# (PART) Case studies {-} # Human PBMCs (10X Genomics) ## Introduction This performs an analysis of the public PBMC ID dataset generated by 10X Genomics [@zheng2017massively], starting from the filtered count matrix. ## Data loading ```r library(TENxPBMCData) all.sce <- list( pbmc3k=TENxPBMCData('pbmc3k'), pbmc4k=TENxPBMCData('pbmc4k'), pbmc8k=TENxPBMCData('pbmc8k') ) ``` ## Quality control ```r unfiltered <- all.sce ``` Cell calling implicitly serves as a QC step to remove libraries with low total counts and number of detected genes. Thus, we will only filter on the mitochondrial proportion. ```r library(scater) stats <- high.mito <- list() for (n in names(all.sce)) { current <- all.sce[[n]] is.mito <- grep("MT", rowData(current)$Symbol_TENx) stats[[n]] <- perCellQCMetrics(current, subsets=list(Mito=is.mito)) high.mito[[n]] <- isOutlier(stats[[n]]$subsets_Mito_percent, type="higher") all.sce[[n]] <- current[,!high.mito[[n]]] } ``` ```r qcplots <- list() for (n in names(all.sce)) { current <- unfiltered[[n]] colData(current) <- cbind(colData(current), stats[[n]]) current$discard <- high.mito[[n]] qcplots[[n]] <- plotColData(current, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() } do.call(gridExtra::grid.arrange, c(qcplots, ncol=3)) ```
Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-pbmc-filtered-var)Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

```r lapply(high.mito, summary) ``` ``` ## $pbmc3k ## Mode FALSE TRUE ## logical 2609 91 ## ## $pbmc4k ## Mode FALSE TRUE ## logical 4182 158 ## ## $pbmc8k ## Mode FALSE TRUE ## logical 8157 224 ``` ## Normalization We perform library size normalization, simply for convenience when dealing with file-backed matrices. ```r all.sce <- lapply(all.sce, logNormCounts) ``` ```r lapply(all.sce, function(x) summary(sizeFactors(x))) ``` ``` ## $pbmc3k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.234 0.748 0.926 1.000 1.157 6.604 ## ## $pbmc4k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.315 0.711 0.890 1.000 1.127 11.027 ## ## $pbmc8k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.296 0.704 0.877 1.000 1.118 6.794 ``` ## Variance modelling ```r library(scran) all.dec <- lapply(all.sce, modelGeneVar) all.hvgs <- lapply(all.dec, getTopHVGs, prop=0.1) ``` ```r par(mfrow=c(1,3)) for (n in names(all.dec)) { curdec <- all.dec[[n]] plot(curdec$mean, curdec$total, pch=16, cex=0.5, main=n, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(curdec) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

(\#fig:unref-filtered-pbmc-variance)Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

## Dimensionality reduction For various reasons, we will first analyze each PBMC dataset separately rather than merging them together. We use randomized SVD, which is more efficient for file-backed matrices. ```r library(BiocSingular) set.seed(10000) all.sce <- mapply(FUN=runPCA, x=all.sce, subset_row=all.hvgs, MoreArgs=list(ncomponents=25, BSPARAM=RandomParam()), SIMPLIFY=FALSE) set.seed(100000) all.sce <- lapply(all.sce, runTSNE, dimred="PCA") set.seed(1000000) all.sce <- lapply(all.sce, runUMAP, dimred="PCA") ``` ## Clustering ```r for (n in names(all.sce)) { g <- buildSNNGraph(all.sce[[n]], k=10, use.dimred='PCA') clust <- igraph::cluster_walktrap(g)$membership colLabels(all.sce[[n]]) <- factor(clust) } ``` ```r lapply(all.sce, function(x) table(colLabels(x))) ``` ``` ## $pbmc3k ## ## 1 2 3 4 5 6 7 8 9 10 ## 475 636 153 476 164 31 159 164 340 11 ## ## $pbmc4k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 ## 127 594 518 775 211 394 187 993 55 201 91 36 ## ## $pbmc8k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ## 292 1603 388 94 738 1035 1049 156 203 153 2098 261 64 14 9 ``` ```r all.tsne <- list() for (n in names(all.sce)) { all.tsne[[n]] <- plotTSNE(all.sce[[n]], colour_by="label") + ggtitle(n) } do.call(gridExtra::grid.arrange, c(all.tsne, list(ncol=2))) ```
Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

(\#fig:unref-filtered-pbmc-tsne)Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

