Package: MsBackendSql
Authors: Johannes Rainer [aut, cre] (https://orcid.org/0000-0002-6977-7147),
Chong Tang [ctb],
Laurent Gatto [ctb] (https://orcid.org/0000-0002-1520-2268)
Compiled: Tue Oct 29 21:45:01 2024
The Spectra Bioconductor package provides a flexible and
expandable infrastructure for Mass Spectrometry (MS) data. The package supports
interchangeable use of different backends that provide additional file support
or different ways to store and represent MS data. The
MsBackendSql package provides backends to store data from whole
MS experiments in SQL databases. The data in such databases can be easily (and
efficiently) accessed using Spectra
objects that use the MsBackendSql
class
as an interface to the data in the database. Such Spectra
objects have a
minimal memory footprint and hence allow analysis of very large data sets even
on computers with limited hardware capabilities. For certain operations, the
performance of this data representation is superior to that of other low-memory
(on-disk) data representations such as Spectra
’s MsBackendMzR
backend.
Finally, the MsBackendSql
supports also remote data access to e.g. a central
database server hosting several large MS data sets.
The package can be installed with the BiocManager
package. To install
BiocManager
use install.packages("BiocManager")
and, after that,
BiocManager::install("MsBackendSql")
to install this package.
MsBackendSql
SQL databasesMsBackendSql
SQL databases can be created either by importing (raw) MS data
from MS data files using the createMsBackendSqlDatabase()
or using the
backendInitialize()
function by providing in addition to the database
connection also the full MS data to import as a DataFrame
. In the first
example we use the createMsBackendSqlDatabase()
function which takes a
connection to an (empty) database and the names of the files from which the data
should be imported as input parameters creates all necessary database tables and
stores the full data into the database. Below we create an empty SQLite database
(in a temporary file) and fill that with MS data from two mzML files (from the
msdata package).
library(RSQLite)
dbfile <- tempfile()
con <- dbConnect(SQLite(), dbfile)
library(MsBackendSql)
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)
createMsBackendSqlDatabase(con, fls)
By default the m/z and intensity values are stored as BLOB data types in the database. This has advantages on the performance to extract peaks data from the database but would for example not allow to filter peaks by m/z values directly in the database. As an alternative it is also possible to the individual m/z and intensity values in separate rows of the database table. This long table format results however in considerably larger databases (with potentially poorer performance). Note also that the code and backend is optimized for MySQL/MariaDB databases by taking advantage of table partitioning and specialized table storage options. Any other SQL database server is however also supported (also portable, self-contained SQLite databases).
The MsBackendSql package provides two backends to interact with such
databases: the (default) MsBackendSql
class and the MsBackendOfflineSql
,
that inherits all properties and functions from the former, but which does not
store the connection to the database within the object but connects (and
disconnects) to (and from) the database in each function call. This allows to
use the latter also for parallel processing setups or to save/load the object
(e.g. using save
and saveRDS
). Thus, for most applications the
MsBackendOfflineSql
might be used as the preferred backend to SQL databases.
To access the data in the database we create below a Spectra
object providing
the connection to the database in the constructor call and specifying to use the
MsBackendSql
as backend using the source
parameter.
sps <- Spectra(con, source = MsBackendSql())
sps
## MSn data (Spectra) with 1862 spectra in a MsBackendSql backend:
## msLevel precursorMz polarity
## <integer> <numeric> <integer>
## 1 1 NA 1
## 2 1 NA 1
## 3 1 NA 1
## 4 1 NA 1
## 5 1 NA 1
## ... ... ... ...
## 1858 1 NA 1
## 1859 1 NA 1
## 1860 1 NA 1
## 1861 1 NA 1
## 1862 1 NA 1
## ... 34 more variables/columns.
## Use 'spectraVariables' to list all of them.
## Database: /home/biocbuild/bbs-3.20-bioc/tmpdir/RtmpJyEeaf/file6b1ee2299db33
As an alternative, the MsBackendOfflineSql
backend could also be used to
interface with MS data in a SQL database. In contrast to the MsBackendSql
, the
MsBackendOfflineSql
does not contain an active (open) connection to the
database and hence supports serializing (saving) the object to disk using
e.g. the save()
function, or parallel processing (if supported by the database
system). Thus, for most use cases the MsBackendOfflineSql
should be used
instead of the MsBackendSql
. See further below for more information on the
MsBackendOfflineSql
.
