# HCA human bone marrow (10X Genomics) ## Introduction Here, we use an example dataset from the [Human Cell Atlas immune cell profiling project on bone marrow](https://preview.data.humancellatlas.org), which contains scRNA-seq data for 380,000 cells generated using the 10X Genomics technology. This is a fairly big dataset that represents a good use case for the techniques in [Advanced Chapter 14](http://bioconductor.org/books/3.16/OSCA.advanced/dealing-with-big-data.html#dealing-with-big-data). ## Data loading This dataset is loaded via the *[HCAData](https://bioconductor.org/packages/3.16/HCAData)* package, which provides a ready-to-use `SingleCellExperiment` object. ```r library(HCAData) sce.bone <- HCAData('ica_bone_marrow', as.sparse=TRUE) sce.bone$Donor <- sub("_.*", "", sce.bone$Barcode) ``` We use symbols in place of IDs for easier interpretation later. ```r library(EnsDb.Hsapiens.v86) rowData(sce.bone)$Chr <- mapIds(EnsDb.Hsapiens.v86, keys=rownames(sce.bone), column="SEQNAME", keytype="GENEID") library(scater) rownames(sce.bone) <- uniquifyFeatureNames(rowData(sce.bone)$ID, names = rowData(sce.bone)$Symbol) ``` ## Quality control Cell calling was not performed (see [here](https://s3.amazonaws.com/preview-ica-expression-data/Brief+ICA+Read+Me.pdf)) so we will perform QC using all metrics and block on the donor of origin during outlier detection. We perform the calculation across multiple cores to speed things up. ```r library(BiocParallel) bpp <- MulticoreParam(8) sce.bone <- unfiltered <- addPerCellQC(sce.bone, BPPARAM=bpp, subsets=list(Mito=which(rowData(sce.bone)$Chr=="MT"))) qc <- quickPerCellQC(colData(sce.bone), batch=sce.bone$Donor, sub.fields="subsets_Mito_percent") sce.bone <- sce.bone[,!qc$discard] ``` ```r unfiltered$discard <- qc$discard gridExtra::grid.arrange( plotColData(unfiltered, x="Donor", y="sum", colour_by="discard") + scale_y_log10() + ggtitle("Total count"), plotColData(unfiltered, x="Donor", y="detected", colour_by="discard") + scale_y_log10() + ggtitle("Detected features"), plotColData(unfiltered, x="Donor", y="subsets_Mito_percent", colour_by="discard") + ggtitle("Mito percent"), ncol=2 ) ```
Distribution of QC metrics in the HCA bone marrow dataset. Each point represents a cell and is colored according to whether it was discarded.

(\#fig:unref-hca-bone-qc)Distribution of QC metrics in the HCA bone marrow dataset. Each point represents a cell and is colored according to whether it was discarded.

```r plotColData(unfiltered, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() ```
Percentage of mitochondrial reads in each cell in the HCA bone marrow dataset compared to its total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-hca-bone-mito)Percentage of mitochondrial reads in each cell in the HCA bone marrow dataset compared to its total count. Each point represents a cell and is colored according to whether that cell was discarded.

