Package ‘flowCore’

May 24, 2024
Title flowCore: Basic structures for flow cytometry data
Version 2.17.0
Maintainer Mike Jiang <mike@ozette. com>
Description Provides S4 data structures and basic functions to deal with flow cytometry data.
Depends R (>=3.0.2)
Imports Biobase, BiocGenerics ($>=0.29 .2$), grDevices, graphics, methods, stats, utils, stats4, Rcpp, matrixStats, cytolib (>= 2.13.1), S4Vectors

Suggests Rgraphviz, flowViz, flowStats ($>=3.43 .4$), testhat, flowWorkspace, flowWorkspaceData, openCyto, knitr, ggcyto, gridExtra

Collate AllGenerics.R AllClasses.R flowFrame-accessors.R flowSet-accessors.R transform_gate-methods.R coerce.R logicalFilterResult-accessors.R summarizeFilter-methods.R filterSummary-accessors.R manyFilterResult-accessors.R summary-methods.R multipleFilterResult-accessors.R on-methods.R transformList-accessors.R identifier-methods.R parameters-methods.R initialize-methods.R filterResult-accessors.R in-methods.R rectangleGate-accessors.R filterResultList-accessors.R IO.R show-methods.R length-methods.R names-methods.R split-methods.R eval-methods.R gatingML.R FCSTransTransform.R median-logicle-transform.R utils.R flowCore.R GvHD.R CytoExploreR_wrappers.R cpp11.R
License Artistic-2.0
biocViews ImmunoOncology, Infrastructure, FlowCytometry, CellBasedAssays
LinkingTo cpp11, BH(>= 1.81.0.0), cytolib, RProtoBufLib
VignetteBuilder knitr
SystemRequirements GNU make, C++11
RoxygenNote 7.2.3
Encoding UTF-8

```
git_url https://git.bioconductor.org/packages/flowCore
git_branch devel
git_last_commit 55cfde0
git_last_commit_date 2024-04-30
```

Repository Bioconductor 3.20
Date/Publication 2024-05-24
Author B Ellis [aut],
Perry Haaland [aut],
Florian Hahne [aut],
Nolwenn Le Meur [aut],
Nishant Gopalakrishnan [aut],
Josef Spidlen [aut],
Mike Jiang [aut, cre],
Greg Finak [aut],
Samuel Granjeaud [ctb]

Contents

flowCore-package 5
arcsinhTransform 5
asinht-class 6
asinhtGml2-class 8
biexponentialTransform 10
boundaryFilter-class 11
characterOrNumeric-class 13
characterOrParameters-class 14
characterOrTransformation-class 14
checkOffset 15
coerce 15
collapse_desc 16
compensatedParameter-class 16
compensation-class 18
complementFilter-class 21
concreteFilter-class 21
CytoExploreR_exports 22
decompensate 22
dg1polynomial-class 23
each_col 24
EHtrans-class 25
ellipsoidGate-class 26
estimateMedianLogicle 28
exponential-class 29
expressionFilter-class 30
FCSTransTransform 32
filter-and-methods 34
filter-class 34
filter-in-methods 36
filter-methods 36
filter-on-methods 38
filterDetails-methods 38
filterList-class 39
filterReference-class 40
filterResult-class 41
filterResultList-class 41
filters-class 43
filterSummary-class 44
filterSummaryList-class 46
flowFrame-class 47
flowSet-class 54
flowSet_to_list 59
fr_append_cols 60
fsApply 61
getChannelMarker 62
getIndexSort 63
GvHD 64
hyperlog-class 65
hyperlogtGml2-class 66
identifier-methods 69
intersectFilter-class 70
inverseLogicleTransform 70
invsplitscale-class 72
keyword-methods 73
kmeansFilter-class 75
linearTransform 77
lintGml2-class 78
lnTransform 80
logarithm-class 81
logicalFilterResult-class 82
logicletGml2-class 83
logicleTransform 86
logtGml2-class 88
logTransform 90
manyFilterResult-class 91
markernames 92
multipleFilterResult-class 93
normalization-class 94
nullParameter-class 95
parameterFilter-class 96
parameters-class 96
parameters-methods 97
parameterTransform-class 98
polygonGate-class 98
polytopeGate-class 100
quadGate-class 102
quadratic-class 104
quadraticTransform 105
randomFilterResult-class 106
ratio-class 107
ratiotGml2-class 108
read.FCS 110
read.FCSheader 113
read.flowSet 114
rectangleGate-class 116
rotate_gate 118
sampleFilter-class 120
scaleTransform 121
scale_gate 122
setOperationFilter-class 124
shift_gate 124
singleParameterTransform-class 126
sinht-class 127
split-methods 128
splitscale-class 130
splitScaleTransform 132
squareroot-class 134
Subset-methods 135
subsetFilter-class 136
summarizeFilter-methods 137
timeFilter-class 138
transform 140
transform-class 141
transformation-class 142
transformFilter-class 142
transformList-class 143
transformMap-class 145
transformReference-class 146
transform_gate 146
truncateTransform 148
unionFilter-class 149
unitytransform-class 150
updateTransformKeywords 151
validFilters 151
write.FCS 152
write.flowSet 153
Index 155
flowCore-package flowCore: Basic structures for flow cytometry data

Description

Provides S4 data structures and basic infrastructure and functions to deal with flow cytometry data.

Details

Define important flow cytometry data classes: flowFrame, flowSet and their accessors.
Provide important transformation, filter, gating, workflow, and summary functions for flow cytometry data analysis.

Most of flow cytometry related Bioconductor packages (such as flowStats, flowFP, flowQ, flowViz, flowMerge, flowClust) are heavily dependent on this package.

Package:	flowCore
Type:	Package
Version:	1.11 .20
Date:	$2009-09-16$
License:	Artistic-2.0

Author(s)

Maintainer: Florian Hahne fhahne@fhcrc.org
Authors: B. Ellis, P. Haaland, F. Hahne, N. Le Meur, N. Gopalakrishnan

```
arcsinhTransform Create the definition of an arcsinh transformation function (base spec-
``` ified by user) to be applied on a data set

\section*{Description}

Create the definition of the arcsinh Transformation that will be applied on some parameter via the transform method. The definition of this function is currently \(\left.\mathrm{x}<-\mathrm{asinh}\left(a+b^{*} \mathrm{x}\right)+\mathrm{c}\right)\). The transformation would normally be used to convert to a linear valued parameter to the natural logarithm scale. By default a and b are both equal to 1 and c to 0 .

\section*{Usage}
arcsinhTransform(transformationId="defaultArcsinhTransform", \(a=1, b=1, c=0\))

\section*{Arguments}
transformationId character string to identify the transformation
a positive double that corresponds to a shift about 0 .
b positive double that corresponds to a scale factor.
c positive double

\section*{Value}

Returns an object of class transform.

\section*{Author(s)}
B. Ellis

\section*{See Also}
transform-class, transform, asinh
Other Transform functions: biexponentialTransform(), inverseLogicleTransform(), linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
```

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
asinhTrans <- arcsinhTransform(transformationId="ln-transformation", a=1, b=1, c=1)
translist <- transformList('FSC-H', asinhTrans)
dataTransform <- transform(samp, translist)

```
```

asinht-class Class "asinht"

```

\section*{Description}

Inverse hyperbolic sine transform class, which represents a transformation defined by the function:
\[
f(\text { parameter }, a, b)=\sinh ^{-1}(a * \text { parameter }) * b
\]

This definition is such that it can function as an inverse of sinht using the same definitions of the constants a and b.

\section*{Slots}
.Data Object of class "function".
a Object of class "numeric" - non-zero constant.
b Object of class "numeric" - non-zero constant.
parameters Object of class "transformation" - flow parameter to be transformed
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor asinht (parameter, \(a, b\), transformationId)

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

\section*{Note}

The inverse hyperbolic sin transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}
sinht
Other mathematical transform classes: EHtrans-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
asinh1<-asinht(parameters="FSC-H", a=2,b=1, transformationId="asinH1")
transOut<-eval(asinh1)(exprs(dat))

```
```

asinhtGml2-class Class asinhtGml2

```

\section*{Description}

Inverse hyperbolic sin transformation as parameterized in Gating-ML 2.0.

\section*{Details}
asinhtGml2 is defined by the following function:
\[
\text { bound }(f, \text { boundMin, boundMax })=\max (\min (f, \text { boundMax }), \text { boundMin }))
\]
where
\(f(\operatorname{parameter}, T, M, A)=(\operatorname{asinh}(\) parameter \(* \sinh (M * \ln (10)) / T)+A * \ln (10)) /((M+A) * \ln (10))\)
This transformation is equivalent to \(\operatorname{Logicle}(T, 0, M, A)\) (i.e., with \(W=0)\). It provides an inverse hyperbolic sine transformation that maps a data value onto the interval \([0,1]\) such that:
- The top of scale value (i.e., T) is mapped to 1 .
- Large data values are mapped to locations similar to an (M+A)-decade logarithmic scale.
- A decades of negative data are brought on scale.

In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the result of the \(f\) function be less than boundMin, then let the result of this transformation be boundMin. Analogically, should the result of the f function be more than boundMax, then let the result of this transformation be boundMax. The boundMin parameter shall not be greater than the boundMax parameter.

\section*{Slots}

\section*{.Data Object of class function.}

T Object of class numeric - positive constant (top of scale value).
\(M\) Object of class numeric - positive constant (desired number of decades).
A Object of class numeric - non-negative constant that is less than or equal to \(M\) (desired number of additional negative decades).
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.
boundMin Object of class numeric - lower bound of the transformation, default -Inf.
boundMax Object of class numeric - upper bound of the transformation, default Inf.

\section*{Objects from the Class}

Objects can be created by calls to the constructor
asinhtGml2(parameter, T, M, A, transformationId, boundMin, boundMax)

\section*{Extends}

Class singleParameterTransform, directly.
Class transform, by class singleParameterTransform, distance 2 .
Class transformation, by class singleParameterTransform, distance 3 .
Class characterOrTransformation, by class singleParameterTransform, distance 4.

\section*{Note}

The inverse hyperbolic sin transformation object can be evaluated using the eval method by passing the data frame as an argument. The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Spidlen, J.

\section*{References}

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for representing gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/ 20141009.pdf

\section*{See Also}
asinht, transform-class, transform
Other mathematical transform classes: EHtrans-class, asinht-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))
myASinH1 <- asinhtGml2(parameters = "FSC-H", T = 1000, M = 4.5,
A = 0, transformationId="myASinH1")
transOut <- eval(myASinH1)(exprs(myDataIn))

```

\section*{biexponentialTransform}

> Compute a transform using the 'biexponential' function

\section*{Description}

The 'biexponential' is an over-parameterized inverse of the hyperbolic sine. The function to be inverted takes the form \(\operatorname{biexp}(x)=a^{*} \exp \left(b^{*}(x-w)\right)-c^{*} \exp \left(-d^{*}(x-w)\right)+f\) with default parameters selected to correspond to the hyperbolic sine.

\section*{Usage}
biexponentialTransform(transformationId="defaultBiexponentialTransform", \(a=0.5, b=1, c=0.5, d=1, f=0, w=0\), tol \(=\). Machine\$double.eps^ 0.25 , maxit \(=\) as.integer(5000))

\section*{Arguments}
transformationId
A name to assign to the transformation. Used by the transform/filter integration routines.
a See the function description above. Defaults to 0.5
b See the function description above. Defaults to 1.0
c See the function description above. Defaults to 0.5 (the same as a)
d See the function description above. Defaults to 1 (the same as b)
\(\mathrm{f} \quad\) A constant bias for the intercept. Defaults to 0 .
w A constant bias for the 0 point of the data. Defaults to 0 .
tol A tolerance to pass to the inversion routine (uniroot usually)
maxit A maximum number of iterations to use, also passed to uniroot

\section*{Value}

Returns values giving the inverse of the biexponential within a certain tolerance. This function should be used with care as numerical inversion routines often have problems with the inversion process due to the large range of values that are essentially 0 . Do not be surprised if you end up with population splitting about w and other odd artifacts.

\section*{Author(s)}
B. Ellis, N Gopalakrishnan

\section*{See Also}
transform
Other Transform functions: arcsinhTransform(), inverseLogicleTransform(), linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
```


# Construct some "flow-like" data which tends to be hetereoscedastic.

data(GvHD)
biexp <- biexponentialTransform("myTransform")
after.1 <- transform(GvHD, transformList('FSC-H', biexp))
biexp <- biexponentialTransform("myTransform",w=10)
after.2 <- transform(GvHD, transformList('FSC-H', biexp))
opar = par(mfcol=c(3, 1))
plot(density(exprs(GvHD[[1]])[, 1]), main="Original")
plot(density(exprs(after.1[[1]])[, 1]), main="Standard Transform")
plot(density(exprs(after.2[[1]])[, 1]), main="Shifted Zero Point")

```
boundaryFilter-class Class "boundaryFilter"

\section*{Description}

Class and constructor for data-driven filter objects that discard margin events.

\section*{Usage}
boundaryFilter(x, tolerance=.Machine\$double.eps, side=c("both", "lower", "upper"), filterId="defaultBoundaryFilter")

\section*{Arguments}
x
tolerance
side Character vector, used to set the side slot of the object. Can be set separately for each element in x . R's recycling rules apply.
filterId An optional parameter that sets the filterId slot of this filter. The object can later be identified by this name.

\section*{Details}

Flow cytomtery instruments usually operate on a given data range, and the limits of this range are stored as keywords in the FSC files. Depending on the amplification settings and the dynamic range of the measured signal, values can occur that are outside of the measurement range, and most instruments will simply pile those values at the minimum or maximum range limit. The boundaryFilter removes these values, either for a single parameter, or for a combination of parameters. Note that it is often desirable to treat boundary events on a per-parameter basis, since their values might be uninformative for one particular channel, but still be useful in all of the other channels.
The constructor boundaryFilter is a convenience function for object instantiation. Evaluating a boundaryFilter results in a single sub-populations, an hence in an object of class filterResult.

\section*{Value}

Returns a boundaryFilter object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
tolerance Object of class "numeric". The machine tolerance used to decide whether an event is on the measurement boundary. Essentially, this is done by evaluating \(x>m i n R a n g e+\) tolerance \& \(x<m a x R a n g e-t o l e r a n c e\).
side Object of class "character". The margin on which to evaluate the filter. Either upper for the upper margin or lower for the lower margin or both for both margins.

\section*{Extends}

Class "parameterFilter", directly.
Class "concreteFilter", by class parameterFilter, distance 2.
Class "filter", by class parameterFilter, distance 3.

\section*{Objects from the Class}

Objects can be created by calls of the form new ("boundaryFilter", . . .) or using the constructor boundaryFilter. Using the constructor is the recommended way.

\section*{Methods}
\%in\% signature (\(x=\) "flowFrame", table = "boundaryFilter"): The workhorse used to evaluate the filter on data. This is usually not called directly by the user, but internally by calls to the filter methods.
show signature(object = "boundaryFilter"): Print information about the filter.

\section*{Author(s)}

Florian Hahne

\section*{See Also}
flowFrame, flowSet, filter for evaluation of boundaryFilters and Subset for subsetting of flow cytometry data sets based on that.

\section*{Examples}
```


## Loading example data

dat <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

## Create directly. Most likely from a command line

boundaryFilter("FSC-H", filterId="myBoundaryFilter")

## To facilitate programmatic construction we also have the following

bf <- boundaryFilter(filterId="myBoundaryFilter", x=c("FSC-H"))

## Filtering using boundaryFilter

fres <- filter(dat, bf)
fres
summary(fres)

## We can subset the data with the result from the filtering operation.

Subset(dat, fres)

## A boundaryFilter on the lower margins of several channels

bf2 <- boundaryFilter(x=c("FSC-H", "SSC-H"), side="lower")

```
```

characterOrNumeric-class

```
Class "characterOrNumeric"

\section*{Description}

A simple union class of character and numeric. Objects will be created internally whenever necessary and the user should not need to explicitly interact with this class.

\section*{Objects from the Class}

A virtual Class: No objects may be created from it.

\section*{Examples}
```

showClass("characterOrNumeric")

```
```

characterOrParameters-class

```

Class "characterOrParameters"

\section*{Description}

A simple union class of character and parameters. Objects will be created internally whenever necessary and the user should not need to explicitly interact with this class.

\section*{Objects from the Class}

A virtual Class: No objects may be created from it.

\section*{Examples}
```

showClass("characterOrParameters")

```
```

characterOrTransformation-class

```

Class "characterOrTransformation"

\section*{Description}

A simple union class of character and transformation. Objects will be created internally whenever necessary and the user should not need to explicitly interact with this class.

\section*{Objects from the Class}

A virtual Class: No objects may be created from it.

