# Messmer human ESC (Smart-seq2) {#messmer-hesc} ## Introduction This performs an analysis of the human embryonic stem cell (hESC) dataset generated with Smart-seq2 [@messmer2019transcriptional], which contains several plates of naive and primed hESCs. The chapter's code is based on the steps in the paper's [GitHub repository](https://github.com/MarioniLab/NaiveHESC2016/blob/master/analysis/preprocess.Rmd), with some additional steps for cell cycle effect removal contributed by Philippe Boileau. ## Data loading Converting the batch to a factor, to make life easier later on. ```r library(scRNAseq) sce.mess <- MessmerESCData() sce.mess$`experiment batch` <- factor(sce.mess$`experiment batch`) ``` ```r library(AnnotationHub) ens.hs.v97 <- AnnotationHub()[["AH73881"]] anno <- select(ens.hs.v97, keys=rownames(sce.mess), keytype="GENEID", columns=c("SYMBOL")) rowData(sce.mess) <- anno[match(rownames(sce.mess), anno$GENEID),] ``` ## Quality control Let's have a look at the QC statistics. ```r colSums(as.matrix(filtered)) ``` ``` ## low_lib_size low_n_features high_subsets_Mito_percent ## 107 99 22 ## high_altexps_ERCC_percent discard ## 117 156 ``` ```r gridExtra::grid.arrange( plotColData(original, x="experiment batch", y="sum", colour_by=I(filtered$discard), other_field="phenotype") + facet_wrap(~phenotype) + scale_y_log10(), plotColData(original, x="experiment batch", y="detected", colour_by=I(filtered$discard), other_field="phenotype") + facet_wrap(~phenotype) + scale_y_log10(), plotColData(original, x="experiment batch", y="subsets_Mito_percent", colour_by=I(filtered$discard), other_field="phenotype") + facet_wrap(~phenotype), plotColData(original, x="experiment batch", y="altexps_ERCC_percent", colour_by=I(filtered$discard), other_field="phenotype") + facet_wrap(~phenotype), ncol=1 ) ```
Distribution of QC metrics across batches (x-axis) and phenotypes (facets) for cells in the Messmer hESC dataset. Each point is a cell and is colored by whether it was discarded.

(\#fig:unref-messmer-hesc-qc)Distribution of QC metrics across batches (x-axis) and phenotypes (facets) for cells in the Messmer hESC dataset. Each point is a cell and is colored by whether it was discarded.

## Normalization ```r library(scran) set.seed(10000) clusters <- quickCluster(sce.mess) sce.mess <- computeSumFactors(sce.mess, cluster=clusters) sce.mess <- logNormCounts(sce.mess) ``` ```r par(mfrow=c(1,2)) plot(sce.mess$sum, sizeFactors(sce.mess), log = "xy", pch=16, xlab = "Library size (millions)", ylab = "Size factor", col = ifelse(sce.mess$phenotype == "naive", "black", "grey")) spike.sf <- librarySizeFactors(altExp(sce.mess, "ERCC")) plot(sizeFactors(sce.mess), spike.sf, log = "xy", pch=16, ylab = "Spike-in size factor", xlab = "Deconvolution size factor", col = ifelse(sce.mess$phenotype == "naive", "black", "grey")) ```
Deconvolution size factors plotted against the library size (left) and spike-in size factors plotted against the deconvolution size factors (right). Each point is a cell and is colored by its phenotype.

(\#fig:unref-messmer-hesc-norm)Deconvolution size factors plotted against the library size (left) and spike-in size factors plotted against the deconvolution size factors (right). Each point is a cell and is colored by its phenotype.