## Normalization For a minor speed-up, we use already-computed library sizes rather than re-computing them from the column sums. ```r sce.bone <- logNormCounts(sce.bone, size_factors = sce.bone$sum) ``` ```r summary(sizeFactors(sce.bone)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.05 0.47 0.65 1.00 0.89 42.38 ``` ## Variance modeling We block on the donor of origin to mitigate batch effects during HVG selection. We select a larger number of HVGs to capture any batch-specific variation that might be present. ```r library(scran) set.seed(1010010101) dec.bone <- modelGeneVarByPoisson(sce.bone, block=sce.bone$Donor, BPPARAM=bpp) top.bone <- getTopHVGs(dec.bone, n=5000) ``` ```r par(mfrow=c(4,2)) blocked.stats <- dec.bone$per.block for (i in colnames(blocked.stats)) { current <- blocked.stats[[i]] plot(current$mean, current$total, main=i, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(current) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance as a function of the mean for the log-expression values in the HCA bone marrow dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

(\#fig:unref-hca-bone-var)Per-gene variance as a function of the mean for the log-expression values in the HCA bone marrow dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

## Data integration Here we use multiple cores, randomized SVD and approximate nearest-neighbor detection to speed up this step. ```r library(batchelor) library(BiocNeighbors) set.seed(1010001) merged.bone <- fastMNN(sce.bone, batch = sce.bone$Donor, subset.row = top.bone, BSPARAM=BiocSingular::RandomParam(deferred = TRUE), BNPARAM=AnnoyParam(), BPPARAM=bpp) reducedDim(sce.bone, 'MNN') <- reducedDim(merged.bone, 'corrected') ``` We use the percentage of variance lost as a diagnostic measure: ```r metadata(merged.bone)$merge.info$lost.var ``` ``` ## MantonBM1 MantonBM2 MantonBM3 MantonBM4 MantonBM5 MantonBM6 MantonBM7 ## [1,] 0.006922 0.006392 0.000000 0.000000 0.000000 0.000000 0.000000 ## [2,] 0.006380 0.006863 0.023049 0.000000 0.000000 0.000000 0.000000 ## [3,] 0.005068 0.003084 0.005178 0.019496 0.000000 0.000000 0.000000 ## [4,] 0.002009 0.001891 0.001901 0.001786 0.023105 0.000000 0.000000 ## [5,] 0.002452 0.002003 0.001770 0.002926 0.002646 0.023852 0.000000 ## [6,] 0.003167 0.003222 0.003169 0.002636 0.003362 0.003442 0.024650 ## [7,] 0.001968 0.001701 0.002441 0.002045 0.001585 0.002312 0.002003 ## MantonBM8 ## [1,] 0.00000 ## [2,] 0.00000 ## [3,] 0.00000 ## [4,] 0.00000 ## [5,] 0.00000 ## [6,] 0.00000 ## [7,] 0.03216 ``` ## Dimensionality reduction We set `external_neighbors=TRUE` to replace the internal nearest neighbor search in the UMAP implementation with our parallelized approximate search. We also set the number of threads to be used in the UMAP iterations. ```r set.seed(01010100) sce.bone <- runUMAP(sce.bone, dimred="MNN", external_neighbors=TRUE, BNPARAM=AnnoyParam(), BPPARAM=bpp, n_threads=bpnworkers(bpp)) ``` ## Clustering Graph-based clustering generates an excessively large intermediate graph so we will instead use a two-step approach with $k$-means. We generate 1000 small clusters that are subsequently aggregated into more interpretable groups with a graph-based method. If more resolution is required, we can increase `centers` in addition to using a lower `k` during graph construction. ```r library(bluster) set.seed(1000) colLabels(sce.bone) <- clusterRows(reducedDim(sce.bone, "MNN"), TwoStepParam(KmeansParam(centers=1000), NNGraphParam(k=5))) table(colLabels(sce.bone)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 10 11 12 13 ## 20331 11161 55464 47426 15731 10581 64721 26493 18703 15043 17097 4992 3157 ## 14 15 ## 3403 2422 ``` We observe mostly balanced contributions from different samples to each cluster (Figure \@ref(fig:unref-hca-bone-ab)), consistent with the expectation that all samples are replicates from different donors. ```r tab <- table(Cluster=colLabels(sce.bone), Donor=sce.bone$Donor) library(pheatmap) pheatmap(log10(tab+10), color=viridis::viridis(100)) ```
Heatmap of log~10~-number of cells in each cluster (row) from each sample (column).

(\#fig:unref-hca-bone-ab)Heatmap of log~10~-number of cells in each cluster (row) from each sample (column).

```r # TODO: add scrambling option in scater's plotting functions. scrambled <- sample(ncol(sce.bone)) gridExtra::grid.arrange( plotUMAP(sce.bone, colour_by="label", text_by="label"), plotUMAP(sce.bone[,scrambled], colour_by="Donor") ) ```
UMAP plots of the HCA bone marrow dataset after merging. Each point represents a cell and is colored according to the assigned cluster (top) or the donor of origin (bottom).

(\#fig:unref-hca-bone-umap)UMAP plots of the HCA bone marrow dataset after merging. Each point represents a cell and is colored according to the assigned cluster (top) or the donor of origin (bottom).