\section*{Examples}
```

showClass("characterOrTransformation")

```

\section*{Description}

Fix the offset when its values recorded in header and TEXT don't agree

\section*{Usage}
checkOffset(offsets, x, ignore.text.offset = FALSE, ...)

\section*{Arguments}
offsets the named vector returned by findOffsets
\(x \quad\) the text segmented returned by readFCStext
ignore.text.offset
whether to ignore the offset info stored in TEXT segment
... not used.

\section*{Value}
the updated offsets
coerce Convert an object to another class

\section*{Description}

These functions manage the relations that allow coercing an object to a given class.

\section*{Arguments}
from, to The classes between which def performs coercion. (In the case of the coerce function, these are objects from the classes, not the names of the classes, but you're not expected to call coerce directly.)

\section*{Details}

The function supplied as the third argument is to be called to implement as (x , to) when x has class from. Need we add that the function should return a suitable object with class to.

\section*{Author(s)}
F. Hahne, B. Ellis

\section*{Examples}
```

samp1 <- read.FCS(system.file("extdata","0877408774.E07", package="flowCore"))
samp2 <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
samples <-list("sample1"=samp1,"sample2"=samp2)
experiment <- as(samples,"flowSet")

```
collapse_desc Coerce the list of the keywords into a character Also flatten spillover
matrix into a string

\section*{Description}

Coerce the list of the keywords into a character Also flatten spillover matrix into a string

\section*{Usage}
collapse_desc(d, collapse.spill = TRUE)

\section*{Arguments}
d a named list of keywords
collapse.spill whether to flatten spillover matrix to a string

\section*{Value}
a list of strings

\section*{Examples}
```

data(GvHD)
fr <- GvHD[[1]]
collapse_desc(keyword(fr))

```
```

compensatedParameter-class

```

Class "compensatedParameter"

\section*{Description}

Emission spectral overlap can be corrected by subtracting the amount of spectral overlap from the total detected signals. This compensation process can be described by using spillover matrices.

\section*{Details}

The compensatedParameter class allows for compensation of specific parameters the user is interested in by creating compensatedParameter objects and evaluating them. This allows for use of compensatedParameter in gate definitions.

\section*{Slots}
.Data Object of class "function".
parameters Object of class "character" - the flow parameters to be compensated.
spillRefId Object of class "character" - the name of the compensation object (The compensation object contains the spillover Matrix).
searchEnv Object of class "environment" -environment in which the compensation object is defined.
transformationId Object of class "character" - a unique Id to reference the compensatedParameter object.

\section*{Objects from the Class}

Objects can be created by calls to the constructor of the form compensatedParameter (parameters, spillRefid, transforr

\section*{Extends}

Class "transform", directly. Class "transformation", by class "transform", distance 2. Class "characterOrTransformation", by class "transform", distance 3.

\section*{Note}

The transformation object can be evaluated using the eval method by passing the data frame as an argument. The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Gopalakrishnan N,F.Hahne

\section*{See Also}
compensation

\section*{Examples}
```

samp <- read.flowSet(path=system.file("extdata", "compdata", "data", package="flowCore"))
cfile <- system.file("extdata","compdata","compmatrix", package="flowCore")
comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)
comp.mat

## create a compensation object

comp <- compensation(comp.mat,compensationId="comp1")

## create a compensated parameter object

```
```

cPar1<-compensatedParameter(c("FL1-H", "FL3-H"), "comp", searchEnv=.GlobalEnv)
compOut<-eval(cPar1)(exprs(samp[[1]]))

```
```

compensation-class Class "compensation"

```

\section*{Description}

Class and methods to compensate for spillover between channels by applying a spillover matrix to a flowSet or a flowFrame assuming a simple linear combination of values.

\section*{Usage}
compensation(..., spillover, compensationId="defaultCompensation")
compensate(x, spillover, ...)

\section*{Arguments}
spillover The spillover or compensation matrix.
compensationId The identifier for the compensation object.
\(x \quad\) An object of class flowFrame or flowSet.
... Further arguments.
The constructor is designed to be useful in both programmatic and interactive settings, and ...serves as a container for possible arguments. The following combinations of values are allowed:
Elements in ... are character scalars of parameter names or transform objects and the colnames in spillover match to these parameter names.
The first element in ... is a character vector of parameter names or a list of character scalars or transform objects and the colnames in spillover match to these parameter names.
Argument spillover is missing and the first element in ... is a matrix, in which case it is assumed to be the spillover matrix.
... is missing, in which case all parameter names are taken from the colnames of spillover.

\section*{Details}

The essential premise of compensation is that some fluorochromes may register signals in detectors that do not correspond to their primary detector (usually a photomultiplier tube). To compensate for this fact, some sort of standard is used to obtain the background signal (no dye) and the amount of signal on secondary channels for each fluorochrome relative to the signal on their primary channel.
To calculate the spillover percentage we use either the mean or the median (more often the latter) of the secondary signal minus the background signal for each dye to obtain \(n\) by \(n\) matrix, \(S\), of
so-called spillover values, expressed as a percentage of the primary channel. The observed values are then considered to be a linear combination of the true fluorescence and the spillover from each other channel so we can obtain the true values by simply multiplying by the inverse of the spillover matrix.
The spillover matrix can be obtained through several means. Some flow cytometers provide a spillover matrix calculated during acquisition, possibly by the operator, that is made available in the metadata of the flowFrame. While there is a theoretical standard keyword \$SPILL it can also be found in the SPILLOVER or SPILL keyword depending on the cytometry. More commonly the spillover matrix is calculated using a series of compensation cells or beads collected before the experiment. If you have set of FCS files with one file per fluorochrome as well as an unstained FCS file you can use the spillover method for flowSets to automatically calculate a spillover matrix.
The compensation class is essentially a wrapper around a matrix that allows for transformed parameters and method dispatch.

\section*{Value}

A compensation object for the constructor.
A flowFrame or flowSet for the compensate methods.

\section*{Slots}
spillover Object of class matrix; the spillover matrix.
compensationId Object of class character. An identifier for the object.
parameters Object of class parameters. The flow parameters for which the compensation is defined. This can also be objects of class transform, in which case the compensation is performed on the compensated parameters.

\section*{Objects from the Class}

Objects should be created using the constructor compensation(). See the Usage and Arguments sections for details.

\section*{Methods}
compensate signature (\(x=\) "flowFrame", spillover = "compensation"): Apply the compensation defined in a compensation object on a flowFrame. This returns a compensated flowFrame.
Usage:
compensate(flowFrame, compensation)
compensate signature (\(x=\) "flowFrame", spillover = "matrix"): Apply a compensation matrix to a flowFrame. This returns a compensated flowFrame.
Usage:
compensate(flowFrame, matrix)
compensate signature (\(x=\) "flowFrame", spillover = "data.frame"):Try to coerce the data.frame to a matrix and apply that to a flowFrame. This returns a compensated flowFrame.
Usage:
compensate(flowFrame, data.frame)
identifier, identifier<- signature(object = "compensation"): Accessor and replacement methods for the compensationId slot.
Usage:
identifier (compensation)
identifier (compensation) <- value
parameters signature(object = "compensation"): Get the parameter names of the compensation object. This method also tries to resolve all transforms and transformReferences before returning the parameters as character vectors. Unresolvable references return NA.
Usage:
parameters(compensation)
show signature(object = "compensation"): Print details about the object.
Usage:
This method is automatically called when the object is printed on the screen.

\section*{Author(s)}
F.Hahne, B. Ellis, N. Le Meur

\section*{See Also}
spillover

\section*{Examples}
```


## Read sample data and a sample spillover matrix

samp <- read.flowSet(path=system.file("extdata", "compdata", "data",
package="flowCore"))
cfile <- system.file("extdata","compdata","compmatrix", package="flowCore")
comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)
comp.mat

## compensate using the spillover matrix directly

summary(samp)
samp <- compensate(samp, comp.mat)
summary(samp)

## create a compensation object and compensate using that

comp <- compensation(comp.mat)
compensate(samp, comp)

## demo the sample-specific compensation

## create a list of comps (each element could be a

## different compensation tailored for the specific sample)

comps <- sapply(sampleNames(samp), function(sn)comp, simplify = FALSE)

# the names of comps must be matched to sample names of the flowset

compensate(samp, comps)

```
complementFilter-class

\section*{Class complementFilter}

\section*{Description}

This class represents the logical complement of a single filter, which is itself a filter that can be incorporated in to further set operations. complementFilters are constructed using the prefix unary set operator "!" with a single filter operand.

\section*{Slots}
filters Object of class "list", containing the component filters.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filter", directly.

\section*{Author(s)}
B. Ellis

\section*{See Also}
filter, setOperationFilter
Other setOperationFilter classes: intersectFilter-class, setOperationFilter-class, subsetFilter-class, unionFilter-class
```

concreteFilter-class Class "concreteFilter"

```

\section*{Description}

The concreteFilter serves as a base class for all filters that actually implement a filtering process. At the moment this includes all filters except filterReference, the only non-concrete filter at present.

\section*{Slots}
filterId The identifier associated with this class.

\section*{Objects from the Class}

Objects of this class should never be created directly. It serves only as a point of inheritance.

\section*{Extends}

Class "filter", directly.

\section*{Author(s)}
B. Ellis

\section*{See Also}
parameterFilter

CytoExploreR_exports CytoExploreR exports

\section*{Description}

Exported wrappers of internal functions for use by CytoExploreR

\section*{Usage}

CytoExploreR_.estimateLogicle(x, channels, ...)
decompensate Decompensate a flowFrame

\section*{Description}

Reverse the application of a compensation matrix on a flowFrame

\section*{Usage}
\#\# S4 method for signature 'flowFrame,matrix'
decompensate(x, spillover)
\#\# S4 method for signature 'flowFrame, compensation'
decompensate(x, spillover)

\section*{Arguments}
x
flowFrame.
spillover matrix or data.frame or a compensation object

\section*{Value}
a decompensated flowFrame

\section*{Examples}
```

library(flowCore)
f = list.files(system.file("extdata",
"compdata",
"data",
package="flowCore"),
full.name=TRUE)[1]
f = read.FCS(f)
spill = read.csv(system.file("extdata",
"compdata", "compmatrix",
package="flowCore"),
, sep="\t", skip=2)
colnames(spill) = gsub("<br>.","-",colnames(spill))
f.comp = compensate(f,spill)
f.decomp = decompensate(f.comp,as.matrix(spill))
sum(abs(f@exprs-f.decomp@exprs))
all.equal(decompensate(f.comp,spill)@exprs,decompensate(f.comp,as.matrix(spill))@exprs)
all.equal(f@exprs,decompensate(f.comp,spill)@exprs)

```
dg1polynomial-class Class "dglpolynomial"

\section*{Description}
dg1polynomial allows for scaling, linear combination and translation within a single transformation defined by the function
\[
f\left(\text { parameter }_{1}, \ldots, \text { parameter }_{n}, a_{1}, \ldots, a_{n}, b\right)=b+\Sigma_{i=1}^{n} a_{i} * \text { parameter }_{i}
\]

\section*{Slots}
.Data Object of class "function".
parameters Object of class "parameters" -the flow parameters that are to be transformed.
a Object of class "numeric" - coefficients of length equal to the number of flow parameters.
b Object of class "numeric" - coefficient of length 1 that performs the translation.
transformationId Object of class "character" unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by using the constructor dg1polynomial (parameter, a, b, transformationId).

\section*{Extends}

Class "transform", directly.
Class "transformation", by class "transform", distance 2.
Class "characterOrTransformation", by class "transform", distance 3.

Note
The transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column.(See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}
ratio,quadratic,squareroot
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
dg1<-dg1polynomial(c("FSC-H","SSC-H"),a=c(1, 2),b=1,transformationId="dg1")
transOut<-eval(dg1)(exprs(dat))

```
```

each_col Methods to apply functions over flowFrame margins

```

\section*{Description}

Returns a vector or array of values obtained by applying a function to the margins of a flowFrame. This is equivalent of running apply on the output of exprs(flowFrame).

\section*{Usage}
each_col(x, FUN, ...)
each_row(x, FUN, ...)

\section*{Arguments}

X
FUN
Object of class flowFrame.
the function to be applied. In the case of functions like ' + ', ' \(\% * \%\) ', etc., the function name must be backquoted or quoted.
optional arguments to 'FUN'.

\section*{Author(s)}
B. Ellis, N. LeMeur, F. Hahne

\section*{See Also}
apply

\section*{Examples}
```

samp <- read.FCS(system.file("extdata", "0877408774.B08", package="flowCore"),
transformation="linearize")
each_col(samp, summary)

```
 EHtrans-class Class "EHtrans"

\section*{Description}

EH transformation of a parameter is defined by the function
\[
\begin{gathered}
E H(\text { parameter }, a, b)=10^{\left(\frac{\text { parameter }}{a}\right)}+\frac{b * \text { parameter }}{a}-1, \text { parameter }>=0 \\
-10^{\left(\frac{- \text { parameter }}{a}\right)}+\frac{b * \text { parameter }}{a}+1, \text { parameter }<0
\end{gathered}
\]

\section*{Slots}
.Data Object of class "function".
a Object of class "numeric" - numeric constant greater than zero.
b Object of class "numeric" - numeric constant greater than zero.
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor EHtrans (parameters, a, b, transformationId)

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

\section*{Note}

The transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}
hyperlog
Other mathematical transform classes: asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
eh1<-EHtrans("FSC-H",a=1250,b=4,transformationId="eh1")
transOut<-eval(eh1)(exprs(dat))

```
ellipsoidGate-class Class "ellipsoidGate"

\section*{Description}

Class and constructor for n-dimensional ellipsoidal filter objects.

\section*{Usage}
ellipsoidGate(..., .gate, mean, distance=1, filterId="defaultEllipsoidGate")

\section*{Arguments}
filterId An optional parameter that sets the filterId of this gate.
.gate A definition of the gate via a covariance matrix.
mean \(\quad\) Numeric vector of equal length as dimensions in .gate.
distance \(\quad\) Numeric scalar giving the Mahalanobis distance defining the size of the ellipse. This mostly exists for compliance reasons to the gatingML standard as mean and gate should already uniquely define the ellipse. Essentially, distance is merely a factor that gets applied to the values in the covariance matrix.
... You can also directly describe the covariance matrix through named arguments, as described below.

\section*{Details}

A convenience method to facilitate the construction of a ellipsoid filter objects. Ellipsoid gates in \(n\) dimensions (\(n>=2\)) are specified by a a covarinace matrix and a vector of mean values giving the center of the ellipse.

This function is designed to be useful in both direct and programmatic usage. In the first case, simply describe the covariance matrix through named arguments. To use this function programmatically, you may pass a covarince matrix and a mean vector directly, in which case the parameter names are the colnames of the matrix.

\section*{Value}

Returns a ellipsoidGate object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
mean Objects of class "numeric". Vector giving the location of the center of the ellipse in n dimensions.
cov Objects of class "matrix". The covariance matrix defining the shape of the ellipse.
distance Objects of class "numeric". The Mahalanobis distance defining the size of the ellipse.
parameters Object of class "character", describing the parameter used to filter the flowFrame.
filterId Object of class "character", referencing the filter.

\section*{Extends}

Class "parameterFilter", directly.
Class "concreteFilter", by class parameterFilter, distance 2.
Class "filter", by class parameterFilter, distance 3.

\section*{Objects from the Class}

Objects can be created by calls of the form new("ellipsoidGate", . .) or by using the constructor ellipsoidGate. Using the constructor is the recommended way.

\section*{Methods}
\%in\% signature (\(x=\) "flowFrame", table = "ellipsoidGate" \()\) : The workhorse used to evaluate the filter on data. This is usually not called directly by the user, but internally by calls to the filter methods.
show signature(object = "ellipsoidGate"): Print information about the filter.

Note
See the documentation in the flowViz package for plotting of ellipsoidGates.

\section*{Author(s)}
F.Hahne, B. Ellis, N. LeMeur

\section*{See Also}
flowFrame, polygonGate, rectangleGate, polytopeGate, filter for evaluation of rectangleGates and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.

Other Gate classes: polygonGate-class, polytopeGate-class, quadGate-class, rectangleGate-class

\section*{Examples}
```


## Loading example data

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

## Defining the gate

cov <- matrix(c(6879, 3612, 3612, 5215), ncol=2,
dimnames=list(c("FSC-H", "SSC-H"), c("FSC-H", "SSC-H")))
mean <- c("FSC-H"=430, "SSC-H"=175)
eg <- ellipsoidGate(filterId= "myEllipsoidGate", .gate=cov, mean=mean)

## Filtering using ellipsoidGates

fres <- filter(dat, eg)
fres
summary(fres)

## The result of ellipsoid filtering is a logical subset

Subset(dat, fres)

## We can also split, in which case we get those events in and those

## not in the gate as separate populations

split(dat, fres)
\#\#ellipsoidGate can be converted to polygonGate by interpolation
pg <- as(eg, "polygonGate")
pg

```
estimateMedianLogicle Estimates a common logicle transformation for a flowSet.