## Cell cycle phase assignment Here, we use multiple cores to speed up the processing. ```r set.seed(10001) hs_pairs <- readRDS(system.file("exdata", "human_cycle_markers.rds", package="scran")) assigned <- cyclone(sce.mess, pairs=hs_pairs, gene.names=rownames(sce.mess), BPPARAM=BiocParallel::MulticoreParam(10)) sce.mess$phase <- assigned$phases ``` ```r table(sce.mess$phase) ``` ``` ## ## G1 G2M S ## 460 406 322 ``` ```r smoothScatter(assigned$scores$G1, assigned$scores$G2M, xlab="G1 score", ylab="G2/M score", pch=16) ```
G1 `cyclone()` phase scores against the G2/M phase scores for each cell in the Messmer hESC dataset.

(\#fig:unref-messmer-hesc-cyclone)G1 `cyclone()` phase scores against the G2/M phase scores for each cell in the Messmer hESC dataset.

## Feature selection ```r dec <- modelGeneVarWithSpikes(sce.mess, "ERCC", block = sce.mess$`experiment batch`) top.hvgs <- getTopHVGs(dec, prop = 0.1) ``` ```r par(mfrow=c(1,3)) for (i in seq_along(dec$per.block)) { current <- dec$per.block[[i]] plot(current$mean, current$total, xlab="Mean log-expression", ylab="Variance", pch=16, cex=0.5, main=paste("Batch", i)) fit <- metadata(current) points(fit$mean, fit$var, col="red", pch=16) curve(fit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance of the log-normalized expression values in the Messmer hESC dataset, plotted against the mean for each batch. Each point represents a gene with spike-ins shown in red and the fitted trend shown in blue.

(\#fig:unref-messmer-hesc-var)Per-gene variance of the log-normalized expression values in the Messmer hESC dataset, plotted against the mean for each batch. Each point represents a gene with spike-ins shown in red and the fitted trend shown in blue.

## Batch correction We eliminate the obvious batch effect between batches with linear regression, which is possible due to the replicated nature of the experimental design. We set `keep=1:2` to retain the effect of the first two coefficients in `design` corresponding to our phenotype of interest. ```r library(batchelor) sce.mess <- correctExperiments(sce.mess, PARAM = RegressParam( design = model.matrix(~sce.mess$phenotype + sce.mess$`experiment batch`), keep = 1:2 ) ) ``` ## Dimensionality Reduction We could have set `d=` and `subset.row=` in `correctExperiments()` to automatically perform a PCA on the the residual matrix with the subset of HVGs, but we'll just explicitly call `runPCA()` here to keep things simple. ```r set.seed(1101001) sce.mess <- runPCA(sce.mess, subset_row = top.hvgs, exprs_values = "corrected") sce.mess <- runTSNE(sce.mess, dimred = "PCA", perplexity = 40) ``` From a naive PCA, the cell cycle appears to be a major source of biological variation within each phenotype. ```r gridExtra::grid.arrange( plotTSNE(sce.mess, colour_by = "phenotype") + ggtitle("By phenotype"), plotTSNE(sce.mess, colour_by = "experiment batch") + ggtitle("By batch "), plotTSNE(sce.mess, colour_by = "CDK1", swap_rownames="SYMBOL") + ggtitle("By CDK1"), plotTSNE(sce.mess, colour_by = "phase") + ggtitle("By phase"), ncol = 2 ) ```
Obligatory $t$-SNE plots of the Messmer hESC dataset, where each point is a cell and is colored by various attributes.

(\#fig:unref-messmer-hesc-tsne)Obligatory $t$-SNE plots of the Messmer hESC dataset, where each point is a cell and is colored by various attributes.