Spectra
objects allow also to change the backend to any other backend
(extending MsBackend
) using the setBackend()
function. Below we use this
function to first load all data into memory by changing from the MsBackendSql
to a MsBackendMemory
.
sps_mem <- setBackend(sps, MsBackendMemory())
sps_mem
## MSn data (Spectra) with 1862 spectra in a MsBackendMemory backend:
## msLevel rtime scanIndex
## <integer> <numeric> <integer>
## 1 1 0.280 1
## 2 1 0.559 2
## 3 1 0.838 3
## 4 1 1.117 4
## 5 1 1.396 5
## ... ... ... ...
## 1858 1 258.636 927
## 1859 1 258.915 928
## 1860 1 259.194 929
## 1861 1 259.473 930
## 1862 1 259.752 931
## ... 34 more variables/columns.
## Processing:
## Switch backend from MsBackendSql to MsBackendMemory [Tue Oct 29 21:45:09 2024]
With this function it is also possible to change from any backend to a
MsBackendSql
in which case a new database is created and all data from the
originating backend is stored in this database. To change the backend to an
MsBackendOfflineSql
we need to provide the connection information to the SQL
database as additional parameters. These parameters are the same that need to
be passed to a dbConnect()
call to establish the connection to the
database. These parameters include the database driver (parameter drv
), the
database name and eventually the user name, host etc (see ?dbConnect
for more
information). In the simple example below we store the data into a SQLite
database and thus only need to provide the database name, which corresponds
SQLite database file. In our example we store the data into a temporary
file.
sps2 <- setBackend(sps_mem, MsBackendOfflineSql(), drv = SQLite(),
dbname = tempfile())
sps2
## MSn data (Spectra) with 1862 spectra in a MsBackendOfflineSql backend:
## msLevel precursorMz polarity
## <integer> <numeric> <integer>
## 1 1 NA 1
## 2 1 NA 1
## 3 1 NA 1
## 4 1 NA 1
## 5 1 NA 1
## ... ... ... ...
## 1858 1 NA 1
## 1859 1 NA 1
## 1860 1 NA 1
## 1861 1 NA 1
## 1862 1 NA 1
## ... 34 more variables/columns.
## Use 'spectraVariables' to list all of them.
## Database: /home/biocbuild/bbs-3.20-bioc/tmpdir/RtmpJyEeaf/file6b1ee3513c69a
## Processing:
## Switch backend from MsBackendSql to MsBackendMemory [Tue Oct 29 21:45:09 2024]
## Switch backend from MsBackendMemory to MsBackendOfflineSql [Tue Oct 29 21:45:10 2024]
Similar to any other Spectra
object we can retrieve the available spectra
variables using the spectraVariables()
function.
spectraVariables(sps)
## [1] "msLevel" "rtime"
## [3] "acquisitionNum" "scanIndex"
## [5] "dataStorage" "dataOrigin"
## [7] "centroided" "smoothed"
## [9] "polarity" "precScanNum"
## [11] "precursorMz" "precursorIntensity"
## [13] "precursorCharge" "collisionEnergy"
## [15] "isolationWindowLowerMz" "isolationWindowTargetMz"
## [17] "isolationWindowUpperMz" "peaksCount"
## [19] "totIonCurrent" "basePeakMZ"
## [21] "basePeakIntensity" "ionisationEnergy"
## [23] "lowMZ" "highMZ"
## [25] "mergedScan" "mergedResultScanNum"
## [27] "mergedResultStartScanNum" "mergedResultEndScanNum"
## [29] "injectionTime" "filterString"
## [31] "spectrumId" "ionMobilityDriftTime"
## [33] "scanWindowLowerLimit" "scanWindowUpperLimit"
## [35] "spectrum_id_"
The MS peak data can be accessed using either the mz()
, intensity()
or
peaksData()
functions. Below we extract the peaks matrix of the 5th spectrum
and display the first 6 rows.