\section*{Description}

Of the negative values for each channel specified, the median of the specified quantiles are used.
```

Usage
estimateMedianLogicle(flow_set, channels, m = 4.5, q = 0.05)

```

\section*{Arguments}
flow_set object of class 'flowSet'
channels character vector of channels to transform
m TODO - default value from .lgclTrans
q quantile

\section*{Value}

TODO
```

exponential-class Class "exponential"

```

\section*{Description}

Exponential transform class, which represents a transformation given by the function
\[
f(\text { parameter }, a, b)=e^{\text {parameter } / b} * \frac{1}{a}
\]

\section*{Slots}
.Data Object of class "function".
a Object of class "numeric" - non-zero constant.
b Object of class "numeric"- non-zero constant.
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation

\section*{Objects from the Class}

Objects can be created by calls to the constructorexponential (parameters, a,b).

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note
The exponential transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}
logarithm
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
exp1<-exponential(parameters="FSC-H",a=1,b=37,transformationId="exp1")
transOut<-eval(exp1)(exprs(dat))

```
```

expressionFilter-class

```
Class "expressionFilter"

\section*{Description}

A filter holding an expression that can be evaluated to a logical vector or a vector of factors.

\section*{Usage}
expressionFilter(expr, ..., filterId="defaultExpressionFilter")
char2ExpressionFilter(expr, ..., filterId="defaultExpressionFilter")

\section*{Arguments}
\begin{tabular}{ll}
filterId & \begin{tabular}{l}
An optional parameter that sets the filterId of this filter. The object can \\
later be identified by this name.
\end{tabular} \\
expr & \begin{tabular}{l}
A valid R expression or a character vector that can be parsed into an expression.
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l}
Additional arguments that are passed to the evaluation environment of the ex- \\
pression.
\end{tabular}
\end{tabular}

\section*{Details}

The expression is evaluated in the environment of the flow cytometry values, hence the parameters of a flowFrame can be accessed through regular R symbols. The convenience function char2ExpressionFilter exists to programmatically construct expressions.

\section*{Value}

Returns a expressionFilter object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
expr The expression that will be evaluated in the context of the flow cytometry values.
args An environment providing additional parameters.
deparse A character scalar of the deparsed expression.
filterId The identifier of the filter.

\section*{Extends}

Class "concreteFilter", directly.
Class "filter", by class concreteFilter, distance 2.

\section*{Objects from the Class}

Objects can be created by calls of the form new ("expressionFilter", . .), using the expressionFilter constructor or, programmatically, from a character string using the char2ExpressionFilter function.

\section*{Methods}
\%in\% signature (\(x=\) "flowFrame", table = "expressionFilter"): The workhorse used to evaluate the gate on data. This is usually not called directly by the user, but internally by calls to the filter methods.
show signature(object = "expressionFilter"): Print information about the gate.

\section*{Author(s)}
F. Hahne, B. Ellis

\section*{See Also}
flowFrame, filter for evaluation of sampleFilters and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.

\section*{Examples}
```


## Loading example data

dat <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))
\#Create the filter
ef <- expressionFilter(`FSC-H` > 200, filterId="myExpressionFilter")
ef

## Filtering using sampeFilters

fres <- filter(dat, ef)
fres
summary(fres)

## The result of sample filtering is a logical subset

newDat <- Subset(dat, fres)
all(exprs(newDat)[,"FSC-H"] > 200)

## We can also split, in which case we get those events in and those

## not in the gate as separate populations

split(dat, fres)

## Programmatically construct an expression

dat <- dat[,-8]
r <- range(dat)
cn <- paste("-", colnames(dat), "-", sep="")
exp <- paste(cn, ">", r[1,], "\&", cn, "<", r[2,], collapse=" \& ")
ef2 <- char2ExpressionFilter(exp, filterId="myExpressionFilter")
ef2
fres2 <- filter(dat, ef2)
fres2
summary(fres2)

```

FCSTransTransform Computes a transform using the 'iplogicle' function

\section*{Description}

Transforms FCS data using the iplogicle function from FCSTrans by Quian et al. The core functionality of FCSTrans has been imported to produce transformed FCS data rescaled and truncated as produced by FCSTrans. The w parameter is estimated by iplogicle automatically, then makes a call to iplogicore which in turn uses the logicle transform code of Wayne Moore.

\section*{Usage}

FCSTransTransform(transformationId = "defaultFCSTransTransform", channelrange \(=2^{\wedge} 18\), channeldecade \(=4.5\), range \(=4096\), cutoff \(=-111, w=\) NULL, rescale \(=\) TRUE)

\section*{Arguments}
transformationId
A name to assign to the transformation. Used by the transform/filter routines.
channelrange \(\quad\) is the range of the data. By default, \(2^{\wedge} 18=262144\).
channeldecade is the number of logarithmic decades. By default, it is set to 4.5.
range the target resolution. The default value is \(2^{\wedge} 12=4096\).
cutoff a threshold below which the logicle transformation maps values to 0 .
w
the logicle width. This is estimated by iplogicle by default. Details can be found in the Supplementary File from Quian et al.
rescale logical parameter whether or not the data should be rescaled to the number of channels specified in range. By default, the value is TRUE but can be set to FALSE if you want to work on the transformed scale.

\section*{Details}

For the details of the FCSTrans transformation, we recommend the excellent Supplementary File that accompanies Quian et al. (2012): http://onlinelibrary.wiley.com/doi/10.1002/cyto. a. 22037/suppinfo

\section*{Author(s)}

Wayne Moore, N Gopalakrishnan

\section*{References}

Y Quian, Y Liu, J Campbell, E Thompson, YM Kong, RH Scheuermann; FCSTrans: An open source software system for FCS file conversion and data transformation. Cytometry A, 2012

\section*{See Also}
inverseLogicleTransform, estimateLogicle, logicleTransform

\section*{Examples}
```

data(GvHD)
samp <- GvHD[[1]]

## User defined logicle function

lgcl <- transformList(c('FL1-H', 'FL2-H'), FCSTransTransform())
after <- transform(samp, lgcl)

```

\section*{Description}

There are two notions of intersection in flowCore. First, there is the usual intersection boolean operator \& that has been overridden to allow the intersection of two filters or of a filter and a list for convenience. There is also the \%\&\% or \%subset\% operator that takes an intersection, but with subset semantics rather than simple intersection semantics. In other words, when taking a subset, calculations from summary and other methods are taken with respect to the right hand filter. This primarily affects calculations, which are ordinarily calculated with respect to the entire population as well as data-driven gating procedures which will operate only on elements contained by the right hand filter. This becomes especially important when using filters such as norm2Filter

\section*{Usage}
e1 \%\&\% e2
e1 \%subset\% e2

\section*{Arguments}
e1, e2 filter objects or lists of filter objects

\section*{Author(s)}
B. Ellis
filter-class A class for representing filtering operations to be applied to flow data.

\section*{Description}

The filter class is the virtual base class for all filter/gating objects in flowCore. In general you will want to subclass or create a more specific filter.

\section*{Slots}
filterId A character vector that identifies this filter. This is typically user specified but can be automatically deduced by certain filter operations, particularly boolean and set operations.

\section*{Objects from the Class}

All filter objects in flowCore should be instantiated through their constructors. These are functions that share the same name with the respective filter classes. E.g., rectangleGate() is the constructor function for rectangular gates, and kmeansFilter() creates objects of class kmeansFilter. Usually these constructors can deal with various different inputs, allowing to utilize the same function in different programmatic or interactive settings. For all filters that operate on specific flow parameters (i.e., those inheriting from parameterFilter), the parameters need to be passed to the constructor, either as names or colnames of additional input arguments or explicitly as separate arguments. See the documentation of the respective filter classes for details. If parameters are explicitly defined as separate arguments, they may be of class character, in which case they will be evaluated literally as colnames in a flowFrame, or of class transform, in which case the filtering is performed on a temporarily transformed copy of the input data. See here for details.

\section*{Methods}
\(\% i n \%\) Used in the usual way this returns a vector of values that identify which events were accepted by the filter. A single filter may encode several populations so this can return either a logical vector, a factor vector or a numeric vector of probabilities that the event is accepted by the filter. Minimally, you must implement this method when creating a new type of filter
\&, |, ! Two filters can be composed using the usual boolean operations returning a filter class of a type appropriate for handling the operation. These methods attempt to guess an appropriate filterId for the new filter
\%subset\%, \%\&\% Defines a filter as being a subset of another filter. For deterministic filters the results will typically be equivalent to using an \(\backslash \&\) operation to compose the two filters, though summary methods will use subset semantics when calculating proportions. Additionally, when the filter is data driven, such as norm2Filter, the subset semantics are applied to the data used to fit the filter possibly resulting in quite different, and usually more desirable, results.
\(\%\) on\% Used in conjunction with a transformList to create a transformFilter. This filter is similar to the subset filter in that the filtering operation takes place on transformed values rather than the original values.
filter A more formal version of \%in\%, this method returns a filterResult object that can be used in subsequent filter operations as well as providing more metadata about the results of the filtering operation. See the documenation for filter methods for details.
summarizeFilter When implementing a new filter this method is used to update the filterDetails slot of a filterResult. It is optional and typically only needs to be implemented for datadriven filters.

\section*{Author(s)}
B. Ellis, P.D. Haaland and N. LeMeur

\section*{See Also}
transform, filter

\section*{Description}

Membership methods must be defined for every object of type filter with respect to a flowFrame object. The operation is considered to be general and may return a logical, numeric or factor vector that will be handled appropriately. The ability to handle logical matrices as well as vectors is also planned but not yet implemented.

\section*{Usage}
x \%in\% table

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & a flowFrame \\
table & \begin{tabular}{l}
an object of type filter or filterResult or one of their derived classes, rep- \\
resenting a gate, filter, or result to check for the membership of \(x\)
\end{tabular}
\end{tabular}

\section*{Value}

Vector of type logical, numeric or factor depending on the arguments

\section*{Author(s)}
F.Hahne, B. Ellis
```

filter-methods
Filter FCS files

```

\section*{Description}

These methods link filter descriptions to a particular set of flow cytometry data allowing for the lightweight calculation of summary statistics common to flow cytometry analysis.

\section*{Usage}
filter(x, filter, method = c("convolution", "recursive"), sides \(=2 L\), circular \(=\) FALSE, init \(=\) NULL)

\section*{Arguments}
x
filter An object of class filter or a named list filters.
method, sides, circular, init
These arguments are not used.

\section*{Details}

The filter method conceptually links a filter description, represented by a filter object, to a particular flowFrame. This is accomplished via the filterResult object, which tracks the linked frame as well as caching the results of the filtering operation itself, allowing for fast calculation of certain summary statistics such as the percentage of events accepted by the filter. This method exists chiefly to allow the calculation of these statistics without the need to first Subset a flowFrame, which can be quite large.
When applying on a flowSet, the filter argument can either be a single filter object, in which case it is recycled for all frames in the set, or a named list of filter objects. The names are supposed to match the frame identifiers (i.e., the output of sampleNames(x) of the flowSet. If some frames identifiers are missing, the particular frames are skipped during filtering. Accordingly, all filters in the filter list that can't be mapped to the flowSet are ignored. Note that all filter objects in the list must be of the same type, e.g. rectangleGates.

\section*{Value}

A filterResult object or a filterResulthist object if \(x\) is a flowSet. Note that filterResult objects are themselves filters, allowing them to be used in filter expressions or Subset operations.

\section*{Author(s)}

F Hahne, B. Ellis, N. Le Meur

\section*{See Also}

Subset, filter, filterResult

\section*{Examples}
```


## Filtering a flowFrame

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
rectGate <- rectangleGate(filterId="nonDebris","FSC-H"=c(200,Inf))
fr <- filter(samp,rectGate)
class(fr)
summary(fr)

## filtering a flowSet

data(GvHD)
foo <- GvHD[1:3]
fr2 <- filter(foo, rectGate)
class(fr2)
summary(fr2)

## filtering a flowSet using different filters for each frame

rg2 <- rectangleGate(filterId="nonDebris","FSC-H"=c(300,Inf))
rg3 <- rectangleGate(filterId="nonDebris","FSC-H"=c(400,Inf))
flist <- list(rectGate, rg2, rg3)
names(flist) <- sampleNames(foo)
fr3 <- filter(foo, flist)

```

\section*{Description}

This operator is used to construct a transformFilter that first applies a transformList to the data before applying the filter operation. You may also apply the operator to a flowFrame or flowSet to obtain transformed values specified in the list.

\section*{Usage}
e1 \%on\% e2

\section*{Arguments}
e1
a filter, transform, or transformList object
e2
a transform, transformList, flowFrame, or flowSet object

\section*{Author(s)}
B. Ellis

\section*{Examples}
```

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
plot(transform("FSC-H"=log, "SSC-H"=log) %on% samp)
rectangle <- rectangleGate(filterId="rectangleGateI","FSC-H"=c(4.5, 5.5))
sampFiltered <- filter(samp, rectangle %on% transform("FSC-H"=log, "SSC-H"=log))
res <- Subset(samp, sampFiltered)
plot(transform("FSC-H"=log, "SSC-H"=log) %on% res)

```
filterDetails-methods Obtain details about a filter operation

\section*{Description}

A filtering operation captures details about its metadata and stores it in a filterDetails slot in a filterResult object that is accessed using the filterDetails method. Each set of metadata is indexed by the filterId of the filter allowing for all the metadata in a complex filtering operation to be recovered after the final filtering.

\section*{Methods}
filterDetails(result = 'filterResult'", filterId = 'missing'") When no particular filterId is specified all the details are returned
filterDetails(result = 'filterResult", filterId = "ANY") You can also obtain a particular subset of details

\section*{Author(s)}
B. Ellis, P.D. Haaland and N. LeMeur
```

filterList-class Class "filterList"

```

\section*{Description}

Container for a list of filter objects. The class mainly exists for method dispatch.

\section*{Usage}
filterList(x, filterId=identifier(x[[1]]))

\section*{Arguments}
x
filterId

A list of filter objects.
The global identifier of the filter list. As default, we take the filterId of the first filter object in \(x\).

\section*{Value}

A filterList object for the constructor.

\section*{Slots}
.Data Object of class "list". The class directly extends list, and this slot holds the list data.
filterId Object of class "character". The identifier for the object.

\section*{Objects from the Class}

Objects are created from regular lists using the constructor filterList.

\section*{Extends}

Class "list", from data part.

\section*{Methods}
show signature(object = "filterList"): Print details about the object.
identifier, identifier<- signature(object = "filterList"): Accessor and replacement method for the object's filterId slot.

\section*{Author(s)}

Florian Hahne

\section*{See Also}
filter,

\section*{Examples}
```

f1 <- rectangleGate(FSC=c(100,200), filterId="testFilter")
f2 <- rectangleGate(FSC=c(200,400))
fl <- filterList(list(a=f1, b=f2))
fl
identifier(fl)

```
filterReference-class Class filterReference

\section*{Description}

A reference to another filter inside a reference. Users should generally not be aware that they are using this class.

\section*{Slots}
name The R name of the referenced filter.
env The environment where the filter must live.
filterId The filterId, not really used since you always resolve.

\section*{Objects from the Class}

Objects are generally not created by users so there is no constructor function.

\section*{Extends}

Class "filter", directly.

\section*{Author(s)}
B. Ellis

\section*{filterResult-class Class "filterResult"}

\section*{Description}

Container to store the result of applying a filter on a flowFrame object

\section*{Slots}
frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity checking.
filterDetails Object of class "list" describing the filter applied.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filter", directly.

\section*{Methods}
\(==\) test equality

\section*{Author(s)}
B. Ellis, N. LeMeur

\section*{See Also}
filter, "logicalFilterResult", "multipleFilterResult", "randomFilterResult"

\section*{Examples}
```

showClass("filterResult")

```
filterResultList-class

\section*{Description}

Container to store the result of applying a filter on a flowSet object

\section*{Slots}
.Data Object of class "list". The class directly extends list, and this slot holds the list data. frameId Object of class "character" The IDs of the flowFrames in the filtered flowSet.
filterDetails Object of class "list". Since filterResultList inherits from filterResult, this slot has to be set. It contains only the input filter.
filterId Object of class "character". The identifier for the object.

\section*{Objects from the Class}

Objects are created by applying a filter on a flowSet. The user doesn't have to deal with manual object instantiation.

\section*{Extends}

Class "list", from data part. Class "filterResult", directly. Class "concreteFilter", by class "filterResult", distance 2. Class "filter", by class "filterResult", distance 3.

\section*{Methods}
[signature(\(x=\) "filterResultList", i = "ANY"): Subset to filterResultList.
[[signature(x = "filterResultList", i = "ANY"): Subset to individual filterResult.
names signature (\(x=\) "filterResultList"): Accessor to the frameId slot.
parameters signature(object = "filterResultList"): Return parameters on which data has been filtered.
show signature (object = "filterResultList"): Print details about the object.
split signature(\(x=\) "flowSet", \(f=\) "filterResultList"): Split a flowSet based on the results in the filterResultlIst. See split for details.
summary signature(object = "filterResultList"): Summarize the filtering operation. This creates a filterSummaryList object.

\section*{Author(s)}

Florian Hahne

\section*{See Also}
filter, filterResult, logicalFilterResult, multipleFilterResult, randomFilterResult

\section*{Examples}
```

library(flowStats)

