# Nestorowa mouse HSC (Smart-seq2) ## Introduction This performs an analysis of the mouse haematopoietic stem cell (HSC) dataset generated with Smart-seq2 [@nestorowa2016singlecell]. ## Data loading ```r library(scRNAseq) sce.nest <- NestorowaHSCData() ``` ```r library(AnnotationHub) ens.mm.v97 <- AnnotationHub()[["AH73905"]] anno <- select(ens.mm.v97, keys=rownames(sce.nest), keytype="GENEID", columns=c("SYMBOL", "SEQNAME")) rowData(sce.nest) <- anno[match(rownames(sce.nest), anno$GENEID),] ``` After loading and annotation, we inspect the resulting `SingleCellExperiment` object: ```r sce.nest ``` ``` ## class: SingleCellExperiment ## dim: 46078 1920 ## metadata(0): ## assays(1): counts ## rownames(46078): ENSMUSG00000000001 ENSMUSG00000000003 ... ## ENSMUSG00000107391 ENSMUSG00000107392 ## rowData names(3): GENEID SYMBOL SEQNAME ## colnames(1920): HSPC_007 HSPC_013 ... Prog_852 Prog_810 ## colData names(2): cell.type FACS ## reducedDimNames(1): diffusion ## mainExpName: endogenous ## altExpNames(1): ERCC ``` ## Quality control ```r unfiltered <- sce.nest ``` For some reason, no mitochondrial transcripts are available, so we will perform quality control using the spike-in proportions only. ```r library(scater) stats <- perCellQCMetrics(sce.nest) qc <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent") sce.nest <- sce.nest[,!qc$discard] ``` We examine the number of cells discarded for each reason. ```r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features high_altexps_ERCC_percent ## 146 28 241 ## discard ## 264 ``` We create some diagnostic plots for each metric (Figure \@ref(fig:unref-nest-qc-dist)). ```r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard gridExtra::grid.arrange( plotColData(unfiltered, y="sum", colour_by="discard") + scale_y_log10() + ggtitle("Total count"), plotColData(unfiltered, y="detected", colour_by="discard") + scale_y_log10() + ggtitle("Detected features"), plotColData(unfiltered, y="altexps_ERCC_percent", colour_by="discard") + ggtitle("ERCC percent"), ncol=2 ) ```
Distribution of each QC metric across cells in the Nestorowa HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-nest-qc-dist)Distribution of each QC metric across cells in the Nestorowa HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

## Normalization ```r library(scran) set.seed(101000110) clusters <- quickCluster(sce.nest) sce.nest <- computeSumFactors(sce.nest, clusters=clusters) sce.nest <- logNormCounts(sce.nest) ``` We examine some key metrics for the distribution of size factors, and compare it to the library sizes as a sanity check (Figure \@ref(fig:unref-nest-norm)). ```r summary(sizeFactors(sce.nest)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.044 0.422 0.748 1.000 1.249 15.927 ``` ```r plot(librarySizeFactors(sce.nest), sizeFactors(sce.nest), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Nestorowa HSC dataset.

(\#fig:unref-nest-norm)Relationship between the library size factors and the deconvolution size factors in the Nestorowa HSC dataset.

## Variance modelling We use the spike-in transcripts to model the technical noise as a function of the mean (Figure \@ref(fig:unref-nest-var)). ```r set.seed(00010101) dec.nest <- modelGeneVarWithSpikes(sce.nest, "ERCC") top.nest <- getTopHVGs(dec.nest, prop=0.1) ``` ```r plot(dec.nest$mean, dec.nest$total, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(dec.nest) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) points(curfit$mean, curfit$var, col="red") ```
Per-gene variance as a function of the mean for the log-expression values in the Nestorowa HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-ins (red).

(\#fig:unref-nest-var)Per-gene variance as a function of the mean for the log-expression values in the Nestorowa HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-ins (red).

## Dimensionality reduction ```r set.seed(101010011) sce.nest <- denoisePCA(sce.nest, technical=dec.nest, subset.row=top.nest) sce.nest <- runTSNE(sce.nest, dimred="PCA") ``` We check that the number of retained PCs is sensible. ```r ncol(reducedDim(sce.nest, "PCA")) ``` ``` ## [1] 9 ``` ## Clustering ```r snn.gr <- buildSNNGraph(sce.nest, use.dimred="PCA") colLabels(sce.nest) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ```r table(colLabels(sce.nest)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 ## 203 472 258 175 142 229 20 83 74 ``` ```r plotTSNE(sce.nest, colour_by="label") ```
Obligatory $t$-SNE plot of the Nestorowa HSC dataset, where each point represents a cell and is colored according to the assigned cluster.