peaksData(sps)[[5]] |>
head()
## mz intensity
## [1,] 105.0347 0
## [2,] 105.0362 164
## [3,] 105.0376 0
## [4,] 105.0391 0
## [5,] 105.0405 328
## [6,] 105.0420 0
All data (peaks data or spectra variables) are always retrieved on the fly
from the database resulting thus in a minimal memory footprint for the Spectra
object.
print(object.size(sps), units = "KB")
## 91.6 Kb
The backend supports also adding additional spectra variables or changing their values. Below we add 10 seconds to the retention time of each spectrum.
sps$rtime <- sps$rtime + 10
Such operations do however not change the data in the database (which is always considered read-only) but are cached locally within the backend object (in memory). The size in memory of the object is thus higher after changing that spectra variable.
print(object.size(sps), units = "KB")
## 106.3 Kb
Such $<-
operations can also be used to cache spectra variables
(temporarily) in memory which can eventually improve performance. Below we test
the time it takes to extract the MS level from each spectrum from the database,
then cache the MS levels in memory using $msLevel <-
and test the timing to
extract these cached variable.
system.time(msLevel(sps))
## user system elapsed
## 0.011 0.000 0.011
sps$msLevel <- msLevel(sps)
system.time(msLevel(sps))
## user system elapsed
## 0.004 0.000 0.003
We can also use the reset()
function to reset the data to its original state
(this will cause any local spectra variables to be deleted and the backend to be
initialized with the original data in the database).
sps <- reset(sps)
To use the MsBackendOfflineSql
backend we need to provide all information
required to connect to the database along with the database driver to the
Spectra
function. Which parameters are required to connect to the database
depends on the SQL database and the used driver. In our example the data is
stored in a SQLite database, hence we use the SQLite()
database driver and
only need to provide the database name with the dbname
parameter. For a
MySQL/MariaDB database we would use the MariaDB()
driver and would have to
provide the database name, user name, password as well as the host name and port
through which the database is accessible.
sps_off <- Spectra(dbfile, drv = SQLite(),
source = MsBackendOfflineSql())
sps_off
## MSn data (Spectra) with 1862 spectra in a MsBackendOfflineSql backend:
## msLevel precursorMz polarity
## <integer> <numeric> <integer>
## 1 1 NA 1
## 2 1 NA 1
## 3 1 NA 1
## 4 1 NA 1
## 5 1 NA 1
## ... ... ... ...
## 1858 1 NA 1
## 1859 1 NA 1
## 1860 1 NA 1
## 1861 1 NA 1
## 1862 1 NA 1
## ... 34 more variables/columns.
## Use 'spectraVariables' to list all of them.
## Database: /home/biocbuild/bbs-3.20-bioc/tmpdir/RtmpJyEeaf/file6b1ee2299db33
This backend provides the exact same functionality than MsBackendSql
with the
difference that the connection to the database is opened and closed for each
function call. While this leads to a slightly lower performance, it allows to to
serialize the object (i.e. save/load the object to/from disk) and to use it (and
hence the Spectra
object) also in a parallel processing setup. In contrast,
for the MsBackendSql
parallel processing is disabled since it is not possible
to share the active backend connection within the object across different
parallel processes.