## Loading example data and creating a curv1Filter

data(GvHD)
dat <- GvHD[1:3]
c1f <- curv1Filter(filterId="myCurv1Filter", x=list("FSC-H"), bwFac=2)

## applying the filter

```
```

fres <- filter(dat, c1f)
fres

## subsetting the list

fres[[1]]
fres[1:2]

## details about the object

parameters(fres)
names(fres)
summary(fres)

## splitting based on the filterResults

split(dat, fres)

```
filters-class Class "filters" and "filtersList"

\section*{Description}

The filters class is the container for a list of filter objects.
The filtersList class is the container for a list of filters objects.

\section*{Usage}
filters(x)
filtersList(x)

\section*{Arguments}

A list of filter or filters objects.

\section*{Details}

The filters class mainly exists for displaying multiple filters/gates on one single panel(flowFrame) of xyplot. Note that it is different from filterList class which is to be applied to a flowSet. In other words, filter objects of a fliterList are to be applied to different flowFrames. However, all of filter objects of a filters object are for one single flowFrame, more specifically for one pair of projections(parameters).So these filters should share the common parameters.

And filtersList is a list of filters objects, which are to be applied to a flowSet.

\section*{Value}

A filters or filtersList object from the constructor

\section*{Slots}
.Data Object of class "list". The class directly extends list, and this slot holds the list data.

\section*{Extends}

Class "list"

\section*{Objects from the Class}

Objects are created from regular lists using the constructors filters and filtersList:
filters(x)
filtersList(x)

\section*{Author(s)}

Mike Jiang

\section*{See Also}
filter, filterList
```

filterSummary-class Class "filterSummary"

```

\section*{Description}

Class and methods to handle the summary information of a gating operation.

\section*{Usage}
\#\# S4 method for signature 'filterResult'
summary(object, ...)

\section*{Arguments}
object An object inheriting from class filterResult which is to be summarized.
... Further arguments that are passed to the generic.

\section*{Details}

Calling summary on a filterResult object prints summary information on the screen, but also creates objects of class filterSummary for computational access.

\section*{Value}

An object of class filterSummary for the summary constructor, a named list for the subsetting operators. The \(\$\) operator returns a named vector of the respective value, where each named element corresponds to one sub-population.

\section*{Slots}
name Object of class "character" The name(s) of the populations created in the filtering operation. For a logicalFilterResult this is just a single value; the name of the link\{filter\}.
true Object of class "numeric". The number of events within the population(s).
count Object of class "numeric". The total number of events in the gated flowFrame.
\(p\) Object of class "numeric" The percentage of cells in the population(s).

\section*{Objects from the Class}

Objects are created by calling summary on a link\{filterResult \(\}\) object. The user doesn't have to deal with manual object instantiation.

\section*{Methods}
[[signature(\(x=\) "filterSummary", \(i=\) "numeric"): Subset the filterSummary to a single population. This only makes sense for multipleFilterResults. The output is a list of summary statistics.
[[signature(\(x=\) "filterSummary", i = "character"): see above
\$ signature(\(x=\) "filterSummary", name = "ANY"): A list-like accessor to the slots and more. Valid values are \(n\) and count (those are identical), true and in (identical), false and out (identical), name, p and \(\mathrm{q}(1-\mathrm{p})\).
coerce signature (from = "filterSummary", to = "data.frame"): Coerce object to data.frame.
length signature (\(x=\) "filterSummary"): The number of populations in the fitlerSummary.
names signature (\(x=\) "filterSummary"): The names of the populations in the filterSummary.
print signature (\(x=\) "filterSummary") : Print details about the object.
show signature (object = "filterSummary"): Print details about the object.
toTable signature (\(x=\) "filterSummary") : Coerce object to data.frame.

\section*{Author(s)}

Florian Hahne, Byron Ellis

\section*{See Also}
filterResult, logicalFilterResult, multipleFilterResult, flowFrame filterSummaryList

\section*{Examples}
```

library(flowStats)

## Loading example data, creating and applying a curv1Filter

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
c1f <- curv1Filter(filterId="myCurv1Filter", x=list("FSC-H"), bwFac=2)
fres <- filter(dat, c1f)

```
```


## creating and showing the summary

summary(fres)
s <- summary(fres)

## subsetting

s[[1]]
s[["peak 2"]]
\#\#accessing details
s$true
s$n
toTable(s)

```
filterSummaryList-class
Class "filterSummaryList"

\section*{Description}

Class and methods to handle summary statistics for from filtering operations on whole flowSets.

\section*{Arguments}
object An object of class. filterResultList which is to be summarized.
... Further arguments that are passed to the generic.

\section*{Details}

Calling summary on a filterResultList object prints summary information on the screen, but also creates objects of class filterSummaryList for computational access.

\section*{Value}

An object of class filterSummaryList.

\section*{Slots}
.Data Object of class "list". The class directly extends list, and this slot holds the list data.

\section*{Usage}
summary (object, ...)

\section*{Objects from the Class}

Objects are created by calling summary on a link\{filterResultList\} object. The user doesn't have to deal with manual object instantiation.

\section*{Extends}

Class "list", from .Data part.

\section*{Methods}
toTable signature \((x=\) "filterSummaryList"): Coerce object to data.frame. Additional factors are added to indicate list items in the original object.

\section*{Author(s)}

Florian Hahne

\section*{See Also}
filterResult, filterResultList, logicalFilterResult, multipleFilterResult, flowFrame filterSummary

\section*{Examples}
library(flowStats)
\#\# Loading example data, creating and applying a curv1Filter data(GvHD)
dat <- GvHD[1:3]
c1f <- curv1Filter(filterId="myCurv1Filter", x=list("FSC-H"), bwFac=2)
fres <- filter(dat, c1f)
\#\# creating and showing the summary
summary (fres)
s <- summary (fres)
\#\# subsetting
s[[1]]
\#\#accessing details
toTable(s)
flowFrame-class
'flowFrame': a class for storing observed quantitative properties for a population of cells from a FACS run

\section*{Description}

This class represents the data contained in a FCS file or similar data structure. There are three parts of the data:
1. a numeric matrix of the raw measurement values with rows=events and columns=parameters
2. annotation for the parameters (e.g., the measurement channels, stains, dynamic range)
3. additional annotation provided through keywords in the FCS file

\section*{Details}

Objects of class flowFrame can be used to hold arbitrary data of cell populations, acquired in flowcytometry.
FCS is the Data File Standard for Flow Cytometry, the current version is FCS 3.0. See the vignette of this package for additional information on using the object system for handling of flow-cytometry data.

\section*{Slots}
exprs Object of class matrix containing the measured intensities. Rows correspond to cells, columns to the different measurement channels. The colnames attribute of the matrix is supposed to hold the names or identifiers for the channels. The rownames attribute would usually not be set.
parameters An AnnotatedDataFrame containing information about each column of the flowFrame. This will generally be filled in by read. FCS or similar functions using data from the FCS keywords describing the parameters.
description A list containing the meta data included in the FCS file.

\section*{Creating Objects}

Objects can be created using
new("flowFrame",
exprs =, Object of class matrix
parameters = Object of class AnnotatedDataFrame
description \(=\ldots\), Object of class list
)
or the constructor flowFrame, with mandatory arguments exprs and optional arguments parameters and description.
flowFrame(exprs, parameters, description=list())
To create a flowFrame directly from an FCS file, use function read. FCS. This is the recommended and safest way of object creation, since read.FCS will perform basic data quality checks upon import. Unless you know exactly what you are doing, creating objects using new or the constructor is discouraged.

\section*{Methods}

There are separate documentation pages for most of the methods listed here which should be consulted for more details.
[Subsetting. Returns an object of class flowFrame. The subsetting is applied to the exprs slot, while the description slot is unchanged. The syntax for subsetting is similar to that of data. frames. In addition to the usual index vectors (integer and logical by position, character by parameter names), flowFrames can be subset via filterResult and filter objects.

Usage:
flowFrame[i,j]
flowFrame[filter,]
flowFrame[filterResult,]
Note that the value of argument drop is ignored when subsetting flowFrames.
\$ Subsetting by channel name. This is similar to subsetting of columns of data.frames, i.e., frame\$FSC.H is equivalent to frame[, "FSC.H"]. Note that column names may have to be quoted if they are no valid R symbols (e.g. frame\$"FSC-H").
exprs, exprs<- Extract or replace the raw data intensities. The replacement value must be a numeric matrix with colnames matching the parameter definitions. Implicit subsetting is allowed (i.e. less columns in the replacement value compared to the original flowFrame, but all have to be defined there).
Usage:
exprs(flowFrame)
exprs(flowFrame) <- value
head, tail Show first/last elements of the raw data matrix
Usage:
head(flowFrame)
tail(flowFrame)
description, description<- Extract the whole list of annotation keywords and their corresponding values or replace values by keyword (description<- is equivalent to keyword<-). Usually one would only be interested in a subset of keywords, in which case the keyword method is more appropriate. The optional hideInternal parameter can be used to exclude internal FCS parameters starting with \$.
Usage:
description(flowFrame)
description(flowFrame) <- value
keyword, keyword<- Extract ore replace one or more entries from the description slot by keyword. Methods are defined for character vectors (select a keyword by name), functions (select a keyword by evaluating a function on their content) and for lists (a combination of the above). See keyword for details.
Usage:
keyword(flowFrame)
keyword(flowFrame, character)
keyword(flowFrame, list)
keyword(flowFrame) <- list (value)
parameters, parameters<- Extract parameters and return an object of class AnnotatedDataFrame, or replace such an object. To access the actual parameter annotation, use pData(parameters(frame)).
Replacement is only valid with AnnotatedDataFrames containing all varLabels name, desc, range, minRange and maxRange, and matching entries in the name column to the colnames of the exprs matrix. See parameters for more details.
Usage:
parameters(flowFrame)
parameters(flowFrame) <- value
show Display details about the flowFrame object.
summary Return descriptive statistical summary (min, max, mean and quantile) for each channel Usage:
summary (flowFrame)
plot Basic plots for flowFrame objects. If the object has only a single parameter this produces a histogram. For exactly two parameters we plot a bivariate density map (see smoothScatter and for more than two parameters we produce a simple splom plot. To select specific parameters from a flowFrame for plotting, either subset the object or specify the parameters as a character vector in the second argument to plot. The smooth parameters lets you toggle between density-type smoothScatter plots and regular scatterplots. This simple method still uses the legacy flowViz package. For far more sophisticated plotting of flow cytometry data, see the ggcyto package.
Usage:
plot(flowFrame, ...)
plot(flowFrame, character, ...)
plot(flowFrame, smooth=FALSE, ...)
ncol, nrow, dim Extract the dimensions of the data matrix.
```

Usage:
ncol(flowFrame)
nrow(flowFrame)
dim(flowFrame)

```
featureNames, colnames, colnames<- . colnames and featureNames are synonyms, they extract parameter names (i.e., the colnames of the data matrix). For colnames there is also a replacement method. This will update the name column in the parameters slot as well.
Usage:
featureNames(flowFrame)
colnames(flowFrame)
colnames(flowFrame) <- value
names Extract pretty formated names of the parameters including parameter descriptions.
Usage:
names(flowFrame)
identifier Extract GUID of a flowFrame. Returns the file name if no GUID is available. See identifier for details.
Usage:
identifier(flowFrame)
range Get instrument or actual data range of the flowFame. Note that instrument dynamic range is not necessarily the same as the range of the actual data values, but the theoretical range of values the measurement instrument was able to capture. The values of the dynamic range will be transformed when using the transformation methods forflowFrames.
parameters:
x: flowFrame object.
type: Range type. either "instrument" or "data". Default is "instrument"
Usage:
range \((x\), type \(=\) "data" \()\)
each_row, each_col Apply functions over rows or columns of the data matrix. These are convenience methods. See each_col for details.
Usage:
each_row(flowFrame, function, ...)
each_col(flowFrame, function, ...)
transform Apply a transformation function on a flowFrame object. This uses R's transform function by treating the flowFrame like a regular data.frame. flowCore provides an additional inline mechanism for transformations (see \%on\%) which is strictly more limited than the out-of-line transformation described here.
Usage:
transform(flowFrame, translist, ...)
filter Apply a filter object on a flowFrame object. This returns an object of class filterResult, which could then be used for subsetting of the data or to calculate summary statistics. See filter for details.
Usage:
filter(flowFrame, filter)
split Split flowFrame object according to a filter, a filterResult or a factor. For most types of filters, an optional flowSet=TRUE parameter will create a flowSet rather than a simple list. See split for details.
Usage:
split(flowFrame, filter, flowSet=FALSE, ...)
split(flowFrame, filterResult, flowSet=FALSE, ...)
split(flowFrame, factor, flowSet=FALSE, ...)
Subset Subset a flowFrame according to a filter or a logical vector. The same can be done using the standard subsetting operator with a filter, filterResult, or a logical vector as first argument.
Usage:
Subset(flowFrame, filter)
Subset(flowFrame, logical)
cbind2 Expand a flowFrame by the data in a numeric matrix of the same length. The matrix must have column names different from those of the flowFrame. The additional method for numerics only raises a useful error message.
Usage:
cbind2(flowFrame, matrix)
cbind2(flowFrame, numeric)
compensate Apply a compensation matrix (or a compensation object) on a flowFrame object. This returns a compensated flowFrame.
Usage:
compensate(flowFrame, matrix) compensate(flowFrame, data.frame)
decompensate Reverse the application of a compensation matrix (or a compensation object) on a flowFrame object. This returns a decompensated flowFrame.
Usage:
decompensate(flowFrame, matrix) decompensate(flowFrame, data.frame)
spillover Extract spillover matrix from description slot if present. It is equivalent to keyword (\(x\), c("spillover", "SPILL", "\$SPILLOVER")) Thus will simply return a list of keywords value for "spillover", "SPILL" and "\$SPILLOVER".
Usage:
spillover (flowFrame)
\(==\) Test equality between two flowFrames
\(<,>,<=,>=\) These operators basically treat the flowFrame as a numeric matrix.
initialize(flowFrame): Object instantiation, used by new; not to be called directly by the user.

\section*{Author(s)}
F. Hahne, B. Ellis, P. Haaland and N. Le Meur

\section*{See Also}
flowSet, read.FCS

\section*{Examples}
```


## load example data

data(GvHD)
frame <- GvHD[[1]]

## subsetting

frame[1:4,]
frame[,3]
frame[,"FSC-H"]
frame\$"SSC-H"

## accessing and replacing raw values

head(exprs(frame))
exprs(frame) <- exprs(frame)[1:3000,]
frame
exprs(frame) <- exprs(frame)[,1:6]
frame

## access FCS keywords

head(keyword(frame))
keyword(frame, c("FILENAME", "\$FIL"))

## parameter annotation

parameters(frame)
pData(parameters(frame))

## summarize frame data

summary(frame)

## plotting

plot(frame)
if(require(flowViz)){
plot(frame)

```
```

plot(frame, c("FSC-H", "SSC-H"))
plot(frame[,1])
plot(frame, c("FSC-H", "SSC-H"), smooth=FALSE)
}

## frame dimensions

ncol(frame)
nrow(frame)
dim(frame)

## accessing and replacing parameter names

featureNames(frame)
all(featureNames(frame) == colnames(frame))
colnames(frame) <- make.names(colnames(frame))
colnames(frame)
parameters(frame)\$name
names(frame)

## accessing a GUID

identifier(frame)
identifier(frame) <- "test"

## range of a frame

range(frame) \#instrument range
range(frame, type = "data") \#actual data range
range(frame)\$FSC.H

## iterators

head(each_row(frame, mean))
head(each_col(frame, mean))

## transformation

opar <- par(mfcol=c(1:2))
if(require(flowViz))
plot(frame, c("FL1.H", "FL2.H"))
frame <- transform(frame, transformList(c("FL1.H", "FL2.H"), log))
if(require(flowViz))
plot(frame, c("FL1.H", "FL2.H"))
par(opar)
range(frame)

