-dist)). The library sizes are unusually low for many plates of micro-dissected cells; this may be attributable to damage induced by the extraction protocol compared to cell sorting. ```r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard library(scater) gridExtra::grid.arrange( plotColData(unfiltered, y="sum", x="sample", colour_by="discard", other_fields="protocol") + scale_y_log10() + ggtitle("Total count") + facet_wrap(~protocol), plotColData(unfiltered, y="detected", x="sample", colour_by="discard", other_fields="protocol") + scale_y_log10() + ggtitle("Detected features") + facet_wrap(~protocol), ncol=1 ) ```
Distribution of each QC metric across cells in the Grun HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-hgrun-qc-dist)Distribution of each QC metric across cells in the Grun HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

## Normalization ```r library(scran) set.seed(101000110) clusters <- quickCluster(sce.grun.hsc) sce.grun.hsc <- computeSumFactors(sce.grun.hsc, clusters=clusters) sce.grun.hsc <- logNormCounts(sce.grun.hsc) ``` We examine some key metrics for the distribution of size factors, and compare it to the library sizes as a sanity check (Figure \@ref(fig:unref-hgrun-norm)). ```r summary(sizeFactors(sce.grun.hsc)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.027 0.290 0.603 1.000 1.201 16.433 ``` ```r plot(librarySizeFactors(sce.grun.hsc), sizeFactors(sce.grun.hsc), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Grun HSC dataset.

(\#fig:unref-hgrun-norm)Relationship between the library size factors and the deconvolution size factors in the Grun HSC dataset.

## Variance modelling We create a mean-variance trend based on the expectation that UMI counts have Poisson technical noise. We do not block on sample here as we want to preserve any difference between the micro-dissected cells and the sorted HSCs. ```r set.seed(00010101) dec.grun.hsc <- modelGeneVarByPoisson(sce.grun.hsc) top.grun.hsc <- getTopHVGs(dec.grun.hsc, prop=0.1) ``` The lack of a typical "bump" shape in Figure \@ref(fig:unref-hgrun-var) is caused by the low counts. ```r plot(dec.grun.hsc$mean, dec.grun.hsc$total, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(dec.grun.hsc) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) ```
Per-gene variance as a function of the mean for the log-expression values in the Grun HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the simulated Poisson-distributed noise.

(\#fig:unref-hgrun-var)Per-gene variance as a function of the mean for the log-expression values in the Grun HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the simulated Poisson-distributed noise.

## Dimensionality reduction ```r set.seed(101010011) sce.grun.hsc <- denoisePCA(sce.grun.hsc, technical=dec.grun.hsc, subset.row=top.grun.hsc) sce.grun.hsc <- runTSNE(sce.grun.hsc, dimred="PCA") ``` We check that the number of retained PCs is sensible. ```r ncol(reducedDim(sce.grun.hsc, "PCA")) ``` ``` ## [1] 9 ``` ## Clustering ```r snn.gr <- buildSNNGraph(sce.grun.hsc, use.dimred="PCA") colLabels(sce.grun.hsc) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ```r table(colLabels(sce.grun.hsc)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 10 11 12 ## 259 148 221 103 177 108 48 122 98 63 62 18 ``` ```r short <- ifelse(grepl("micro", sce.grun.hsc$protocol), "micro", "sorted") gridExtra:::grid.arrange( plotTSNE(sce.grun.hsc, colour_by="label"), plotTSNE(sce.grun.hsc, colour_by=I(short)), ncol=2 ) ```
Obligatory $t$-SNE plot of the Grun HSC dataset, where each point represents a cell and is colored according to the assigned cluster (left) or extraction protocol (right).

(\#fig:unref-hgrun-tsne)Obligatory $t$-SNE plot of the Grun HSC dataset, where each point represents a cell and is colored according to the assigned cluster (left) or extraction protocol (right).

## Marker gene detection ```r markers <- findMarkers(sce.grun.hsc, test.type="wilcox", direction="up", row.data=rowData(sce.grun.hsc)[,"SYMBOL",drop=FALSE]) ``` To illustrate the manual annotation process, we examine the marker genes for one of the clusters. Upregulation of _Camp_, _Lcn2_, _Ltf_ and lysozyme genes indicates that this cluster contains cells of neuronal origin. ```r chosen <- markers[['6']] best <- chosen[chosen$Top <= 10,] aucs <- getMarkerEffects(best, prefix="AUC") rownames(aucs) <- best$SYMBOL library(pheatmap) pheatmap(aucs, color=viridis::plasma(100)) ```
Heatmap of the AUCs for the top marker genes in cluster 6 compared to all other clusters in the Grun HSC dataset.

(\#fig:unref-heat-hgrun-markers)Heatmap of the AUCs for the top marker genes in cluster 6 compared to all other clusters in the Grun HSC dataset.