Below we compare the performance of the two backends. The performance difference is the result from opening and closing the database connection for each call. Note that this will also depend on the SQL server that is being used. For SQLite databases there is almost no overhead.
library(microbenchmark)
microbenchmark(msLevel(sps), msLevel(sps_off))
## Unit: milliseconds
## expr min lq mean median uq max neval
## msLevel(sps) 9.40830 9.690755 10.36124 9.957933 10.37270 26.46289 100
## msLevel(sps_off) 11.68496 12.243863 12.96131 12.650417 13.28398 23.48406 100
## cld
## a
## b
The need to retrieve any spectra data on-the-fly from the database will have an
impact on the performance of data access function of Spectra
objects using the
MsBackendSql
backends. To evaluate its impact we next compare the performance
of the MsBackendSql
to other Spectra
backends, specifically, the
MsBackendMzR
which is the default backend to read and represent raw MS data,
and the MsBackendMemory
backend that keeps all MS data in memory (and is thus
not suggested for larger MS experiments). Similar to the MsBackendMzR
, also
the MsBackendSql
keeps only a limited amount of data in memory. These
on-disk backends need thus to retrieve spectra and MS peaks data on-the-fly
from either the original raw data files (in the case of the MsBackendMzR
) or
from the SQL database (in the case of the MsBackendSql
). The in-memory backend
MsBackendMemory
is supposed to provide the fastest data access since all data
is kept in memory.
Below we thus create Spectra
objects from the same data but using the
different backends.
sps <- Spectra(con, source = MsBackendSql())
sps_mzr <- Spectra(fls, source = MsBackendMzR())
sps_im <- setBackend(sps_mzr, backend = MsBackendMemory())
At first we compare the memory footprint of the 3 backends.
print(object.size(sps), units = "KB")
## 91.6 Kb
print(object.size(sps_mzr), units = "KB")
## 386.7 Kb
print(object.size(sps_im), units = "KB")
## 54494.5 Kb
The MsBackendSql
has the lowest memory footprint of all 3 backends because it
does not keep any data in memory. The MsBackendMzR
keeps all spectra
variables, except the MS peaks data, in memory and has thus a larger size. The
MsBackendMemory
keeps all data (including the MS peaks data) in memory and has
thus the largest size in memory.
Next we compare the performance to extract the MS level for each spectrum from
the 4 different Spectra
objects.
library(microbenchmark)
microbenchmark(msLevel(sps),
msLevel(sps_mzr),
msLevel(sps_im))
## Unit: microseconds
## expr min lq mean median uq
## msLevel(sps) 10049.248 10742.8485 11264.9676 11093.1030 11353.1480
## msLevel(sps_mzr) 625.455 731.2560 758.2514 752.5195 791.1210
## msLevel(sps_im) 13.747 22.8825 39.1931 38.8835 48.7745
## max neval cld
## 22271.432 100 a
## 1075.878 100 b
## 251.658 100 c
Extracting MS levels is thus slowest for the MsBackendSql
, which is not
surprising because both other backends keep this data in memory while the
MsBackendSql
needs to retrieve it from the database.
We next compare the performance to access the full peaks data from each
Spectra
object.
microbenchmark(peaksData(sps, BPPARAM = SerialParam()),
peaksData(sps_mzr, BPPARAM = SerialParam()),
peaksData(sps_im, BPPARAM = SerialParam()), times = 10)
## Unit: microseconds
## expr min lq mean
## peaksData(sps, BPPARAM = SerialParam()) 150454.710 512879.7 566124.370
## peaksData(sps_mzr, BPPARAM = SerialParam()) 662425.637 709815.1 965406.104
## peaksData(sps_im, BPPARAM = SerialParam()) 534.978 759.2 2675.465
## median uq max neval cld
## 585798.272 678109.450 947619.85 10 a
## 743303.045 1194049.737 2021230.30 10 b
## 1043.746 1119.185 18667.49 10 c
As expected, the MsBackendMemory
has the fasted access to the full peaks
data. The MsBackendSql
outperforms however the MsBackendMzR
providing faster
access to the m/z and intensity values.