## filtering of flowFrames

rectGate <- rectangleGate(filterId="nonDebris","FSC.H"=c(200,Inf))
fres <- filter(frame, rectGate)
summary(fres)

## splitting of flowFrames

split(frame, rectGate)
split(frame, rectGate, flowSet=TRUE)
split(frame, fres)
f <- cut(exprs(frame\$FSC.H), 3)
split(frame, f)

```
```


## subsetting according to filters and filter results

Subset(frame, rectGate)
Subset(frame, fres)
Subset(frame, as.logical(exprs(frame\$FSC.H) < 300))
frame[rectGate,]
frame[fres,]

## accessing the spillover matrix

try(spillover(frame))

## check equality

frame2 <- frame
frame == frame2
exprs(frame2) <- exprs(frame)*2
frame == frame2

```

\section*{Description}

This class is a container for a set of flowFrame objects

\section*{Slots}
frames An environment containing one or more flowFrame objects.
phenoData An AnnotatedDataFrame containing the phenotypic data for the whole data set. Each row corresponds to one of the flowFrames in the frames slot. The sampleNames of phenoData (see below) must match the names of the flowFrame in the frames environment.

\section*{Creating Objects}

Objects can be created using
new('flowSet',
frames =, \# environment with flowFrames
phenoData \(=\ldots\). . \# object of class AnnotatedDataFrame
colnames \(=\ldots\). . \# object of class character
)
or via the constructor flowSet, which takes arbitrary numbers of flowFrames, either as a list or directly as arguments, along with an optional AnnotatedDataFrame for the phenoData slot and a character scalar for the name by which the object can be referenced.
flowSet(..., phenoData)
Alternatively, flowSets can be coerced from list and environment objects.
as(list("A"=frameA, "B"=frameB), "flowSet")
The safest and easiest way to create flowSets directly from FCS files is via the read.flowSet function, and there are alternative ways to specify the files to read. See the separate documentation for details.

\section*{Methods}
[, [[Subsetting. x[i] where i is a scalar, returns a flowSet object, and x[[i]] a flowFrame object. In this respect the semantics are similar to the behavior of the subsetting operators for lists. \(x[i, j]\) returns a flowSet for which the parameters of each flowFrame have been subset according to \(j, x[[i, j]]\) returns the subset of a single flowFrame for all parameters in \(j\). Similar to data frames, valid values for \(i\) and \(j\) are logicals, integers and characters.
Usage:
flowSet[i]
flowSet[i,j]
flowSet[[i]]
\$ Subsetting by frame name. This will return a single flowFrame object. Note that names may have to be quoted if they are no valid R symbols (e.g. flowSet\$"sample 1"
colnames, colnames<- Extract or replace the colnames slot.
Usage:
colnames(flowSet)
colnames(flowSet) <- value
identifier, identifier<- Extract or replace the name item from the environment.
Usage:
identifier(flowSet)
identifier(flowSet) <- value
phenoData, phenoData<- Extract or replace the AnnotatedDataFrame from the phenoData slot.
Usage:
phenoData(flowSet)
phenoData(flowSet) <- value
pData, pData<- Extract or replace the data frame (or columns thereof) containing actual phenotypic information from the phenoData slot.
Usage:
pData(flowSet)
pData(flowSet)\$someColumn <- value
varLabels, varLabels<- Extract and set varLabels in the AnnotatedDataFrame of the phenoData slot.
Usage:
varLabels(flowSet)
varLabels(flowSet) <- value
sampleNames Extract and replace sample names from the phenoData object. Sample names correspond to frame identifiers, and replacing them will also replace the GUID slot for each frame. Note that sampleName need to be unique.

\section*{Usage:}
sampleNames(flowSet)
sampleNames(flowSet) <- value
keyword Extract or replace keywords specified in a character vector or a list from the description slot of each frame. See keyword for details.
Usage:
keyword(flowSet, list(keywords))
keyword(flowSet, keywords)
keyword(flowSet) <- list(foo="bar")
length number of flowFrame objects in the set.
Usage:
length(flowSet)
show display object summary.
summary Return descriptive statistical summary (min, max, mean and quantile) for each channel of each flowFrame
Usage:
summary (flowSet)
fsApply Apply a function on all frames in a flowSet object. Similar to sapply, but with additional parameters. See separate documentation for details.
Usage:
fsApply (flowSet, function, ...)
fsApply (flowSet, function, use.exprs=TRUE, ...)
compensate Apply a compensation matrix on all frames in a flowSet object. See separate documentation for details.
Usage:
compensate(flowSet, matrix)
transform Apply a transformation function on all frames of a flowSet object. See separate documentation for details.
Usage:
transform(flowSet, ...)
filter Apply a filter object on a flowSet object. There are methods for filters and lists of filters. The latter has to be a named list, where names of the list items are matching sampleNames of the flowSet. See filter for details.
Usage:
filter(flowSet, filter)
filter(flowSet, list(filters))
split Split all flowSet objects according to a filter, filterResult or a list of such objects, where the length of the list has to be the same as the length of the flowSet. This returns a list of flowFrames or an object of class flowSet if the flowSet argument is set to TRUE. Alternatively, a flowSet can be split into separate subsets according to a factor (or any vector that can be coerced into factors), similar to the behaviour of split for lists. This will return a list of flowSets. See split for details.
```

Usage:
split(flowSet, filter)
split(flowSet, filterResult)
split(flowSet, list(filters))
split(flowSet, factor)

```

Subset Returns a flowSet of flowFrames that have been subset according to a filter or filterResult, or according to a list of such items of equal length as the flowSet.
Usage:
Subset(flowSet, filter)
Subset(flowSet, filterResult)
Subset(flowSet, list(filters))
rbind2 Combine two flowSet objects, or one flowSet and one flowFrame object.
Usage:
rbind2(flowSet, flowSet)
rbind2(flowSet, flowFrame)
spillover Compute spillover matrix from a compensation set. See separate documentation for details.

\section*{Important note on storage and performance}

The bulk of the data in a flowSet object is stored in an environment, and is therefore not automatically copied when the flowSet object is copied. If \(x\) is an object of class flowSet, then the code
\(y<-x\)
will create an object \(y\) that contains copies of the phenoData and administrative data in \(x\), but refers to the same environment with the actual fluorescence data. See below for how to create proper copies.
The reason for this is performance. The pass-by-value semantics of function calls in R can result in numerous copies of the same data object being made in the course of a series of nested function calls. If the data object is large, this can result in considerable cost of memory and performance. flowSet objects are intended to contain experimental data in the order of hundreds of Megabytes, which can effectively be treated as read-only: typical tasks are the extraction of subsets and the calculation of summary statistics. This is afforded by the design of the flowSet class: an object of that class contains a phenoData slot, some administrative information, and a reference to an environment with the fluorescence data; when it is copied, only the reference is copied, but not the potentially large set of fluorescence data themselves.
However, note that subsetting operations, such as \(y<-x[i]\) do create proper copies, including a copy of the appropriate part of the fluorescence data, as it should be expected. Thus, to make a proper copy of a flowSet \(x\), use \(y<-x[\operatorname{seq}(a l o n g=x)]\)

\section*{Author(s)}
F. Hahne, B. Ellis, P. Haaland and N. Le Meur

\section*{See Also}
flowFrame, read.flowSet

\section*{Examples}
```


## load example data and object creation

data(GvHD)

## subsetting to flowSet

set <- GvHD[1:4]
GvHD[1:4,1:2]
sel <- sampleNames(GvHD)[1:2]
GvHD[sel, "FSC-H"]
GvHD[sampleNames(GvHD) == sel[1], colnames(GvHD[1]) == "SSC-H"]

## subsetting to flowFrame

GvHD[[1]]
GvHD[[1, 1:3]]
GvHD[[1, "FSC-H"]]
GvHD[[1, colnames(GvHD[1]) == "SSC-H"]]
GvHD\$s5a02

## constructor

flowSet(GvHD[[1]], GvHD[[2]])
pd <- phenoData(GvHD)[1:2,]
flowSet(s5a01=GvHD[[1]], s5a02=GvHD[[2]],phenoData=pd)

## colnames

colnames(set)
colnames(set) <- make.names(colnames(set))

## object name

identifier(set)
identifier(set) <- "test"

## phenoData

pd <- phenoData(set)
pd
pd\$test <- "test"
phenoData(set) <- pd
pData(set)
varLabels(set)
varLabels(set)[6] <- "Foo"
varLabels(set)

## sampleNames

sampleNames(set)
sampleNames(set) <- LETTERS[1:length(set)]
sampleNames(set)

## keywords

keyword(set, list("transformation"))

```
```


## length

length(set)

## compensation

samp <- read.flowSet(path=system.file("extdata","compdata","data",
package="flowCore"))
cfile <- system.file("extdata","compdata","compmatrix", package="flowCore")
comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)
comp.mat
summary(samp[[1]])
samp <- compensate(samp, as.matrix(comp.mat))
summary(samp[[1]])

## transformation

opar <- par(mfcol=c(1:2))
plot(set[[1]], c("FL1.H", "FL2.H"))
set <- transform(set, transformList(c("FL1.H", "FL2.H"), log))
plot(set[[1]], c("FL1.H", "FL2.H"))
par(opar)

## filtering of flowSets

rectGate <- rectangleGate(filterId="nonDebris", FSC.H=c(200,Inf))
fres <- filter(set, rectGate)
class(fres)
summary(fres[[1]])
rectGate2 <- rectangleGate(filterId="nonDebris2", SSC.H=c(300,Inf))
fres2 <- filter(set, list(A=rectGate, B=rectGate2, C=rectGate, D=rectGate2))

## Splitting frames of a flowSet

split(set, rectGate)
split(set[1:2], rectGate, populatiuon="nonDebris2+")
split(set, c(1,1,2,2))

## subsetting according to filters and filter results

Subset(set, rectGate)
Subset(set, filter(set, rectGate))
Subset(set, list(A=rectGate, B=rectGate2, C=rectGate, D=rectGate2))

## combining flowSets

rbind2(set[1:2], set[3:4])
rbind2(set[1:3], set[[4]])
rbind2(set[[4]], set[1:2])

```
flowSet_to_list Convert a flowSet to a list of flowFrames

\section*{Description}

This is a simple helper function for splitting a flowSet in to a list of its constituent flowFrames.

\section*{Usage}
```

flowSet_to_list(fs)

```

\section*{Arguments}
fs
a flowSet

\section*{Value}
a list of flowFrames
```

fr_append_cols Append data columns to a flowFrame

```

\section*{Description}

Append data columns to a flowFrame

\section*{Usage}
fr_append_cols(fr, cols)

\section*{Arguments}
fr
A flowFrame.
cols A numeric matrix containing the new data columns to be added. Must have unique column names to be used as new channel names.

\section*{Details}

It is used to add extra data columns to the existing flowFrame. It handles keywords and parameters properly to ensure the new flowFrame can be written as a valid FCS through the function write.FCS

Value
A flowFrame

\section*{Author(s)}

Mike Jiang

\section*{Examples}
```

    data(GvHD)
    tmp <- GvHD[[1]]
    kf <- kmeansFilter("FSC-H"=c("Pop1","Pop2","Pop3"), filterId="myKmFilter")
    fres <- filter(tmp, kf)
    cols <- as.integer(fres@subSet)
    cols <- matrix(cols, dimnames = list(NULL, "km"))
    tmp <- fr_append_cols(tmp, cols)
    tmpfile <- tempfile()
    write.FCS(tmp, tmpfile)
    ```
 fsApply Apply a Function over values in a flowSet

\section*{Description}
fsApply, like many of the apply-style functions in R, acts as an iterator for flowSet objects, allowing the application of a function to either the flowFrame or the data matrix itself. The output can then be reconstructed as either a flowSet, a list, or a matrix depending on options and the type of objects returned.

\section*{Usage}
fsApply(x, FUN, ..., simplify=TRUE, use.exprs=FALSE)

\section*{Arguments}
x
FUN the function to be applied to each element of \(x\)
... optional arguments to FUN.
simplify logical (default: TRUE); if all true and all objects are flowFrame objects, a flowSet object will be constructed. If all of the values are of the same type there will be an attempt to construct a vector or matrix of the appropriate type (e.g. all numeric results will return a matrix).
use.exprs logical (default: FALSE); should the FUN be applied on the flowFrame object or the expression values.

\section*{Author(s)}
B. Ellis

\section*{See Also}
apply, sapply

\section*{Examples}
```

fcs.loc <- system.file("extdata",package="flowCore")
file.location <- paste(fcs.loc, dir(fcs.loc), sep="/")
samp <- read.flowSet(file.location[1:3])
\#Get summary information about each sample.
fsApply(samp, summary)
\#Obtain the median of each parameter in each frame.
fsApply(samp,each_col,median)

```
getChannelMarker get channel and marker information from a flowFrame that matches to the given keyword

\section*{Description}

This function tries best to guess the flow parameter based on the keyword supplied by name It first does a complete word match(case insensitive) between name and flow channels and markers. If there are duplcated matches, throw the error. If no matches, it will try the partial match.

\section*{Usage}
getChannelMarker(frm, name, ...)

\section*{Arguments}
\begin{tabular}{ll}
frm & flowFrame object \\
name & character the keyword to match \\
\(\ldots\) & other arguments: not used.
\end{tabular}

Value
an one-row data.frame that contains "name"(i.e. channel) and "desc"(i.e. stained marker) columns.

\section*{Description}

Retrieve a data frame of index sorted data and sort indices from an FCS file.

\section*{Details}

The input FCS file should already be compensated. Index sorting permits association of cell-level fluorescence intensities with downstream data collection on the sorted cells. Cells are sorted into a plate with \(\mathrm{X}, \mathrm{Y}\) coordinates, and those coordinates are stored in the FCS file.

This function will extract the data frame of flow data and the \(X, Y\) coordinates for the cell-level data, which can be written to a text file, or concatenated with sample-level information and analyzed in R. The coordinates are names 'XLoc','YLoc', and a 'name' column is also prepended with the FCS file name.

\section*{Value}

Matrix of fluorescence intensities and sort indices for plate location. When no index sorting data is available, invisibly returns 0 . Test for 0 to check success.

\section*{Methods}
getIndexSort(x = 'flowFrame") Return a matrix of fluorescence intensities and indices into the sorting plate for each cell.

\section*{Author(s)}
G. Finak

\section*{Examples}
```

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))

# This will return a message that no index sorting data is available

getIndexSort(samp)

```

\section*{Description}

A flow cytometry high throughput screening was used to identify biomarkers that would predict the development of GvHD. The GvHD dataset is an extract of a collection of weekly peripheral blood samples obtained from patients following allogenic blood and marrow transplant. Samples were taken at various time points before and after graft.

\section*{Usage}
data(GvHD)

\section*{Format}

The format is an object of class flowSet composed of 35 flowFrames. Each flowFrame corresponds to one sample at one time point. The phenodata lists:

Patient The patient Id code
Visit The number of visits to the hospital
Days The number of days since the graft. Negative values correpond to days before the graft.
Grade Grade of the cancer

\section*{Details}

This GvHD dataset represents the measurements of one biomarker (leukocyte) for 5 patients over 7 visits (7 time points). The blood samples were labeled with four different fluorescent probes to identify the biomarker and the fluorescent intensity was determined for at least ten thousand cells per sample.

\section*{Source}

Complete dataset available at http://www.ficcs.org/software.html\#Data_Files, the Flow Informatics and Computational Cytometry Society website (FICCS)

\section*{References}

Rizzieri DA et al. J Clin Oncol. 2007 Jan 16; [Epub ahead of print] PMID: 17228020
```

    hyperlog-class Class "hyperlog"
    ```

\section*{Description}

Hyperlog transformation of a parameter is defined by the function
\[
f(\text { parameter }, a, b)=\operatorname{root} E H(y, a, b)-\text { parameter }
\]
where EH is a function defined by
\[
\begin{aligned}
& E H(y, a, b)=10^{\left(\frac{y}{a}\right)}+\frac{b * y}{a}-1, y>=0 \\
& E H(y, a, b)=-10^{\left(\frac{-y}{a}\right)}+\frac{b * y}{a}+1, y<0
\end{aligned}
\]

\section*{Slots}
.Data Object of class "function".
a Object of class "numeric" - numeric constant treater than zero.
b Object of class "numeric" numeric constant greater than zero.
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor hyperlog(parameter, \(a, b\), transformationId)

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

\section*{Note}

The transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}

EHtrans
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
hlog1<-hyperlog("FSC-H",a=1,b=1,transformationId="hlog1")
transOut<-eval(hlog1)(exprs(dat))

```
```

hyperlogtGml2-class Class hyperlogtGml2

```

\section*{Description}

Hyperlog transformation parameterized according to Gating-ML 2.0.