## Data integration With the per-dataset analyses out of the way, we will now repeat the analysis after merging together the three batches. ```r # Intersecting the common genes. universe <- Reduce(intersect, lapply(all.sce, rownames)) all.sce2 <- lapply(all.sce, "[", i=universe,) all.dec2 <- lapply(all.dec, "[", i=universe,) # Renormalizing to adjust for differences in depth. library(batchelor) normed.sce <- do.call(multiBatchNorm, all.sce2) # Identifying a set of HVGs using stats from all batches. combined.dec <- do.call(combineVar, all.dec2) combined.hvg <- getTopHVGs(combined.dec, n=5000) set.seed(1000101) merged.pbmc <- do.call(fastMNN, c(normed.sce, list(subset.row=combined.hvg, BSPARAM=RandomParam()))) ``` We use the percentage of lost variance as a diagnostic measure. ```r metadata(merged.pbmc)$merge.info$lost.var ``` ``` ## pbmc3k pbmc4k pbmc8k ## [1,] 7.044e-03 3.129e-03 0.000000 ## [2,] 6.876e-05 4.912e-05 0.003008 ``` We proceed to clustering: ```r g <- buildSNNGraph(merged.pbmc, use.dimred="corrected") colLabels(merged.pbmc) <- factor(igraph::cluster_louvain(g)$membership) table(colLabels(merged.pbmc), merged.pbmc$batch) ``` ``` ## ## pbmc3k pbmc4k pbmc8k ## 1 535 426 830 ## 2 331 588 1126 ## 3 316 228 436 ## 4 150 179 293 ## 5 170 345 573 ## 6 292 538 1019 ## 7 342 630 1236 ## 8 304 654 1337 ## 9 9 18 95 ## 10 97 365 782 ## 11 33 109 181 ## 12 11 54 161 ## 13 11 3 9 ## 14 4 36 64 ## 15 4 9 15 ``` And visualization: ```r set.seed(10101010) merged.pbmc <- runTSNE(merged.pbmc, dimred="corrected") gridExtra::grid.arrange( plotTSNE(merged.pbmc, colour_by="label", text_by="label", text_colour="red"), plotTSNE(merged.pbmc, colour_by="batch") ) ```
Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

(\#fig:unref-filtered-pbmc-merged-tsne)Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

## Session Info {-}
``` R version 4.4.0 beta (2024-04-15 r86425) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 22.04.4 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] batchelor_1.20.0 BiocSingular_1.20.0 [3] scran_1.32.0 scater_1.32.0 [5] ggplot2_3.5.1 scuttle_1.14.0 [7] TENxPBMCData_1.21.0 HDF5Array_1.32.0 [9] rhdf5_2.48.0 DelayedArray_0.30.0 [11] SparseArray_1.4.0 S4Arrays_1.4.0 [13] abind_1.4-5 Matrix_1.7-0 [15] SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0 [17] Biobase_2.64.0 GenomicRanges_1.56.0 [19] GenomeInfoDb_1.40.0 IRanges_2.38.0 [21] S4Vectors_0.42.0 BiocGenerics_0.50.0 [23] MatrixGenerics_1.16.0 matrixStats_1.3.0 [25] BiocStyle_2.32.0 rebook_1.14.0 loaded via a namespace (and not attached): [1] jsonlite_1.8.8 CodeDepends_0.6.6 [3] magrittr_2.0.3 ggbeeswarm_0.7.2 [5] farver_2.1.1 rmarkdown_2.26 [7] zlibbioc_1.50.0 vctrs_0.6.5 [9] memoise_2.0.1 DelayedMatrixStats_1.26.0 [11] htmltools_0.5.8.1 AnnotationHub_3.12.0 [13] curl_5.2.1 BiocNeighbors_1.22.0 [15] Rhdf5lib_1.26.0 sass_0.4.9 [17] bslib_0.7.0 cachem_1.0.8 [19] ResidualMatrix_1.14.0 igraph_2.0.3 [21] mime_0.12 lifecycle_1.0.4 [23] pkgconfig_2.0.3 rsvd_1.0.5 [25] R6_2.5.1 fastmap_1.1.1 [27] GenomeInfoDbData_1.2.12 digest_0.6.35 [29] colorspace_2.1-0 AnnotationDbi_1.66.0 [31] dqrng_0.3.2 irlba_2.3.5.1 [33] ExperimentHub_2.12.0 RSQLite_2.3.6 [35] beachmat_2.20.0 filelock_1.0.3 [37] labeling_0.4.3 fansi_1.0.6 [39] httr_1.4.7 compiler_4.4.0 [41] bit64_4.0.5 withr_3.0.0 [43] BiocParallel_1.38.0 viridis_0.6.5 [45] DBI_1.2.2 highr_0.10 [47] rappdirs_0.3.3 bluster_1.14.0 [49] tools_4.4.0 vipor_0.4.7 [51] beeswarm_0.4.0 glue_1.7.0 [53] rhdf5filters_1.16.0 grid_4.4.0 [55] Rtsne_0.17 cluster_2.1.6 [57] generics_0.1.3 gtable_0.3.5 [59] ScaledMatrix_1.12.0 metapod_1.12.0 [61] utf8_1.2.4 XVector_0.44.0 [63] RcppAnnoy_0.0.22 ggrepel_0.9.5 [65] BiocVersion_3.19.1 pillar_1.9.0 [67] limma_3.60.0 dplyr_1.1.4 [69] BiocFileCache_2.12.0 lattice_0.22-6 [71] FNN_1.1.4 bit_4.0.5 [73] tidyselect_1.2.1 locfit_1.5-9.9 [75] Biostrings_2.72.0 knitr_1.46 [77] gridExtra_2.3 bookdown_0.39 [79] edgeR_4.2.0 xfun_0.43 [81] statmod_1.5.0 UCSC.utils_1.0.0 [83] yaml_2.3.8 evaluate_0.23 [85] codetools_0.2-20 tibble_3.2.1 [87] BiocManager_1.30.22 graph_1.82.0 [89] cli_3.6.2 uwot_0.2.2 [91] munsell_0.5.1 jquerylib_0.1.4 [93] Rcpp_1.0.12 dir.expiry_1.12.0 [95] dbplyr_2.5.0 png_0.1-8 [97] XML_3.99-0.16.1 parallel_4.4.0 [99] blob_1.2.4 sparseMatrixStats_1.16.0 [101] viridisLite_0.4.2 scales_1.3.0 [103] purrr_1.0.2 crayon_1.5.2 [105] rlang_1.1.3 cowplot_1.1.3 [107] KEGGREST_1.44.0 ```