Performance can be improved for the MsBackendMzR
using parallel
processing. Note that the MsBackendSql
does not support parallel
processing and thus parallel processing is (silently) disabled in functions such
as peaksData()
.
m2 <- MulticoreParam(2)
microbenchmark(peaksData(sps, BPPARAM = m2),
peaksData(sps_mzr, BPPARAM = m2),
peaksData(sps_im, BPPARAM = m2), times = 10)
## Unit: microseconds
## expr min lq mean median
## peaksData(sps, BPPARAM = m2) 155827.215 159550.14 265999.649 201134.817
## peaksData(sps_mzr, BPPARAM = m2) 660999.505 726218.62 996386.354 740712.750
## peaksData(sps_im, BPPARAM = m2) 785.386 1112.27 1214.685 1200.202
## uq max neval cld
## 227829.447 627539.254 10 a
## 1368957.606 2081131.756 10 b
## 1346.547 1501.448 10 a
We next compare the performance of subsetting operations.
microbenchmark(filterRt(sps, rt = c(50, 100)),
filterRt(sps_mzr, rt = c(50, 100)),
filterRt(sps_im, rt = c(50, 100)))
## Unit: microseconds
## expr min lq mean median
## filterRt(sps, rt = c(50, 100)) 4186.126 4562.969 4917.3595 4760.6290
## filterRt(sps_mzr, rt = c(50, 100)) 3152.652 3369.061 3594.4096 3553.2905
## filterRt(sps_im, rt = c(50, 100)) 700.190 753.220 928.2855 798.2485
## uq max neval cld
## 5074.8510 14494.304 100 a
## 3730.4695 5283.123 100 b
## 856.2025 12332.383 100 c
The two on-disk backends MsBackendSql
and MsBackendMzR
show a comparable
performance for this operation. This filtering does involves access to a spectra
variables (the retention time in this case) which, for the MsBackendSql
needs
first to be retrieved from the backend. The MsBackendSql
backend allows
however also to cache spectra variables (i.e. they are stored within the
MsBackendSql
object). Any access to such cached spectra variables can
eventually be faster because no dedicated SQL query is needed.
To evaluate the performance of a pure subsetting operation we first define the
indices of 10 random spectra and subset the Spectra
objects to these.
idx <- sample(seq_along(sps), 10)
microbenchmark(sps[idx],
sps_mzr[idx],
sps_im[idx])
## Unit: microseconds
## expr min lq mean median uq max neval cld
## sps[idx] 195.066 220.909 247.5236 250.1020 262.9595 609.435 100 a
## sps_mzr[idx] 987.147 1016.286 1079.8392 1031.9795 1092.5170 1984.034 100 b
## sps_im[idx] 294.794 322.146 413.9595 346.5485 362.4350 5679.944 100 c
Here the MsBackendSql
outperforms the other backends because it does not keep
any data in memory and hence does not need to subset these. The two other
backends need to subset the data they keep in memory which is in both cases a
data frame with either a reduced set of spectra variables or the full MS data.
At last we compare also the extraction of the peaks data from the such subset
Spectra
objects.
sps_10 <- sps[idx]
sps_mzr_10 <- sps_mzr[idx]
sps_im_10 <- sps_im[idx]
microbenchmark(peaksData(sps_10),
peaksData(sps_mzr_10),
peaksData(sps_im_10),
times = 10)
## Unit: microseconds
## expr min lq mean median uq
## peaksData(sps_10) 2898.883 3410.737 4347.5583 4446.457 4846.577
## peaksData(sps_mzr_10) 109129.567 117970.453 119444.2952 119360.087 120884.857
## peaksData(sps_im_10) 385.843 557.865 639.6875 641.771 659.908
## max neval cld
## 6785.270 10 a
## 128636.834 10 b
## 927.238 10 c
The MsBackendSql
outperforms the MsBackendMzR
while, not unexpectedly, the
MsBackendMemory
provides fasted access.
The backends from the MsBackendSql package use standard SQL calls to retrieve MS data from the database and hence any SQL database system (for which an R package is available) is supported. SQLite-based databases would represent the easiest and most user friendly solution since no database server administration and user management is required. Indeed, performance of SQLite is very high, even for very large data sets. Server-based databases on the other hand have the advantage to enable a centralized storage and control of MS data (inclusive user management etc). Also, such server systems would also allow data set or server-specific configurations to improve performance.