\section*{Details}
hyperlogtGml2 is defined by the following function:
bound \((\) hyperlog, boundMin, boundMax \()=\max (\min (\) hyperlog, boundMax \()\), boundMin \())\)
where
\[
\operatorname{hyperlog}(x, T, W, M, A)=\operatorname{root}(E H(y, T, W, M, A)-x)
\]
and \(E H\) is defined as:
\[
E H(y, T, W, M, A)=a e^{b y}+c y-f
\]
where
- x is the value that is being transformed (an FCS dimension value). Typically, x is less than or equal to T , although the transformation function is also defined for x greater than T .
- \(y\) is the result of the transformation.
- T is greater than zero and represents the top of scale value.
- M is greater than zero and represents the number of decades that the true logarithmic scale approached at the high end of the Hyperlog scale would cover in the plot range.
- W is positive and not greater than half of M and represents the number of such decades in the approximately linear region.
- A is the number of additional decades of negative data values to be included. A shall be greater than or equal to \(-W\), and less than or equal to \(M-2 W\)
- root is a standard root finding algorithm (e.g., Newton's method) that finds y such as \(B(y, T, W, M, A)=\) \(x\).
and \(a, b, c\) and \(f\) are defined by means of \(T, W, M, A, w, x 0, x 1, x 2, e 0, c a\) and \(f a\) as:
\[
\begin{gathered}
w=W /(M+A) \\
x 2=A /(M+A) \\
x 1=x 2+w \\
x 0=x 2+2 * w \\
b=(M+A) * \ln (10) \\
e 0=e^{b * x 0} \\
c a=e 0 / w \\
f a=e^{b * x 1}+c a * x 1 \\
a=T /\left(e^{b}+c a-f a\right) \\
c=c a * a \\
f=f a * a
\end{gathered}
\]

In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the result of the hyperlog function be less than boundMin, then let the result of this transformation be boundMin. Analogically, should the result of the hyperlog function be more than boundMax, then let the result of this transformation be boundMax. The boundMin parameter shall not be greater than the boundMax parameter.

\section*{Slots}

\section*{.Data Object of class function.}

T Object of class numeric - positive constant (top of scale value).
M Object of class numeric - positive constant (desired number of decades).
W Object of class numeric - positive constant that is not greater than half of \(M\) (the number of such decades in the approximately linear region)
A Object of class numeric - a constant that is greater than or equal to \(-W\), and also less than or equal to M-2W. (A represents the number of additional decades of negative data values to be included.)
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.
boundMin Object of class numeric - lower bound of the transformation, default -Inf.
boundMax Object of class numeric - upper bound of the transformation, default Inf.

\section*{Objects from the Class}

Objects can be created by calls to the constructor
hyperlogtGml2(parameter, T, M, W, A, transformationId, boundMin, boundMax)

\section*{Extends}

Class singleParameterTransform, directly.
Class transform, by class singleParameterTransform, distance 2.
Class transformation, by class singleParameterTransform, distance 3.
Class characterOrTransformation, by class singleParameterTransform, distance 4.

\section*{Note}

That hyperlogtGml2 transformation brings "reasonable" data values to the scale of \([0,1]\). The transformation is somewhat similar to logicletGml2. (See Gating-ML 2.0 for detailed comparison)
The hyperlog transformation object can be evaluated using the eval method by passing the data frame as an argument. The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Spidlen, J., Moore, W.

\section*{References}

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for representing gating descriptions in flow cytometry. http://flowcyt. sourceforge.net/gating/ 20141009.pdf

\section*{See Also}
hyperlog, logicleTransform, transform-class, transform
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))
myHyperLg <- hyperlogtGml2(parameters = "FSC-H", T = 1023, M = 4.5,
W = 0.5, A = 0, transformationId="myHyperLg")
transOut <- eval(myHyperLg)(exprs(myDataIn))

```

\section*{Description}

Retrieve the GUID (globally unique identifier) of a flowFrame that was generated by the cytometer or the identifier of a filter or filterResult given by the analyst.

\section*{Usage}
identifier (object)

\section*{Arguments}
object Object of class flowFrame, filter or filterResult.

\section*{Details}

GUID or Globally Unique Identifier is a pseudo-random number used in software applications. While each generated GUID is not guaranteed to be unique, the total number of unique keys \(\left(2 \wedge^{\wedge} 128\right)\) is so large that the probability of the same number being generated twice is very small.
Note that if no GUID has been recorded along with the FCS file, the name of the file is returned.

\section*{Value}

Character vector representing the GUID or the name of the file.

\section*{Methods}
identifier(object = 'filter") Return identifier of a filter object.
identifier(object = 'filterReference") Return identifier of a filterReference object.
identifier(object = 'filterResult") Return identifier of a filterResult object.
identifier(object = 'transform') Return identifier of a transform object.
identifier(object = "flowFrame") Return GUID from the description slot of a flowFrame object or, alternatively, the name of the input FCS file in case none can be found. For flowFrame objects there also exists a replacement method.

\section*{Author(s)}
N. LeMeur

\section*{Examples}
```

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
identifier(samp)

```
intersectFilter-class Class intersectFilter

\section*{Description}

This class represents the intersection of two filters, which is itself a filter that can be incorporated in to further set operations. intersectFilters are constructed using the binary set operator "\&" with operands consisting of a single filter or list of filters.

\section*{Slots}
filters Object of class "list", containing the component filters.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filter", directly.

Author(s)
B. Ellis

\section*{See Also}
filter, setOperationFilter
Other setOperationFilter classes: complementFilter-class, setOperationFilter-class, subsetFilter-class, unionFilter-class
```

inverseLogicleTransform

```

Computes the inverse of the transform defined by the 'logicleTransform' function or the transformList generated by 'estimateLogicle' function

\section*{Description}
inverseLogicleTransform can be use to compute the inverse of the Logicle transformation. The parameters \(\mathrm{w}, \mathrm{t}, \mathrm{m}\), a for calculating the inverse are obtained from the 'trans' input passed to the 'inverseLogicleTransform' function. (The inverseLogicleTransform method makes use of the C++ implementation of the inverse logicle transform contributed by Wayne Moore et al.)

\section*{Usage}
inverseLogicleTransform(trans,transformationId,...)

\section*{Arguments}
trans An object of class 'transform' created using the 'logicleTransform' function or class 'transformList' created by 'estimateLogicle'. The parameters \(\mathrm{w}, \mathrm{t}, \mathrm{m}\), a for calculating the inverse are obtained from the 'trans' input passed to the 'inverseLogicleTransform' function.
transformationId
A name to assigned to the inverse transformation. Used by the transform routines.
... not used.

\section*{Author(s)}

Wayne Moore, N. Gopalakrishnan

\section*{References}

Parks D.R., Roederer M., Moore W.A.(2006) A new "logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. CytometryA, 96(6):541-51.

\section*{See Also}
logicleTransform
Other Transform functions: arcsinhTransform(), biexponentialTransform(), linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
```

data(GvHD)
samp <- GvHD[[1]]
\#\#\#\#\#\#\#\#\#inverse the transform object\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
logicle <- logicleTransform(t = 10000, w = 0.5, m = 4.5 , a =0 ,"logicle")

## transform FL1-H parameter using logicle transformation

after <- transform(samp, transformList('FL1-H', logicle))

## Inverse transform the logicle transformed data to retrieve the original data

invLogicle <- inverseLogicleTransform(trans = logicle)
before <- transform (after, transformList('FL1-H', invLogicle))
\#\#\#\#\#\#\#\#\#inverse the transformList object\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
translist <- estimateLogicle(samp, c("FL1-H", "FL2-H"))
after <- transform(samp, translist)

## Inverse

invLogicle <- inverseLogicleTransform(translist)
before <- transform (after, invLogicle)

```
```

invsplitscale-class Class "invsplitscale"

```

\section*{Description}

As its name suggests, the inverse split scale transformation class represents the inverse transformation of a split scale transformation that has a logarithmic scale at high values and a linear scale at low values.

\section*{Details}

The inverse split scale transformation is defined by the function
\[
\begin{aligned}
& f(\text { parameter }, r, \text { maxValue,transitionChannel }) \frac{(\text { parameter }-b)}{a}, \text { parameter }<=t * a+b \\
& f(\text { parameter, } r, \text { maxValue,transitionChannel })=\frac{10^{\text {parameter } * \frac{d}{r}}}{c}, \text { parameter }>t * a+b
\end{aligned}
\]
where
\[
\begin{gathered}
b=\frac{\text { transitionChannel }}{2} \\
d=\frac{2 * \log _{10}(e) * r}{\text { transitionChannel }}+\log _{10}(\text { maxValue }) \\
t=10^{\log _{10} t} \\
a=\frac{\text { transitionChannel }}{2 * t} \\
\log _{10} c t=\frac{(a * t+b) * d}{r} \\
c=10^{\log _{10} c t}
\end{gathered}
\]

\section*{Slots}
.Data Object of class "function".
\(r\) Object of class "numeric" - a positive value indicating the range of the logarithmic part of the dispmlay.
maxValue Object of class "numeric" - a positive value indicating the maximum value the transformation is applied to.
transitionChannel Object of class "numeric" - non negative value that indicates where to split the linear vs. logarithmic transformation.
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor invsplitscale(parameters, \(r\), maxValue, transitionChannel, transf

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

\section*{Note}

The transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Gopalakrishnan N,F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry

\section*{See Also}
splitscale
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata","0877408774.B08",package="flowCore"))
sp1<-invsplitscale("FSC-H",r=512,maxValue=2000,transitionChannel=512)
transOut<-eval(sp1)(exprs(dat))

```

\section*{Description}

Accessor and replacement methods for items in the description slot (usually read in from a FCS file header). It lists the keywords and its values for a flowFrame specified by a character vector. Additional methods for function and lists exists for more programmatic access to the keywords.

\section*{Usage}
keyword(object, keyword, ...)

\section*{Arguments}
object Object of class flowFrame.
keyword Character vector or list of potential keywords or function. If missing all keywords are returned.
... compact: logical scaler to indicate whether to hide all the cytometer instrument and laser settings from keywords.

\section*{Details}

The keyword methods allow access to the keywords stored in the FCS files, either for a flowFrame or for a list of frames in a flowSet. The most simple use case is to provide a character vector or a list of character strings of keyword names. A more sophisticated version is to provide a function which has to take one mandatory argument, the value of this is the flowFrame. This can be used to query arbitrary information from the flowFrames description slot or even the raw data. The function has to return a single character string. The list methods allow to combine functional and direct keyword access. The replacement method takes a named character vector or a named list as input.

\section*{Methods}
keyword(object = "flowFrame", keyword = "character") Return values for all keywords from the description slot in object that match the character vector keyword.
keyword(object = 'flowFrame", keyword = 'function"') Apply the function in keyword on the flowFrame object. The function needs to be able to cope with a single argument and it needs to return a single character string. A typical use case is for instance to paste together values from several different keywords or to compute some statistic on the flowFrame and combine it with one or several other keywords.
keyword(object = 'flowFrame", keyword = 'list") Combine characters and functions in a list to select keyword values.
keyword(object = 'flowFrame", keyword = 'missing"') This is essentially an alias for description and returns all keyword-value pairs.
keyword(object = 'flowSet'", keyword = 'list'") This is a wrapper around fsApply (object, keyword, keyword) which essentially iterates over the frames in the flowSet.
keyword(object = "flowSet", keyword = "ANY") This first coerces the keyword (mostly a character vector) to a list and then calls the next applicable method.

\section*{Author(s)}

N LeMeur,F Hahne,B Ellis

\section*{See Also}
description

\section*{Examples}
```

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
keyword(samp)
keyword(samp, compact = TRUE)
keyword(samp, "FCSversion")
keyword(samp, function(x,...) paste(keyword(x, "SAMPLE ID"), keyword(x,
"GUID"), sep="_"))
keyword(samp)[["foo"]] <- "bar"
data(GvHD)
keyword(GvHD, list("GUID", cellnumber=function(x) nrow(x)))

```
```

kmeansFilter-class Class "kmeansFilter"

```

\section*{Description}

A filter that performs one-dimensional k-means (Lloyd-Max) clustering on a single flow parameter.

\section*{Usage}
kmeansFilter(..., filterId="defaultKmeansFilter")

\section*{Arguments}

\footnotetext{
... kmeansFilter are defined by a single flow parameter and an associated list of \(k\) population names. They can be given as a character vector via a named argument, or as a list with a single named argument. In both cases the name will be used as the flow parameter and the content of the list or of the argument will be used as population names, after coercing to character. For example
kmeansFilter (FSC=c("a", "b", "c"))
or
kmeansFilter(list(SSC=1:3))
If the parameter is not fully realized, but instead is the result of a transformation operation, two arguments need to be passed to the constructor: the first one being the transform object and the second being a vector of population names which can be coerced to a character. For example
kmeansFilter (tf, c("D", "E"))
filterId An optional parameter that sets the filterId of the object. The filter can later be identified by this name.
}

\section*{Details}

The one-dimensional k -means filter is a multiple population filter capable of operating on a single flow parameter. It takes a parameter argument associated with two or more populations and results in the generation of an object of class multipleFilterResult. Populations are considered to be ordered such that the population with the smallest mean intensity will be the first population in the list and the population with the highest mean intensity will be the last population listed.

\section*{Value}

Returns a kmeansFilter object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
populations Object of class character. The names of the \(k\) populations (or clusters) that will be created by the kmeansFilter. These names will later be used for the respective subpopulations in split operations and for the summary of the filterResult.
parameters Object of class parameters, defining a single parameter for which the data in the flowFrame is to be clustered. This may also be a transformation object.
filterId Object of class character, an identifier or name to reference the kmeansFilter object later on.

\section*{Extends}

Class parameterFilter, directly.
Class concreteFilter, by class parameterFilter, distance 2.
Class filter, by class parameterFilter, distance3.

\section*{Objects from the Class}

Like all other filter objects in flowCore, kmeansFilter objects should be instantiated through their constructor kmeansFilter (). See the Usage section for details.

\section*{Methods}
\%in\% signature (\(x=\) "flowFrame", table = "kmeansFilter"): The workhorse used to evaluate the filter on data.
Usage:
This is usually not called directly by the user, but internally by the filter methods.
show signature(object = "kmeansFilter"): Print information about the filter.
Usage:
The method is called automatically whenever the object is printed on the screen.

\section*{Note}

See the documentation in the flowViz package for plotting of kmeansFilters.

\section*{Author(s)}
F. Hahne, B. Ellis, N. LeMeur

\section*{See Also}
flowFrame, flowSet, filter for evaluation of kmeansFilters and split for splitting of flow cytometry data sets based on the result of the filtering operation.

\section*{Examples}
```


## Loading example data

dat <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

## Create the filter

kf <- kmeansFilter("FSC-H"=c("Pop1","Pop2","Pop3"), filterId="myKmFilter")

## Filtering using kmeansFilters

fres <- filter(dat, kf)
fres
summary(fres)
names(fres)

## The result of quadGate filtering are multiple sub-populations

## and we can split our data set accordingly

split(dat, fres)

## We can limit the splitting to one or several sub-populations

split(dat, fres, population="Pop1")
split(dat, fres, population=list(keep=c("Pop1","Pop2")))

```
linearTransform Create the definition of a linear transformation function to be applied on a data set

\section*{Description}

Create the definition of the linear Transformation that will be applied on some parameter via the transform method. The definition of this function is currently \(x<-a * x+b\)

\section*{Usage}
linearTransform(transformationId="defaultLinearTransform", \(a=1, b=0\))

\section*{Arguments}
transformationId character string to identify the transformation
a double that corresponds to the multiplicative factor in the equation
b double that corresponds to the additive factor in the equation

\section*{Value}

Returns an object of class transform.

\section*{Author(s)}

\section*{N. LeMeur}

\section*{See Also}
```

transform-class, transform

```

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
```

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
linearTrans <- linearTransform(transformationId="Linear-transformation", a=2, b=0)
dataTransform <- transform(samp, transformList('FSC-H' ,linearTrans))

```
 lintGml2-class Class lintGml2

\section*{Description}

Linear transformation as parameterized in Gating-ML 2.0.

\section*{Details}
lintGml2 is defined by the following function:
\[
\text { bound }(f, \text { boundMin, boundMax })=\max (\min (f, \text { boundMax }), \text { boundMin }))
\]
where
\[
f(\text { parameter }, T, A)=(\text { parameter }+A) /(T+A)
\]

This transformation provides a linear display that maps scale values from the \([-A, T]\) interval to the \([0,1]\) interval. However, it is defined for all \(\operatorname{xin} R\) including outside of the \([-A, T]\) interval.

In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the result of the f function be less than boundMin, then let the result of this transformation be boundMin. Analogically, should the result of the \(f\) function be more than boundMax, then let the result of this transformation be boundMax. The boundMin parameter shall not be greater than the boundMax parameter.