(\#fig:unref-nest-tsne)Obligatory $t$-SNE plot of the Nestorowa HSC dataset, where each point represents a cell and is colored according to the assigned cluster.

## Marker gene detection ```r markers <- findMarkers(sce.nest, colLabels(sce.nest), test.type="wilcox", direction="up", lfc=0.5, row.data=rowData(sce.nest)[,"SYMBOL",drop=FALSE]) ``` To illustrate the manual annotation process, we examine the marker genes for one of the clusters. Upregulation of _Car2_, _Hebp1_ amd hemoglobins indicates that cluster 8 contains erythroid precursors. ```r chosen <- markers[['8']] best <- chosen[chosen$Top <= 10,] aucs <- getMarkerEffects(best, prefix="AUC") rownames(aucs) <- best$SYMBOL library(pheatmap) pheatmap(aucs, color=viridis::plasma(100)) ```
Heatmap of the AUCs for the top marker genes in cluster 8 compared to all other clusters.

(\#fig:unref-heat-nest-markers)Heatmap of the AUCs for the top marker genes in cluster 8 compared to all other clusters.

## Cell type annotation ```r library(SingleR) mm.ref <- MouseRNAseqData() # Renaming to symbols to match with reference row names. renamed <- sce.nest rownames(renamed) <- uniquifyFeatureNames(rownames(renamed), rowData(sce.nest)$SYMBOL) labels <- SingleR(renamed, mm.ref, labels=mm.ref$label.fine) ``` Most clusters are not assigned to any single lineage (Figure \@ref(fig:unref-assignments-nest)), which is perhaps unsurprising given that HSCs are quite different from their terminal fates. Cluster 8 is considered to contain erythrocytes, which is roughly consistent with our conclusions from the marker gene analysis above. ```r tab <- table(labels$labels, colLabels(sce.nest)) pheatmap(log10(tab+10), color=viridis::viridis(100)) ```
Heatmap of the distribution of cells for each cluster in the Nestorowa HSC dataset, based on their assignment to each label in the mouse RNA-seq references from the _SingleR_ package.

(\#fig:unref-assignments-nest)Heatmap of the distribution of cells for each cluster in the Nestorowa HSC dataset, based on their assignment to each label in the mouse RNA-seq references from the _SingleR_ package.

## Miscellaneous analyses This dataset also contains information about the protein abundances in each cell from FACS. There is barely any heterogeneity in the chosen markers across the clusters (Figure \@ref(fig:unref-nest-facs)); this is perhaps unsurprising given that all cells should be HSCs of some sort. ```r Y <- colData(sce.nest)$FACS keep <- rowSums(is.na(Y))==0 # Removing NA intensities. se.averaged <- sumCountsAcrossCells(t(Y[keep,]), colLabels(sce.nest)[keep], average=TRUE) averaged <- assay(se.averaged) log.intensities <- log2(averaged+1) centered <- log.intensities - rowMeans(log.intensities) pheatmap(centered, breaks=seq(-1, 1, length.out=101)) ```
Heatmap of the centered log-average intensity for each target protein quantified by FACS in the Nestorowa HSC dataset.

(\#fig:unref-nest-facs)Heatmap of the centered log-average intensity for each target protein quantified by FACS in the Nestorowa HSC dataset.