A comparison between a SQLite-based with a MariaDB-based MsBackendSql database for a large data set comprising over 8,000 samples and over 15,000,000 spectra is available here. In brief, performance to extract data was comparable and for individual spectra variables even faster for the SQLite database. Only when more complex SQL queries were involved (combining several primary keys or data fields) the more advanced MariaDB database outperformed SQLite.
MsBackendSql
The MsBackendSql
backend does not support parallel processing since the
database connection can not be shared across the different (parallel)
processes. Thus, all methods on Spectra
objects that use a MsBackendSql
will
automatically (and silently) disable parallel processing even if a dedicated
parallel processing setup was passed along with the BPPARAM
method.
Some functions on Spectra
objects require to load the MS peak data (i.e., m/z
and intensity values) into memory. For very large data sets (or computers with
limited hardware resources) such function calls can cause out-of-memory
errors. One example is the lengths()
function that determines the number of
peaks per spectrum by loading the peak matrix first into memory. Such functions
should ideally be called using the peaksapply()
function with parameter
chunkSize
(e.g., peaksapply(sps, lengths, chunkSize = 5000L)
). Instead of
processing the full data set, the data will be first split into chunks of size
chunkSize
that are stepwise processed. Hence, only data from chunkSize
spectra is loaded into memory in one iteration.
The MsBackendSql
provides an MS data representations and storage mode with a
minimal memory footprint (in R) that is still comparably efficient for standard
processing and subsetting operations. This backend is specifically useful for
very large MS data sets, that could even be hosted on remote (MySQL/MariaDB)
servers. A potential use case for this backend could thus be to set up a central
storage place for MS experiments with data analysts connecting remotely to this
server to perform initial data exploration and filtering. After subsetting to a
smaller data set of interest, users could then retrieve/download this data by
changing the backend to e.g. a MsBackendMemory
, which would result in a
download of the full data to the user computer’s memory.
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] microbenchmark_1.5.0 RSQLite_2.3.7 MsBackendSql_1.6.0
## [4] Spectra_1.16.0 BiocParallel_1.40.0 S4Vectors_0.44.0
## [7] BiocGenerics_0.52.0 BiocStyle_2.34.0
##
## loaded via a namespace (and not attached):
## [1] sandwich_3.1-1 sass_0.4.9 MsCoreUtils_1.18.0
## [4] lattice_0.22-6 hms_1.1.3 digest_0.6.37
## [7] grid_4.4.1 evaluate_1.0.1 bookdown_0.41
## [10] mvtnorm_1.3-1 fastmap_1.2.0 blob_1.2.4
## [13] Matrix_1.7-1 jsonlite_1.8.9 ProtGenerics_1.38.0
## [16] progress_1.2.3 mzR_2.40.0 DBI_1.2.3
## [19] survival_3.7-0 multcomp_1.4-26 BiocManager_1.30.25
## [22] TH.data_1.1-2 codetools_0.2-20 jquerylib_0.1.4
## [25] cli_3.6.3 rlang_1.1.4 crayon_1.5.3
## [28] Biobase_2.66.0 splines_4.4.1 bit64_4.5.2
## [31] cachem_1.1.0 yaml_2.3.10 tools_4.4.1
## [34] parallel_4.4.1 memoise_2.0.1 ncdf4_1.23
## [37] vctrs_0.6.5 R6_2.5.1 zoo_1.8-12
## [40] lifecycle_1.0.4 fs_1.6.4 IRanges_2.40.0
## [43] bit_4.5.0 clue_0.3-65 MASS_7.3-61
## [46] cluster_2.1.6 pkgconfig_2.0.3 bslib_0.8.0
## [49] data.table_1.16.2 Rcpp_1.0.13 xfun_0.48
## [52] knitr_1.48 htmltools_0.5.8.1 rmarkdown_2.28
## [55] compiler_4.4.1 prettyunits_1.2.0 MetaboCoreUtils_1.14.0