\section*{Slots}
.Data Object of class function.
T Object of class numeric - positive constant (top of scale value).
A Object of class numeric - non-negative constant that is less than or equal to \(T\); it is determining the bottom end of the transformation.
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.
boundMin Object of class numeric - lower bound of the transformation, default -Inf.
boundMax Object of class numeric - upper bound of the transformation, default Inf.

\section*{Objects from the Class}

Objects can be created by calls to the constructor
lintGml2(parameter, T, A, transformationId, boundMin, boundMax)

\section*{Extends}

Class singleParameterTransform, directly.
Class transform, by class singleParameterTransform, distance 2 .
Class transformation, by class singleParameterTransform, distance 3.
Class characterOrTransformation, by class singleParameterTransform, distance 4.

\section*{Note}

The linear transformation object can be evaluated using the eval method by passing the data frame as an argument. The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Spidlen, J.

\section*{References}

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for representing gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/ 20141009.pdf

\section*{See Also}
linearTransform, transform-class, transform
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))
myLinTr1 <- lintGml2(parameters = "FSC-H", T = 1000, A = 0,
transformationId="myLinTr1")
transOut <- eval(myLinTr1)(exprs(myDataIn))

```
\(\ln\) Transform \(\quad\) Create the definition of a ln transformation function (natural logarthim) to be applied on a data set

\section*{Description}

Create the definition of the \(\ln\) Transformation that will be applied on some parameter via the transform method. The definition of this function is currently \(\mathrm{x}<-\log (\mathrm{x})^{*}(\mathrm{r} / \mathrm{d})\). The transformation would normally be used to convert to a linear valued parameter to the natural logarithm scale. Typically \(r\) and \(d\) are both equal to 1.0 . Both must be positive.

\section*{Usage}
\(\operatorname{lnTransform(transformationId="defaultLnTransform",~} r=1, d=1\))

\section*{Arguments}
transformationId
character string to identify the transformation
\(r\) positive double that corresponds to a scale factor.
d positive double that corresponds to a scale factor

\section*{Value}

Returns an object of class transform.

\section*{Author(s)}
B. Ellis and N. LeMeur

\section*{See Also}
transform-class, transform
Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(), linearTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
data(GvHD)
lnTrans <- lnTransform(transformationId="ln-transformation", \(r=1, d=1\))
ln1 <- transform(GvHD, transformList('FSC-H', lnTrans))
```

opar = par(mfcol=c(2, 1))

```
plot(density(exprs(GvHD[[1]])[,1]), main="Original")
plot(density(exprs(ln1[[1]])[,1]), main="Ln Transform")
logarithm-class Class "logarithm"

\section*{Description}

Logartithmic transform class, which represents a transformation defined by the function

\section*{Details}
\[
\begin{gathered}
f(\text { parameter }, a, b)=\ln (a * \text { prarameter }) * b \quad a * \text { parameter }>0 \\
\\
0 \quad a * \text { parameter }<=0
\end{gathered}
\]

\section*{Slots}
.Data Object of class "function"
a Object of class "numeric" - non-zero multiplicative constant.
b Object of class "numeric" - non-zero multiplicative constant.
parameters Object of class "transformation" - flow parameters to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor logarithm(parameters, \(a, b\), transformationId)

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note
The logarithm transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}
exponential, quadratic
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
lg1<-logarithm(parameters="FSC-H",a=2,b=1, transformationId="lg1")
transOut<-eval(lg1)(exprs(dat))

```
 logicalFilterResult-class
 Class "logicalFilterResult"

\section*{Description}

Container to store the result of applying a filter on a flowFrame object

\section*{Slots}
subSet Object of class "numeric", which is a logical vector indicating the population membership of the data in the gated flowFrame.
frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity checking.
filterDetails Object of class "list" describing the filter applied.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filterResult", directly. Class "filter", by class "filterResult", distance 2.

\section*{Author(s)}
B. Ellis

\section*{See Also}
filter

\section*{Examples}
showClass("logicalFilterResult")
logicletGml2-class Class logicletGml2

\section*{Description}

Logicle transformation as published by Moore and Parks.

\section*{Details}
logicletGml2 is defined by the following function:
\[
\text { bound }(\text { logicle, boundMin, boundMax })=\max (\min (\text { logicle }, \text { boundMax }), \text { boundMin }))
\]
where
\[
\operatorname{logicle}(x, T, W, M, A)=\operatorname{root}(B(y, T, W, M, A)-x)
\]
and \(B\) is a modified biexponential function:
\[
B(y, T, W, M, A)=a e^{b y}-c e^{-d y}-f
\]
where
- x is the value that is being transformed (an FCS dimension value). Typically, x is less than or equal to T , although the transformation function is also defined for x greater than T .
- \(y\) is the result of the transformation.
- T is greater than zero and represents the top of scale value.
- M is greater than zero and represents the number of decades that the true logarithmic scale approached at the high end of the Logicle scale would cover in the plot range.
- W is non-negative and not greater than half of \(M\) and represents the number of such decades in the approximately linear region. The choice of \(W=M / 2\) specifies a scale that is essentially linear over the whole range except for a small region of large data values. For situations in which values of W approaching \(M / 2\) might be chosen, ordinary linear display scales will usually be more appropriate. The choice of \(W=0\) gives essentially the hyperbolic sine function.
- A is the number of additional decades of negative data values to be included. A shall be greater than or equal to \(-W\), and less than or equal to \(M-2 W\)
- root is a standard root finding algorithm (e.g., Newton's method) that finds y such as \(B(y, T, W, M, A)=\) \(x\).
and \(a, b, c, d\) and \(f\) are defined by means of \(T, W, M, A, w, x 0, x 1, x 2, c a\) and \(f a\) as:
\[
\begin{gathered}
w=W /(M+A) \\
x 2=A /(M+A) \\
x 1=x 2+w \\
x 0=x 2+2 * w \\
b=(M+A) * \ln (10)
\end{gathered}
\]
and \(d\) is a constant so that
\[
2 *(\ln (d)-\ln (b))+w *(d+b)=0
\]
given \(b\) and \(w\), and
\[
\begin{gathered}
c a=e^{x 0 *(b+d)} \\
f a=e^{b * x 1}-\left(c a /\left(e^{d * x 1}\right)\right) \\
a=T /\left(e^{b}-f a-\left(c a / e^{d}\right)\right) \\
c=c a * a \\
f=f a * a
\end{gathered}
\]

The Logicle scale is the inverse of a modified biexponential function. It provides a Logicle display that maps scale values onto the \([0,1]\) interval such that the data value \(T\) is mapped to 1 , large data values are mapped to locations similar to an \((\mathrm{M}+\mathrm{A})\)-decade logarithmic scale, and A decades of negative data are brought on scale. For implementation purposes, it is recommended to follow guidance in Moore and Parks publication.
In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the result of the logicle function be less than boundMin, then let the result of this transformation be boundMin. Analogically, should the result of the logicle function be more than boundMax, then let the result of this transformation be boundMax. The boundMin parameter shall not be greater than the boundMax parameter.

\section*{Slots}
.Data Object of class function.
T Object of class numeric - positive constant (top of scale value).
M Object of class numeric - positive constant (desired number of decades).
W Object of class numeric - non-negative constant that is not greater than half of \(M\) (the number of such decades in the approximately linear region).

A Object of class numeric - a constant that is greater than or equal to -W, and also less than or equal to M-2W. (A represents the number of additional decades of negative data values to be included.)
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.
boundMin Object of class numeric - lower bound of the transformation, default -Inf.
boundMax Object of class numeric - upper bound of the transformation, default Inf.

\section*{Objects from the Class}

Objects can be created by calls to the constructor
logicletGml2(parameter, T, M, W, A, transformationId, boundMin, boundMax)

\section*{Extends}

Class singleParameterTransform, directly.
Class transform, by class singleParameterTransform, distance 2 .
Class transformation, by class singleParameterTransform, distance 3 .
Class characterOrTransformation, by class singleParameterTransform, distance 4.

\section*{Note}

Please note that logicletGml2 and logicleTransform are similar transformations; however, the Gating-ML 2.0 compliant logicletGml2 brings "reasonable" data values to the scale of \([0,1]\) while the logicleTransform scales these values to \([0, M]\).

The logicle transformation object can be evaluated using the eval method by passing the data frame as an argument. The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Spidlen, J., Moore, W.

\section*{References}

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for representing gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/ 20141009.pdf

Moore, WA and Parks, DR. Update for the logicle data scale including operational code implementations. Cytometry A., 2012:81A(4):273-277.

Parks, DR and Roederer, M and Moore, WA. A new "Logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A., 2006:69(6):541551.

\section*{See Also}
logicleTransform, transform-class, transform
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))
myLogicle <- logicletGml2(parameters = "FSC-H", T = 1023, M = 4.5,
W = 0.5, A = 0, transformationId="myLogicle")
transOut <- eval(myLogicle)(exprs(myDataIn))

```
```

logicleTransform Computes a transform using the 'logicle_transform' function

```

\section*{Description}

Logicle transformation creates a subset of biexponentialTransform hyperbolic sine transformation functions that provides several advantages over linear/log transformations for display of flow cytometry data. (The logicleTransform method makes use of the C++ implementation of the logicle transform contributed by Wayne Moore et al.)

\section*{Usage}
logicleTransform(transformationId="defaultLogicleTransform", w = 0.5, t = 262144,
\(m=4.5, a=0)\)
estimateLogicle(x, channels,...)

\section*{Arguments}

\section*{transformationId}

A name to assign to the transformation. Used by the transform/filter routines.
W
t
m
a

X
channels w is the linearization width in asymptotic decades. w should be \(>0\) and determines the slope of transformation at zero. w can be estimated using the equation \(\mathrm{w}=(\mathrm{m}-\log 10(\mathrm{t} / \mathrm{abs}(\mathrm{r}))) / 2\), where r is the most negative value to be included in the display
Top of the scale data value, e.g, 10000 for common 4 decade data or 262144 for a 18 bit data range. t should be greater than zero
\(m\) is the full width of the transformed display in asymptotic decades. \(m\) should be greater than zero
Additional negative range to be included in the display in asymptotic decades. Positive values of the argument brings additional negative input values into the transformed display viewing area. Default value is zero corresponding to a Standard logicle function.

Input flow frame for which the logicle transformations are to be estimated.
channels or markers for which the logicle transformation is to be estimated.
other arguments:
q : a numeric type specifying quantile value, default is 0.05

\section*{Author(s)}

Wayne Moore, N Gopalakrishnan

\section*{References}

Parks D.R., Roederer M., Moore W.A.(2006) A new "logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. CytometryA, 96(6):541-51.

\section*{See Also}

\section*{inverseLogicleTransform, estimateLogicle}

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(), linearTransform(), lnTransform(), logTransform(), quadraticTransform(), scaleTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
```

data(GvHD)
samp <- GvHD[[1]]

## User defined logicle function

lgcl <- logicleTransform( w = 0.5, t= 10000, m =4.5)
trans <- transformList(c("FL1-H", "FL2-H"), lgcl)
after <- transform(samp, trans)
invLgcl <- inverseLogicleTransform(trans = lgcl)
trans <- transformList(c("FL1-H", "FL2-H"), invLgcl)
before <- transform (after, trans)

```
```


## Automatically estimate the logicle transformation based on the data

lgcl <- estimateLogicle(samp, channels = c("FL1-H", "FL2-H", "FL3-H", "FL2-A", "FL4-H"))

## transform parameters using the estimated logicle transformation

after <- transform(samp, lgcl)

```
logtGml2-class Class logtGml2

\section*{Description}

Log transformation as parameterized in Gating-ML 2.0.

\section*{Details}
logtGml2 is defined by the following function:
\[
\text { bound }(f, \text { boundMin, boundMax })=\max (\min (f, \text { boundMax }), \text { boundMin }))
\]
where
\[
f(\text { parameter }, T, M)=(1 / M) * \log 10(x / T)+1
\]

This transformation provides a logarithmic display that maps scale values from the \((0, T]\) interval to the \((-\operatorname{Inf}, 1]\) interval such that the data value T is mapped to 1 and M decades of data are mapped into the interval. Also, the limit for x going to 0 is -Inf.
In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the result of the f function be less than boundMin, then let the result of this transformation be boundMin. Analogically, should the result of the f function be more than boundMax, then let the result of this transformation be boundMax. The boundMin parameter shall not be greater than the boundMax parameter.

\section*{Slots}
. Data Object of class function.
T Object of class numeric - positive constant (top of scale value).
M Object of class numeric - positive constant (number of decades).
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.
boundMin Object of class numeric - lower bound of the transformation, default -Inf.
boundMax Object of class numeric - upper bound of the transformation, default Inf.

\section*{Objects from the Class}

Objects can be created by calls to the constructor
logtGml2(parameter, T, M, transformationId, boundMin, boundMax)

\section*{Extends}

Class singleParameterTransform, directly.
Class transform, by class singleParameterTransform, distance 2.
Class transformation, by class singleParameterTransform, distance 3 .
Class characterOrTransformation, by class singleParameterTransform, distance 4.

\section*{Note}

The log transformation object can be evaluated using the eval method by passing the data frame as an argument. The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Spidlen, J.

\section*{References}

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for representing gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/ 20141009.pdf

\section*{See Also}
logTransform, transform-class, transform
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))
myLogTr1 <- logtGml2(parameters = "FSC-H", T = 1023, M = 4.5,
transformationId="myLogTr1")
transOut <- eval(myLogTr1)(exprs(myDataIn))

```
logTransform Create the definition of a log transformation function (base specified by user) to be applied on a data set

\section*{Description}

Create the definition of the log Transformation that will be applied on some parameter via the transform method. The definition of this function is currently \(\mathrm{x}<-\log (\mathrm{x}, \log \operatorname{base})^{*}(\mathrm{r} / \mathrm{d})\). The transformation would normally be used to convert to a linear valued parameter to the natural logarithm scale. Typically r and d are both equal to 1.0 . Both must be positive. logbase \(=10\) corresponds to base 10 logarithm.

\section*{Usage}
logTransform(transformationId="defaultLogTransform", logbase=10, r=1, d=1)

\section*{Arguments}
transformationId character string to identify the transformation
logbase positive double that corresponds to the base of the logarithm.
\(r\) positive double that corresponds to a scale factor.
d positive double that corresponds to a scale factor

\section*{Value}

Returns an object of class transform.

\section*{Author(s)}
B. Ellis, N. LeMeur

\section*{See Also}
transform-class, transform
Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(), linearTransform(), lnTransform(), logicleTransform(), quadraticTransform(), scaleTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
```

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
logTrans <- logTransform(transformationId="log10-transformation", logbase=10, r=1, d=1)
trans <- transformList('FSC-H', logTrans)
dataTransform <- transform(samp, trans)

```
```

manyFilterResult-class

```
```

Class "manyFilterResult"

```

\section*{Description}

The result of a several related, but possibly overlapping filter results. The usual creator of this object will usually be a filter operation on a flowFrame object.

\section*{Slots}
subSet Object of class "matrix".
frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity checking.
filterDetails Object of class "list" describing the filter applied.
filterId Object of class "character" referencing the filter applied.
dependency Any dependencies between the filters. Currently not used.

\section*{Extends}

Class "filterResult", directly. Class "filter", by class "filterResult", distance 2.

\section*{Methods}
[, [[subsetting. If \(x\) is manyFilterResult, then \(x[[i]]\) a filterResult object. The semantics is similar to the behavior of the subsetting operators for lists.
length number of filterResult objects in the set.
names names of the filterResult objects in the set.
summary summary filterResult objects in the set.

\section*{Author(s)}
B. Ellis

\section*{See Also}
filterResult

\section*{Examples}
showClass("manyFilterResult")
```

markernames get or update the marker names

```

\section*{Description}
marker names corresponds to the 'desc' column of the phenoData of the flowFrame.

\section*{Usage}
```

markernames(object, ...)

## S4 method for signature 'flowFrame'

markernames(object)
markernames(object) <- value

## S4 replacement method for signature 'flowFrame'

markernames(object) <- value

## S4 method for signature 'flowSet'

markernames(object)

## S4 replacement method for signature 'flowSet'

markernames(object) <- value

```

\section*{Arguments}
object flowFrame or flowSet
... not used
value a named list or character vector. the names corresponds to the name(channel) and actual values are the desc(marker).

\section*{Details}

When extract marker names from a flowSet, it throws the warning if the marker names are not all the same across samples.

\section*{Value}
marker names as a character vector. The marker names for FSC,SSC and Time channels are automatically excluded in the returned value. When object is a flowSet and the marker names are not consistent across flowFrames, it returns a list of unique marker sets.