## Session Info {-}
``` R version 4.4.0 beta (2024-04-15 r86425) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 22.04.4 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] pheatmap_1.0.12 scran_1.32.0 [3] scater_1.32.0 ggplot2_3.5.1 [5] scuttle_1.14.0 AnnotationHub_3.12.0 [7] BiocFileCache_2.12.0 dbplyr_2.5.0 [9] ensembldb_2.28.0 AnnotationFilter_1.28.0 [11] GenomicFeatures_1.56.0 AnnotationDbi_1.66.0 [13] scRNAseq_2.18.0 SingleCellExperiment_1.26.0 [15] SummarizedExperiment_1.34.0 Biobase_2.64.0 [17] GenomicRanges_1.56.0 GenomeInfoDb_1.40.0 [19] IRanges_2.38.0 S4Vectors_0.42.0 [21] BiocGenerics_0.50.0 MatrixGenerics_1.16.0 [23] matrixStats_1.3.0 BiocStyle_2.32.0 [25] rebook_1.14.0 loaded via a namespace (and not attached): [1] RColorBrewer_1.1-3 jsonlite_1.8.8 [3] CodeDepends_0.6.6 magrittr_2.0.3 [5] ggbeeswarm_0.7.2 gypsum_1.0.0 [7] farver_2.1.1 rmarkdown_2.26 [9] BiocIO_1.14.0 zlibbioc_1.50.0 [11] vctrs_0.6.5 memoise_2.0.1 [13] Rsamtools_2.20.0 DelayedMatrixStats_1.26.0 [15] RCurl_1.98-1.14 htmltools_0.5.8.1 [17] S4Arrays_1.4.0 curl_5.2.1 [19] BiocNeighbors_1.22.0 Rhdf5lib_1.26.0 [21] SparseArray_1.4.0 rhdf5_2.48.0 [23] sass_0.4.9 alabaster.base_1.4.0 [25] bslib_0.7.0 alabaster.sce_1.4.0 [27] httr2_1.0.1 cachem_1.0.8 [29] GenomicAlignments_1.40.0 igraph_2.0.3 [31] mime_0.12 lifecycle_1.0.4 [33] pkgconfig_2.0.3 rsvd_1.0.5 [35] Matrix_1.7-0 R6_2.5.1 [37] fastmap_1.1.1 GenomeInfoDbData_1.2.12 [39] digest_0.6.35 colorspace_2.1-0 [41] paws.storage_0.5.0 dqrng_0.3.2 [43] irlba_2.3.5.1 ExperimentHub_2.12.0 [45] RSQLite_2.3.6 beachmat_2.20.0 [47] labeling_0.4.3 filelock_1.0.3 [49] fansi_1.0.6 httr_1.4.7 [51] abind_1.4-5 compiler_4.4.0 [53] bit64_4.0.5 withr_3.0.0 [55] BiocParallel_1.38.0 viridis_0.6.5 [57] DBI_1.2.2 highr_0.10 [59] HDF5Array_1.32.0 alabaster.ranges_1.4.0 [61] alabaster.schemas_1.4.0 rappdirs_0.3.3 [63] DelayedArray_0.30.0 bluster_1.14.0 [65] rjson_0.2.21 tools_4.4.0 [67] vipor_0.4.7 beeswarm_0.4.0 [69] glue_1.7.0 restfulr_0.0.15 [71] rhdf5filters_1.16.0 grid_4.4.0 [73] Rtsne_0.17 cluster_2.1.6 [75] generics_0.1.3 gtable_0.3.5 [77] metapod_1.12.0 ScaledMatrix_1.12.0 [79] BiocSingular_1.20.0 utf8_1.2.4 [81] XVector_0.44.0 ggrepel_0.9.5 [83] BiocVersion_3.19.1 pillar_1.9.0 [85] limma_3.60.0 dplyr_1.1.4 [87] lattice_0.22-6 rtracklayer_1.64.0 [89] bit_4.0.5 tidyselect_1.2.1 [91] paws.common_0.7.2 locfit_1.5-9.9 [93] Biostrings_2.72.0 knitr_1.46 [95] gridExtra_2.3 bookdown_0.39 [97] ProtGenerics_1.36.0 edgeR_4.2.0 [99] xfun_0.43 statmod_1.5.0 [101] UCSC.utils_1.0.0 lazyeval_0.2.2 [103] yaml_2.3.8 evaluate_0.23 [105] codetools_0.2-20 tibble_3.2.1 [107] alabaster.matrix_1.4.0 BiocManager_1.30.22 [109] graph_1.82.0 cli_3.6.2 [111] munsell_0.5.1 jquerylib_0.1.4 [113] Rcpp_1.0.12 dir.expiry_1.12.0 [115] png_0.1-8 XML_3.99-0.16.1 [117] parallel_4.4.0 blob_1.2.4 [119] sparseMatrixStats_1.16.0 bitops_1.0-7 [121] viridisLite_0.4.2 alabaster.se_1.4.0 [123] scales_1.3.0 purrr_1.0.2 [125] crayon_1.5.2 rlang_1.1.3 [127] cowplot_1.1.3 KEGGREST_1.44.0 ```