We perform contrastive PCA (cPCA) and sparse cPCA (scPCA) on the corrected log-expression data to obtain the same number of PCs. Given that the naive hESCs are actually reprogrammed primed hESCs, we will use the single batch of primed-only hESCs as the "background" dataset to remove the cell cycle effect. ```r library(scPCA) is.bg <- sce.mess$`experiment batch`=="3" target <- sce.mess[,!is.bg] background <- sce.mess[,is.bg] mat.target <- t(assay(target, "corrected")[top.hvgs,]) mat.background <- t(assay(background, "corrected")[top.hvgs,]) set.seed(1010101001) con_out <- scPCA( target = mat.target, background = mat.background, penalties = 0, # no penalties = non-sparse cPCA. n_eigen = 50, contrasts = 100 ) reducedDim(target, "cPCA") <- con_out$x ``` ```r set.seed(101010101) sparse_con_out <- scPCA( target = mat.target, background = mat.background, penalties = 1e-4, n_eigen = 50, contrasts = 100, alg = "rand_var_proj" # for speed. ) reducedDim(target, "scPCA") <- sparse_con_out$x ``` We see greater intermingling between phases within both the naive and primed cells after cPCA and scPCA. ```r set.seed(1101001) target <- runTSNE(target, dimred = "cPCA", perplexity = 40, name="cPCA+TSNE") target <- runTSNE(target, dimred = "scPCA", perplexity = 40, name="scPCA+TSNE") ``` ```r gridExtra::grid.arrange( plotReducedDim(target, "cPCA+TSNE", colour_by = "phase") + ggtitle("After cPCA"), plotReducedDim(target, "scPCA+TSNE", colour_by = "phase") + ggtitle("After scPCA"), ncol=2 ) ```
More $t$-SNE plots of the Messmer hESC dataset after cPCA and scPCA, where each point is a cell and is colored by its assigned cell cycle phase.

(\#fig:unref-messmer-hesc-cpca-tsne)More $t$-SNE plots of the Messmer hESC dataset after cPCA and scPCA, where each point is a cell and is colored by its assigned cell cycle phase.

