--- title: "gg4way" author: - name: "Ben Laufer" output: BiocStyle::html_document: toc_float: TRUE bibliography: references.bib date: "`r doc_date()`" package: "`r pkg_ver('gg4way')`" vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{gg4way} %\VignetteEncoding{UTF-8} --- ```{r Setup, include = FALSE} knitr::opts_chunk$set(collapse = TRUE, message = FALSE, crop = NULL) ``` # Introduction 4way plots enable a comparison of the logFC values from two contrasts of differential gene expression [@Friedman]. The gg4way package creates 4way plots using the ggplot2 framework and supports popular Bioconductor objects. The package also provides information about the correlation between contrasts and significant genes of interest. # Installation ```{r Install, eval = FALSE} if (!requireNamespace("BiocManager", quietly = TRUE)) { install.packages("BiocManager") } BiocManager::install("gg4way") ``` To install the development version directly from GitHub: ```{r Install GitHub, eval = FALSE} if (!requireNamespace("remotes", quietly = TRUE)) { install.packages("remotes") } remotes::install_github("ben-laufer/gg4way") ``` # Quick start: limma This example involves testing a popular RNA-seq dataset using limma-voom. ## Prepare data First the [airway](https://doi.org/doi:10.18129/B9.bioc.airway) data package is loaded, gene symbols are added, and then for the purpose of this vignette only genes with symbols are kept. ```{r Prepare data} library("airway") data("airway") se <- airway library("org.Hs.eg.db") rowData(se)$symbol <- mapIds(org.Hs.eg.db, keys = rownames(se), column = "SYMBOL", keytype = "ENSEMBL") rowData(se)$ID <- rownames(se) se <- se[!is.na(rowData(se)$symbol)] ``` ## limma-voom The output from `limma::eBayes()` and `limma::treat()` is supported; however, only the former is shown for this example. ```{r limma} library("edgeR") library("limma") dge <- se |> SE2DGEList() design <- model.matrix(~ 0 + cell + dex, data = dge$samples) colnames(design) <- gsub("cell", "", colnames(design)) contr.matrix <- makeContrasts(N61311 - N052611, N061011 - N052611, levels = c("N052611", "N061011", "N080611", "N61311", "dexuntrt")) keep <- filterByExpr(dge, design) dge <- dge[keep, ] efit <- dge |> calcNormFactors() |> voom(design) |> lmFit(design) |> contrasts.fit(contrasts = contr.matrix) |> eBayes() ``` ## Plot Finally, we create a 4way plot comparing the logFC for all genes in the two contrasts. ```{r limmaPlot, fig.cap="gg4way from limma", fig.width=6, fig.height=6.5, dpi=50} library("gg4way") p1 <- efit |> gg4way(x = "N61311 vs N052611", y = "N061011 vs N052611") p1 ``` ```{r Prepare text, include=FALSE} textTable <- p1 |> getTotals() blueText <- textTable |> dplyr::filter(countGroup == "bottomLeft") |> dplyr::pull(n) redText <- textTable |> dplyr::filter(countGroup == "sigX xDown yDown") |> dplyr::pull(n) greenText <- textTable |> dplyr::filter(countGroup == "sigY xDown yDown") |> dplyr::pull(n) ``` The legend title at the bottom shows that there is a correlation of r = `r getCor(p1)`, which is exemplified by more shared DEGs (blue dots) going in the same direction (upper right and bottom left) than opposite direction (upper left and bottom right). The numbers in the plot give the totals for the different quadrants of the 4way plot. If you look at the bottom left quadrant, the blue text shows that there are `r blueText` DEGs where N052611 has significantly increased expression relative to both N61311 and N061011. The red text shows that there are `r redText` DEGs where N052611 has significantly increased expression relative to N61311 only, while the green text shows that there are `r greenText` DEGs where N052611 has significantly increased expression relative to N061011 only. # Add gene labels ## Table for labels The genes that are significant in both contrasts can be obtained in a table through `getShared()`. ```{r limma table} p1 |> getShared() |> head() ``` ## Plotting labels Gene symbols can be added to the plot through the `label` argument. Setting it to `TRUE` will plot all the genes colored blue, while specific genes can be labelled by providing their symbol. Below, two of the genes from the above table are labelled in the plot. ```{r labelsPlot, fig.cap="gg4way with labels", fig.width=6, fig.height=6.5, dpi=50} efit |> gg4way(x = "N61311 vs N052611", y = "N061011 vs N052611", label = c("PSG5", "ERAP2")) ``` # Advanced options ## Axis titles The axis titles can be further customized through ggplot2. ```{r titlesPlot, fig.cap="gg4way with custom axis titles", fig.width=6, fig.height=6.5, dpi=50} p1 + xlab(expression(atop( paste("Higher in Line 2" %<->% "Higher in Line 1"), paste("Line 1 vs 2 LogFC")))) + ylab(expression(atop( paste("Line 3 vs 2"), paste("Higher in Line 2" %<->% "Higher in Line 3")))) ``` ## Correlation only The Pearson correlation coefficient can be obtained from `getCor()`. Advanced users can apply this in their own functions to compare across pairs in a heatmap. ```{r Correlation} p1 |> getCor() ``` # edgeR In addition to the output of limma, the functions are also compatible with edgeR and DESeq2. If a user is starting here, they will first have to run the [Prepare data] and [limma-voom] subsections in the Quick start: limma section. The output from `edgeR::glmQLFTest()`, `edgeR::glmTreat()`, and `edgeR::glmLRT()` is supported. ```{r edgeRplot, fig.cap="gg4way from edgeR", fig.width=6, fig.height=6.5, dpi=50} library("purrr") rfit <- dge |> calcNormFactors() |> estimateDisp() |> glmQLFit(design) rfit <- contr.matrix |> colnames() |> set_names() |> map(~ rfit |> glmQLFTest(contrast = contr.matrix[,.x])) rfit |> gg4way(x = "N61311 vs N052611", y = "N061011 vs N052611") ``` # DESeq2 If a user is starting here, they will first have to run the [Prepare data] subsection in the Quick start: limma section. ## DESeq analysis For the purpose of this vignette, we filter the object to remove the [difference](https://support.bioconductor.org/p/122825/) between the results name and contrast approaches shown below. ```{r DESeq2} library("DESeq2") ddsSE <- se |> DESeqDataSet(design = ~ cell + dex) keep <- ddsSE |> counts() |> apply(1, function(gene) { all(gene != 0) }) ddsSE <- ddsSE[keep, ] dds <- ddsSE |> DESeq() ``` ## Plot by results name ```{r DESeq2plot, fig.cap="gg4way from DESeq2", fig.width=6, fig.height=6.5, dpi=50} dds |> gg4way(x = "N61311 vs N052611", y = "N061011 vs N052611") ``` ## Plot by contrast The same result as above can be obtained through the `contrast` argument of `DESeq2::results()`, where you can also specify the `lfcThreshold`. ```{r DESeq2plot2, fig.cap="gg4way from DESeq2 contrast", fig.width=6, fig.height=6.5, dpi=50} list("N61311 vs N052611" = c("cell", "N61311", "N052611"), "N061011 vs N052611" = c("cell", "N061011", "N052611")) |> map(~ results(dds, contrast = .x)) |> gg4way(x = "N61311 vs N052611", y = "N061011 vs N052611") ``` ## Plot by lfcShrink Finally, the output of `DESeq2::lfcShrink()` can also be plotted. ```{r DESeq2plot3, fig.cap="gg4way from DESeq2 lfcShrink", fig.width=6, fig.height=6.5, dpi=50} list("N61311 vs N052611" = c("cell", "N61311", "N052611"), "N061011 vs N052611" = c("cell", "N061011", "N052611")) |> map(~ dds |> results(contrast = .x) |> lfcShrink(dds, contrast = .x, res = _, type = "normal")) |> gg4way(x = "N61311 vs N052611", y = "N061011 vs N052611") ``` # Other packages gg4way is not limited to input from limma, edgeR, or DESeq2. It also works with a named list of data.frames, where the names correspond to the `x` and `y` arguments. The separator between groups in the names of the list can be specified using the `sep` argument. Each data.frame should have columns corresponding to values provided to the `ID`, `logFC`, and `FDR` arguments. The `symbol` column is optional and used for the plot labels. This enables cases where not every feature has a (unique) gene ID. If the `symbol` column is not present then the argument should be given the `ID` column. The default values for the arguments can be seen in the documentation through `?gg4way()`. # Package support The [Bioconductor support site](https://support.bioconductor.org/) is the preferred method to ask for help. Before posting, it's recommended to check [previous posts](https://support.bioconductor.org/tag/gg4way/) for the answer and look over the [posting guide](http://www.bioconductor.org/help/support/posting-guide/). For the post, it's important to use the `gg4way` tag and provide both a minimal reproducible example and session information. # Session info ```{r Session info, echo=FALSE} sessionInfo() ``` # References