## Session Info {-}
``` R version 4.1.0 (2021-05-18) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 20.04.2 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base other attached packages: [1] celldex_1.2.0 SingleR_1.6.0 [3] pheatmap_1.0.12 scran_1.20.0 [5] scater_1.20.0 ggplot2_3.3.3 [7] scuttle_1.2.0 AnnotationHub_3.0.0 [9] BiocFileCache_2.0.0 dbplyr_2.1.1 [11] ensembldb_2.16.0 AnnotationFilter_1.16.0 [13] GenomicFeatures_1.44.0 AnnotationDbi_1.54.0 [15] scRNAseq_2.6.0 SingleCellExperiment_1.14.0 [17] SummarizedExperiment_1.22.0 Biobase_2.52.0 [19] GenomicRanges_1.44.0 GenomeInfoDb_1.28.0 [21] IRanges_2.26.0 S4Vectors_0.30.0 [23] BiocGenerics_0.38.0 MatrixGenerics_1.4.0 [25] matrixStats_0.58.0 BiocStyle_2.20.0 [27] rebook_1.2.0 loaded via a namespace (and not attached): [1] igraph_1.2.6 lazyeval_0.2.2 [3] BiocParallel_1.26.0 digest_0.6.27 [5] htmltools_0.5.1.1 viridis_0.6.1 [7] fansi_0.4.2 magrittr_2.0.1 [9] memoise_2.0.0 ScaledMatrix_1.0.0 [11] cluster_2.1.2 limma_3.48.0 [13] Biostrings_2.60.0 prettyunits_1.1.1 [15] colorspace_2.0-1 blob_1.2.1 [17] rappdirs_0.3.3 xfun_0.23 [19] dplyr_1.0.6 crayon_1.4.1 [21] RCurl_1.98-1.3 jsonlite_1.7.2 [23] graph_1.70.0 glue_1.4.2 [25] gtable_0.3.0 zlibbioc_1.38.0 [27] XVector_0.32.0 DelayedArray_0.18.0 [29] BiocSingular_1.8.0 scales_1.1.1 [31] edgeR_3.34.0 DBI_1.1.1 [33] Rcpp_1.0.6 viridisLite_0.4.0 [35] xtable_1.8-4 progress_1.2.2 [37] dqrng_0.3.0 bit_4.0.4 [39] rsvd_1.0.5 metapod_1.0.0 [41] httr_1.4.2 RColorBrewer_1.1-2 [43] dir.expiry_1.0.0 ellipsis_0.3.2 [45] pkgconfig_2.0.3 XML_3.99-0.6 [47] farver_2.1.0 CodeDepends_0.6.5 [49] sass_0.4.0 locfit_1.5-9.4 [51] utf8_1.2.1 tidyselect_1.1.1 [53] labeling_0.4.2 rlang_0.4.11 [55] later_1.2.0 munsell_0.5.0 [57] BiocVersion_3.13.1 tools_4.1.0 [59] cachem_1.0.5 generics_0.1.0 [61] RSQLite_2.2.7 ExperimentHub_2.0.0 [63] evaluate_0.14 stringr_1.4.0 [65] fastmap_1.1.0 yaml_2.2.1 [67] knitr_1.33 bit64_4.0.5 [69] purrr_0.3.4 KEGGREST_1.32.0 [71] sparseMatrixStats_1.4.0 mime_0.10 [73] biomaRt_2.48.0 compiler_4.1.0 [75] beeswarm_0.3.1 filelock_1.0.2 [77] curl_4.3.1 png_0.1-7 [79] interactiveDisplayBase_1.30.0 statmod_1.4.36 [81] tibble_3.1.2 bslib_0.2.5.1 [83] stringi_1.6.2 highr_0.9 [85] bluster_1.2.0 lattice_0.20-44 [87] ProtGenerics_1.24.0 Matrix_1.3-3 [89] vctrs_0.3.8 pillar_1.6.1 [91] lifecycle_1.0.0 BiocManager_1.30.15 [93] jquerylib_0.1.4 BiocNeighbors_1.10.0 [95] cowplot_1.1.1 bitops_1.0-7 [97] irlba_2.3.3 httpuv_1.6.1 [99] rtracklayer_1.52.0 R6_2.5.0 [101] BiocIO_1.2.0 bookdown_0.22 [103] promises_1.2.0.1 gridExtra_2.3 [105] vipor_0.4.5 codetools_0.2-18 [107] assertthat_0.2.1 rjson_0.2.20 [109] withr_2.4.2 GenomicAlignments_1.28.0 [111] Rsamtools_2.8.0 GenomeInfoDbData_1.2.6 [113] hms_1.1.0 grid_4.1.0 [115] beachmat_2.8.0 rmarkdown_2.8 [117] DelayedMatrixStats_1.14.0 Rtsne_0.15 [119] shiny_1.6.0 ggbeeswarm_0.6.0 [121] restfulr_0.0.13 ```