We can quantify the change in the separation between phases within each phenotype using the silhouette coefficient. ```r library(bluster) naive <- target[,target$phenotype=="naive"] primed <- target[,target$phenotype=="primed"] N <- approxSilhouette(reducedDim(naive, "PCA"), naive$phase) P <- approxSilhouette(reducedDim(primed, "PCA"), primed$phase) c(naive=mean(N$width), primed=mean(P$width)) ``` ``` ## naive primed ## 0.02032 0.03025 ``` ```r cN <- approxSilhouette(reducedDim(naive, "cPCA"), naive$phase) cP <- approxSilhouette(reducedDim(primed, "cPCA"), primed$phase) c(naive=mean(cN$width), primed=mean(cP$width)) ``` ``` ## naive primed ## 0.007696 0.011941 ``` ```r scN <- approxSilhouette(reducedDim(naive, "scPCA"), naive$phase) scP <- approxSilhouette(reducedDim(primed, "scPCA"), primed$phase) c(naive=mean(scN$width), primed=mean(scP$width)) ``` ``` ## naive primed ## 0.006614 0.014601 ``` ## Session Info {-}
``` R version 4.0.4 (2021-02-15) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 20.04.2 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.12-books/R/lib/libRblas.so LAPACK: /home/biocbuild/bbs-3.12-books/R/lib/libRlapack.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base other attached packages: [1] bluster_1.0.0 scPCA_1.4.0 [3] batchelor_1.6.2 scran_1.18.5 [5] scater_1.18.6 ggplot2_3.3.3 [7] AnnotationHub_2.22.0 BiocFileCache_1.14.0 [9] dbplyr_2.1.0 ensembldb_2.14.0 [11] AnnotationFilter_1.14.0 GenomicFeatures_1.42.2 [13] AnnotationDbi_1.52.0 scRNAseq_2.4.0 [15] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0 [17] Biobase_2.50.0 GenomicRanges_1.42.0 [19] GenomeInfoDb_1.26.4 IRanges_2.24.1 [21] S4Vectors_0.28.1 BiocGenerics_0.36.0 [23] MatrixGenerics_1.2.1 matrixStats_0.58.0 [25] BiocStyle_2.18.1 rebook_1.0.0 loaded via a namespace (and not attached): [1] igraph_1.2.6 lazyeval_0.2.2 [3] listenv_0.8.0 BiocParallel_1.24.1 [5] digest_0.6.27 htmltools_0.5.1.1 [7] viridis_0.5.1 fansi_0.4.2 [9] magrittr_2.0.1 memoise_2.0.0 [11] cluster_2.1.0 limma_3.46.0 [13] globals_0.14.0 Biostrings_2.58.0 [15] askpass_1.1 prettyunits_1.1.1 [17] colorspace_2.0-0 blob_1.2.1 [19] rappdirs_0.3.3 rbibutils_2.0 [21] xfun_0.22 dplyr_1.0.5 [23] callr_3.5.1 crayon_1.4.1 [25] RCurl_1.98-1.3 jsonlite_1.7.2 [27] graph_1.68.0 glue_1.4.2 [29] gtable_0.3.0 zlibbioc_1.36.0 [31] XVector_0.30.0 DelayedArray_0.16.2 [33] coop_0.6-2 kernlab_0.9-29 [35] BiocSingular_1.6.0 future.apply_1.7.0 [37] abind_1.4-5 scales_1.1.1 [39] edgeR_3.32.1 DBI_1.1.1 [41] Rcpp_1.0.6 viridisLite_0.3.0 [43] xtable_1.8-4 progress_1.2.2 [45] dqrng_0.2.1 bit_4.0.4 [47] rsvd_1.0.3 ResidualMatrix_1.0.0 [49] httr_1.4.2 ellipsis_0.3.1 [51] pkgconfig_2.0.3 XML_3.99-0.6 [53] farver_2.1.0 scuttle_1.0.4 [55] CodeDepends_0.6.5 sass_0.3.1 [57] locfit_1.5-9.4 utf8_1.2.1 [59] tidyselect_1.1.0 labeling_0.4.2 [61] rlang_0.4.10 later_1.1.0.1 [63] munsell_0.5.0 BiocVersion_3.12.0 [65] tools_4.0.4 cachem_1.0.4 [67] generics_0.1.0 RSQLite_2.2.4 [69] ExperimentHub_1.16.0 evaluate_0.14 [71] stringr_1.4.0 fastmap_1.1.0 [73] yaml_2.2.1 processx_3.4.5 [75] knitr_1.31 bit64_4.0.5 [77] purrr_0.3.4 future_1.21.0 [79] sparseMatrixStats_1.2.1 mime_0.10 [81] origami_1.0.3 xml2_1.3.2 [83] biomaRt_2.46.3 compiler_4.0.4 [85] beeswarm_0.3.1 curl_4.3 [87] interactiveDisplayBase_1.28.0 statmod_1.4.35 [89] tibble_3.1.0 bslib_0.2.4 [91] stringi_1.5.3 highr_0.8 [93] ps_1.6.0 RSpectra_0.16-0 [95] lattice_0.20-41 ProtGenerics_1.22.0 [97] Matrix_1.3-2 vctrs_0.3.6 [99] pillar_1.5.1 lifecycle_1.0.0 [101] BiocManager_1.30.10 Rdpack_2.1.1 [103] jquerylib_0.1.3 BiocNeighbors_1.8.2 [105] data.table_1.14.0 cowplot_1.1.1 [107] bitops_1.0-6 irlba_2.3.3 [109] httpuv_1.5.5 rtracklayer_1.50.0 [111] R6_2.5.0 bookdown_0.21 [113] promises_1.2.0.1 KernSmooth_2.23-18 [115] gridExtra_2.3 parallelly_1.24.0 [117] vipor_0.4.5 codetools_0.2-18 [119] assertthat_0.2.1 openssl_1.4.3 [121] sparsepca_0.1.2 withr_2.4.1 [123] GenomicAlignments_1.26.0 Rsamtools_2.6.0 [125] GenomeInfoDbData_1.2.4 hms_1.0.0 [127] grid_4.0.4 beachmat_2.6.4 [129] rmarkdown_2.7 DelayedMatrixStats_1.12.3 [131] Rtsne_0.15 shiny_1.6.0 [133] ggbeeswarm_0.6.0 ```