## Differential expression We identify marker genes for each cluster while blocking on the donor. ```r markers.bone <- findMarkers(sce.bone, block = sce.bone$Donor, direction = 'up', lfc = 1, BPPARAM=bpp) ``` We visualize the top markers for a randomly chosen cluster using a "dot plot" in Figure \@ref(fig:unref-hca-bone-dotplot). The presence of upregulated genes like _LYZ_, _S100A8_ and _VCAN_ is consistent with a monocyte identity for this cluster. ```r top.markers <- markers.bone[["4"]] best <- top.markers[top.markers$Top <= 10,] lfcs <- getMarkerEffects(best) library(pheatmap) pheatmap(lfcs, breaks=seq(-5, 5, length.out=101)) ```
Heatmap of log~2~-fold changes for the top marker genes (rows) of cluster 4 compared to all other clusters (columns).

(\#fig:unref-hca-bone-dotplot)Heatmap of log~2~-fold changes for the top marker genes (rows) of cluster 4 compared to all other clusters (columns).

## Cell type classification We perform automated cell type classification using a reference dataset to annotate each cluster based on its pseudo-bulk profile. This is faster than the per-cell approaches described in Chapter \@ref(cell-type-annotation) at the cost of the resolution required to detect heterogeneity inside a cluster. Nonetheless, it is often sufficient for a quick assignment of cluster identity, and indeed, cluster 4 is also identified as consisting of monocytes from this analysis. ```r se.aggregated <- sumCountsAcrossCells(sce.bone, id=colLabels(sce.bone), BPPARAM=bpp) library(celldex) hpc <- HumanPrimaryCellAtlasData() library(SingleR) anno.single <- SingleR(se.aggregated, ref = hpc, labels = hpc$label.main, assay.type.test="sum") anno.single ``` ``` ## DataFrame with 15 rows and 4 columns ## scores labels delta.next ## ## 1 0.366050:0.741975:0.637800:... GMP 0.3366255 ## 2 0.399229:0.715314:0.628516:... Pro-B_cell_CD34+ 0.0690916 ## 3 0.325812:0.654869:0.570039:... T_cells 0.1292127 ## 4 0.296455:0.742466:0.529404:... Monocyte 0.3099254 ## 5 0.345773:0.565378:0.479722:... T_cells 0.4943226 ## ... ... ... ... ## 11 0.326882:0.646229:0.561060:... T_cells 0.027835817 ## 12 0.380710:0.684123:0.784540:... BM & Prog. 0.000499754 ## 13 0.368546:0.652935:0.580330:... B_cell 0.201098545 ## 14 0.294361:0.706019:0.527282:... Monocyte 0.355212614 ## 15 0.339786:0.687074:0.569933:... GMP 0.131830602 ## pruned.labels ## ## 1 GMP ## 2 Pro-B_cell_CD34+ ## 3 T_cells ## 4 Monocyte ## 5 T_cells ## ... ... ## 11 T_cells ## 12 BM & Prog. ## 13 NA ## 14 Monocyte ## 15 GMP ``` ## Session Info {-}
``` R version 4.2.1 (2022-06-23) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 20.04.5 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] SingleR_2.0.0 celldex_1.7.0 [3] pheatmap_1.0.12 bluster_1.8.0 [5] BiocNeighbors_1.16.0 batchelor_1.14.0 [7] scran_1.26.0 BiocParallel_1.32.0 [9] scater_1.26.0 ggplot2_3.3.6 [11] scuttle_1.8.0 EnsDb.Hsapiens.v86_2.99.0 [13] ensembldb_2.22.0 AnnotationFilter_1.22.0 [15] GenomicFeatures_1.50.0 AnnotationDbi_1.60.0 [17] rhdf5_2.42.0 HCAData_1.13.0 [19] SingleCellExperiment_1.20.0 SummarizedExperiment_1.28.0 [21] Biobase_2.58.0 GenomicRanges_1.50.0 [23] GenomeInfoDb_1.34.0 IRanges_2.32.0 [25] S4Vectors_0.36.0 BiocGenerics_0.44.0 [27] MatrixGenerics_1.10.0 matrixStats_0.62.0 [29] BiocStyle_2.26.0 rebook_1.8.0 loaded via a namespace (and not attached): [1] AnnotationHub_3.6.0 BiocFileCache_2.6.0 [3] igraph_1.3.5 lazyeval_0.2.2 [5] digest_0.6.30 htmltools_0.5.3 [7] viridis_0.6.2 fansi_1.0.3 [9] magrittr_2.0.3 memoise_2.0.1 [11] ScaledMatrix_1.6.0 cluster_2.1.4 [13] limma_3.54.0 Biostrings_2.66.0 [15] prettyunits_1.1.1 colorspace_2.0-3 [17] blob_1.2.3 rappdirs_0.3.3 [19] ggrepel_0.9.1 xfun_0.34 [21] dplyr_1.0.10 crayon_1.5.2 [23] RCurl_1.98-1.9 jsonlite_1.8.3 [25] graph_1.76.0 glue_1.6.2 [27] gtable_0.3.1 zlibbioc_1.44.0 [29] XVector_0.38.0 DelayedArray_0.24.0 [31] BiocSingular_1.14.0 Rhdf5lib_1.20.0 [33] HDF5Array_1.26.0 scales_1.2.1 [35] edgeR_3.40.0 DBI_1.1.3 [37] Rcpp_1.0.9 viridisLite_0.4.1 [39] xtable_1.8-4 progress_1.2.2 [41] dqrng_0.3.0 bit_4.0.4 [43] rsvd_1.0.5 ResidualMatrix_1.8.0 [45] metapod_1.6.0 httr_1.4.4 [47] RColorBrewer_1.1-3 dir.expiry_1.6.0 [49] ellipsis_0.3.2 farver_2.1.1 [51] pkgconfig_2.0.3 XML_3.99-0.12 [53] uwot_0.1.14 CodeDepends_0.6.5 [55] sass_0.4.2 dbplyr_2.2.1 [57] locfit_1.5-9.6 utf8_1.2.2 [59] labeling_0.4.2 tidyselect_1.2.0 [61] rlang_1.0.6 later_1.3.0 [63] munsell_0.5.0 BiocVersion_3.16.0 [65] tools_4.2.1 cachem_1.0.6 [67] cli_3.4.1 generics_0.1.3 [69] RSQLite_2.2.18 ExperimentHub_2.6.0 [71] evaluate_0.17 stringr_1.4.1 [73] fastmap_1.1.0 yaml_2.3.6 [75] knitr_1.40 bit64_4.0.5 [77] purrr_0.3.5 KEGGREST_1.38.0 [79] sparseMatrixStats_1.10.0 mime_0.12 [81] xml2_1.3.3 biomaRt_2.54.0 [83] compiler_4.2.1 beeswarm_0.4.0 [85] filelock_1.0.2 curl_4.3.3 [87] png_0.1-7 interactiveDisplayBase_1.36.0 [89] statmod_1.4.37 tibble_3.1.8 [91] bslib_0.4.0 stringi_1.7.8 [93] highr_0.9 lattice_0.20-45 [95] ProtGenerics_1.30.0 Matrix_1.5-1 [97] vctrs_0.5.0 pillar_1.8.1 [99] lifecycle_1.0.3 rhdf5filters_1.10.0 [101] BiocManager_1.30.19 jquerylib_0.1.4 [103] cowplot_1.1.1 bitops_1.0-7 [105] irlba_2.3.5.1 httpuv_1.6.6 [107] rtracklayer_1.58.0 R6_2.5.1 [109] BiocIO_1.8.0 bookdown_0.29 [111] promises_1.2.0.1 gridExtra_2.3 [113] vipor_0.4.5 codetools_0.2-18 [115] assertthat_0.2.1 rjson_0.2.21 [117] withr_2.5.0 GenomicAlignments_1.34.0 [119] Rsamtools_2.14.0 GenomeInfoDbData_1.2.9 [121] parallel_4.2.1 hms_1.1.2 [123] grid_4.2.1 beachmat_2.14.0 [125] rmarkdown_2.17 DelayedMatrixStats_1.20.0 [127] shiny_1.7.3 ggbeeswarm_0.6.0 [129] restfulr_0.0.15 ```