\section*{Examples}
```

    data(GvHD)
    fr <- GvHD[[1]]
    markernames(fr)
    chnls <- c("FL1-H", "FL3-H")
    markers <- c("CD15", "CD14")
    names(markers) <- chnls
    markernames(fr) <- markers
    markernames(fr)
    fs <- GvHD[1:3]
    markernames(fs)
    ```
multipleFilterResult-class
 Class "multipleFilterResult"

\section*{Description}

Container to store the result of applying filter on set of flowFrame objects

\section*{Slots}
subSet Object of class "factor" indicating the population membership of the data in the gated flowFrame.
frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity checking.
filterDetails Object of class "list" describing the filter applied.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filterResult", directly. Class "filter", by class "filterResult", distance 2.

\section*{Methods}
[, [[subsetting. If \(x\) is multipleFilterResult, then \(x[i]]\) a FilterResult object. The semantics is similar to the behavior of the subsetting operators for lists.
length number of FilterResult objects in the set.
names names of the FilterResult objects in the set.
summary summary FilterResult objects in the set.

\section*{Author(s)}
B. Ellis

\section*{See Also}
filterResult

\section*{Examples}
```

showClass("multipleFilterResult")

```
```

normalization-class Class "normalization"

```

\section*{Description}

Class and methods to normalize a a flowSet using a potentially complex normalization function.

\section*{Usage}
normalization(parameters, normalizationId="defaultNormalization", normFunction, arguments=list())
normalize(data, x,...)

\section*{Arguments}
parameters Character vector of parameter names.
normalizationId
The identifier for the normalization object.
x
An object of class flowSet.
normFunction The normalization function
arguments The list of additional arguments to normFunction
data The flowSet to normalize.
... other arguments: see normalize-methodsfor details.

\section*{Details}

Data normalization of a flowSet is a rather fuzzy concept. The idea is to have a rather general function that takes a flowSet and a list of parameter names as input and applies any kind of normalization to the respective data columns. The output of the function has to be a flowSet again. Although we don't formally check for it, the dimensions of the input and of the output set should remain the same. Additional arguments may be passed to the normalization function via the arguments list. Internally we evaluate the function using do. call and one should check its documentation for details.
Currently, the most prominent example for a normalization function is warping, as provided by the flowStats package.

\section*{Value}

A normalization object for the constructor.
A flowSet for the normalize methods.

\section*{Slots}
parameters Object of class "character". The flow parameters that are supposed to be normalized by the normalization function.
normalizationId Object of class "character". An identifier for the object.
normFunction Object of class "function" The normalization function. It has to take two mandatory arguments: \(x\), the flowSet, and parameters, a character of parameter names that are to be normalized by the function. Additional arguments have to be passed in via arguments.
arguments Object of class "list" A names list of additional arguments. Can be NULL.

\section*{Objects from the Class}

Objects should be created using the constructor normalization(). See the Usage and Arguments sections for details.

\section*{Methods}
identifier<- signature(object = "normalization", value = "character"): Set method for the identifier slot.
identifier signature(object = "normalization"): Get method for the identifier slot.
normalize signature (data = "flowSet", \(x=\) "normalization"): Apply a normalization to a flowSet.
parameters signature(object = "normalization"): The more generic constructor.

\section*{Author(s)}
F. Hahne
```

nullParameter-class Class "nullParameter"

```

\section*{Description}

A class used internally for coercing transforms to characters for a return value when a coercion cannot be performed. The user should never need to interact with this class.

\section*{Objects from the Class}

Objects will be created internally whenever necessary and this should not be of any concern to the user.
```

parameterFilter-class Class "parameterFilter"

```

\section*{Description}

A concrete filter that acts on a set of parameters.

\section*{Slots}
parameters The names of the parameters employed by this filter.
filterId The filter identifier.

\section*{Objects from the Class}
parameterFilter objects are never created directly. This class serves as an inheritance point for filters that depends on particular parameters.

\section*{Extends}

Class "concreteFilter", directly. Class "filter", by class "concreteFilter", distance 2.

\section*{Author(s)}
B. Ellis
parameters-class Class "parameters"

\section*{Description}

A representation of flow parameters that allows for referencing.

\section*{Slots}
.Data A list of the individual parameters.

\section*{Objects from the Class}

Objects will be created internally whenever necessary and this should not be of any concern to the user.

\section*{Extends}

Class "list", from data part. Class "vector", by class "list", distance 2.

\section*{Author(s)}

Nishant Gopalakrishnan
parameters-methods Obtain information about parameters for flow cytometry objects.

\section*{Description}

Many different objects in flowCore are associated with one or more parameters. This includes filter, flowFrame and parameterFilter objects that all either describe or use parameters.

\section*{Usage}
parameters(object, ...)

\section*{Arguments}
object Object of class filter, flowFrame or parameterFilter.
... Further arguments that get passed on to the methods.

\section*{Value}

When applied to a flowFrame object, the result is an AnnotatedDataFrame describing the parameters recorded by the cytometer. For other objects it will usually return a vector of names used by the object for its calculations.

\section*{Methods}
parameters(object = 'filter'") Returns for all objects that inherit from filter a vector of parameters on which a gate is defined.
parameters(object = 'parameterFilter') see above
parameters(object = "setOperationFilter") see above
parameters(object = 'filterReference"') see above
parameters(object = 'flowFrame") Returns an AnnotatedDataFrame containing detailed descriptions about the measurement parameters of the flowFrame. For flowFrame objects there also exists a replacement method.

\section*{Author(s)}
B. Ellis, N. Le Meur, F. Hahne

\section*{Examples}
```

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
parameters(samp)
print(samp@parameters@data)

```
```

parameterTransform-class

```
 Class "parameterTransform"

\section*{Description}

Link a transformation to particular flow parameters

\section*{Slots}
.Data Object of class "function", the transformation function.
parameters Object of class "character" The parameters the transformation is applied to.
transformationId Object of class "character". The identifier for the object.

\section*{Objects from the Class}

Objects are created by using the \%on\% operator and are usually not directly instantiated by the user.

\section*{Extends}

Class "transform", directly. Class "function", by class "transform", distance 2.

\section*{Methods}
\%on\% signature(e1 = "filter", e2 = "parameterTransform"): Apply the transformation.
\%on\% signature(e1 = "parameterTransform", e2 = "flowFrame"): see above
parameters signature(object = "parameterTransform"): Accessor to the parameters slot

\section*{Author(s)}

Byron Ellis
```

polygonGate-class Class "polygonGate"

```

\section*{Description}

Class and constructor for 2-dimensional polygonal filter objects.

\section*{Usage}
polygonGate(..., .gate, boundaries, filterId="defaultPolygonGate")

\section*{Arguments}
filterId An optional parameter that sets the filterId of this gate.
.gate, boundaries
A definition of the gate. This can be either a list or a named matrix as described below. Note the argument boundaries is deprecated and will go away in the next release.
... You can also directly describe a gate without wrapping it in a list or matrix, as described below.

\section*{Details}

Polygons are specified by the coordinates of their vertices in two dimensions. The constructor is designed to be useful in both direct and programmatic usage. It takes either a list or a named matrix with 2 columns and at least 3 rows containing these coordinates. Alternatively, vertices can be given as named arguments, in which case the function tries to convert the values into a matrix.

\section*{Value}

Returns a polygonGate object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
boundaries Object of class "matrix". The vertices of the polygon in two dimensions. There need to be at least 3 vertices specified for a valid polygon.
parameters Object of class "character", describing the parameter used to filter the flowFrame.
filterId Object of class "character", referencing the filter.

\section*{Extends}

Class "parameterFilter", directly.
Class "concreteFilter", by class parameterFilter, distance 2.
Class "filter", by class parameterFilter, distance 3.

\section*{Objects from the Class}

Objects can be created by calls of the form new("polygonGate", . .) or by using the constructor polygonGate. Using the constructor is the recommended way.

\section*{Methods}
\%in\% signature (\(x=\) "flowFrame", table = "polygonGate" \():\) The workhorse used to evaluate the filter on data. This is usually not called directly by the user, but internally by calls to the filter methods.
show signature(object = "polygonGate"): Print information about the filter.

\section*{Note}

See the documentation in the flowViz package for plotting of polygonGates.

\section*{Author(s)}
F.Hahne, B. Ellis N. Le Meur

\section*{See Also}
flowFrame, rectangleGate, ellipsoidGate, polytopeGate, filter for evaluation of rectangleGates and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.
Other Gate classes: ellipsoidGate-class, polytopeGate-class, quadGate-class, rectangleGate-class

\section*{Examples}
```


## Loading example data

dat <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

## Defining the gate

sqrcut <- matrix(c(300, 300,600,600,50, 300,300,50),ncol=2,nrow=4)
colnames(sqrcut) <- c("FSC-H","SSC-H")
pg <- polygonGate(filterId="nonDebris", boundaries= sqrcut)
pg

## Filtering using polygonGates

fres <- filter(dat, pg)
fres
summary(fres)

## The result of polygon filtering is a logical subset

Subset(dat, fres)

## We can also split, in which case we get those events in and those

## not in the gate as separate populations

split(dat, fres)

```
polytopeGate-class Define filter boundaries

\section*{Description}

Convenience methods to facilitate the construction of filter objects

\section*{Usage}
polytopeGate(..., .gate, b, filterId="defaultPolytopeGate")

\section*{Arguments}
filterId An optional parameter that sets the filterId of this gate.
.gate A definition of the gate. This can be either a list, vector or matrix, described below.
b
Need documentation
... You can also directly describe a gate without wrapping it in a list or matrix, as described below.

\section*{Details}

These functions are designed to be useful in both direct and programmatic usage.
For rectangle gate in n dimensions, if \(\mathrm{n}=1\) the gate correspond to a range gate. If \(\mathrm{n}=2\), the gate is a rectangle gate. To use this function programmatically, you may either construct a list or you may construct a matrix with \(n\) columns and 2 rows. The first row corresponds to the minimal value for each parameter while the second row corresponds to the maximal value for each parameter. The names of the parameters are taken from the column names as in the third example.

Rectangle gate objects can also be multiplied together using the * operator, provided that both gate have orthogonal axes.

For polygon gate, the boundaries are specified as vertices in 2 dimensions, for polytope gate objects as vertices in n dimensions.

Polytope gate objects will represent the convex polytope determined by the vertices and parameter b which together specify the polytope as an intersection of half-spaces represented as a system of linear inequalities, \(A x \leq b\)

For quadrant gates, the boundaries are specified as a named list or vector of length two.

\section*{Value}

Returns a rectangleGate or polygonGate object for use in filtering flowFrames or other flow cytometry objects.

\section*{Author(s)}
F.Hahne, B. Ellis N. Le Meur

\section*{See Also}
flowFrame, filter
Other Gate classes: ellipsoidGate-class, polygonGate-class, quadGate-class, rectangleGate-class
quadGate-class Class "quadGate"

\section*{Description}

Class and constructors for quadrant-type filter objects.

\section*{Usage}
quadGate(..., .gate, filterId="defaultQuadGate")

\section*{Arguments}
filterId An optional parameter that sets the filterId of this filter. The object can later be identified by this name.
.gate A definition of the gate for programmatic access. This can be either a named list or a named numeric vector, as described below.
... The parameters of quadGates can also be directly described using named function arguments, as described below.

\section*{Details}
quadGates are defined by two parameters, which specify a separation of a two-dimensional parameter space into four quadrants. The quadGate function is designed to be useful in both direct and programmatic usage.
For the interactive use, these parameters can be given as additional named function arguments, where the names correspond to valid parameter names in a flowFrame or flowSet. For a more programmatic approach, a named list or numeric vector of the gate boundaries can be passed on to the function as argument . gate.
Evaluating a quadGate results in four sub-populations, and hence in an object of class multipleFilterResult. Accordingly, quadGates can be used to split flow cytometry data sets.

\section*{Value}

Returns a quadGate object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
boundary Object of class "numeric", length 2. The boundaries of the quadrant regions.
parameters Object of class "character", describing the parameter used to filter the flowFrame.
filterId Object of class "character", referencing the gate.

\section*{Extends}

Class "parameterFilter", directly.
Class "concreteFilter", by class parameterFilter, distance 2.
Class "filter", by class parameterFilter, distance 3.

\section*{Objects from the Class}

Objects can be created by calls of the form new ("quadGate", . .) or using the constructor quadGate. The latter is the recommended way.

\section*{Methods}
\%in\% signature (\(x=\) "flowFrame", table = "quadGate" \()\) : The workhorse used to evaluate the gate on data. This is usually not called directly by the user, but internally by calls to the filter methods.
show signature(object = "quadGate"): Print information about the gate.

\section*{Note}

See the documentation in the flowViz package for plotting of quadGates.

\section*{Author(s)}
F.Hahne, B. Ellis N. Le Meur

\section*{See Also}
flowFrame, flowSet, filter for evaluation of quadGates and split for splitting of flow cytometry data sets based on that.
Other Gate classes: ellipsoidGate-class, polygonGate-class, polytopeGate-class, rectangleGate-class

\section*{Examples}
```


## Loading example data

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

## Create directly. Most likely from a command line

quadGate(filterId="myQuadGate1", "FSC-H"=100, "SSC-H"=400)

## To facilitate programmatic construction we also have the following

quadGate(filterId="myQuadGate2", list("FSC-H"=100, "SSC-H"=400))

## FIXME: Do we want this?

\#\#quadGate(filterId="myQuadGate3", .gate=c("FSC-H"=100, "SSC-H"=400))

## Filtering using quadGates

qg <- quadGate(filterId="quad", "FSC-H"=600, "SSC-H"=400)
fres <- filter(dat, qg)
fres
summary(fres)
names(fres)

## The result of quadGate filtering are multiple sub-populations

## and we can split our data set accordingly

split(dat, fres)

```
```


## We can limit the splitting to one or several sub-populations

split(dat, fres, population="FSC-H-SSC-H-")
split(dat, fres, population=list(keep=c("FSC-H-SSC-H-",
"FSC-H-SSC-H+")))

```
quadratic-class Class "quadratic"

\section*{Description}

Quadratic transform class which represents a transformation defined by the function
\[
f(\text { parameter }, a)=a * \text { parameter }^{2}
\]

\section*{Slots}
.Data Object of class "function".
a Object of class "numeric" - non-zero multiplicative constant.
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor quadratic (parameters, a, transformationId)

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

\section*{Note}

The quadratic transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a column vector. (See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}
dg1polynomial,ratio,squareroot
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
quad1<-quadratic(parameters="FSC-H",a=2, transformationId="quad1")
transOut<-eval(quad1)(exprs(dat))

```
quadraticTransform Create the definition of a quadratic transformation function to be ap- plied on a data set

\section*{Description}

Create the definition of the quadratic Transformation that will be applied on some parameter via the transform method. The definition of this function is currently \(x<-a^{*} x \backslash^{\wedge} 2+b^{*} x+c\)

\section*{Usage}
quadraticTransform(transformationId="defaultQuadraticTransform", \(a=1, b=1, c=0\))

\section*{Arguments}
transformationId character string to identify the transformation
a double that corresponds to the quadratic coefficient in the equation
b double that corresponds to the linear coefficient in the equation
c double that corresponds to the intercept in the equation

\section*{Value}

Returns an object of class transform.

\section*{Author(s)}
N. Le Meur

\section*{See Also}
```

transform-class, transform

```

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(), linearTransform(), lnTransform(), logTransform(), logicleTransform(), scaleTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
```

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
quadTrans <- quadraticTransform(transformationId="Quadratic-transformation", a=1, b=1, c=0)
dataTransform <- transform(samp, transformList('FSC-H', quadTrans))

```
```

randomFilterResult-class
Class "randomFilterResult"

```

\section*{Description}

Container to store the result of applying a filter on a flowFrame object, with the population membership considered to be stochastic rather than absolute. Currently not utilized.

\section*{Slots}
subSet Object of class "numeric", which is a logical vector indicating the population membership of the data in the gated flowFrame.
frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity checking.
filterDetails Object of class "list" describing the filter applied.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filterResult", directly. Class "filter", by class "filterResult", distance 2.

\section*{Author(s)}
B. Ellis

\section*{See Also}
filter
```

ratio-class Class "ratio"

```

\section*{Description}
ratio transform calculates the ratio of two parameters defined by the function
\[
f\left(\text { parameter }_{1}, \text { parameter }_{2}\right)=\frac{\text { parameter }_{1}}{\text { parameter }_{2}}
\]

\section*{Slots}
.Data Object of class "function". numerator Object of class "transformation" - flow parameter to be transformed denominator Object of class "transformation" - flow parameter to be transformed. transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor ratio(parameter1, parameter2, transformationId)

\section*{Extends}

Class "transform", directly.
Class "transformation", by class "transform", distance 2.
Class "characterOrTransformation", by class "transform", distance 3.

\section*{Note}

The ratio transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as matrix with one column. (See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}
dg1polynomial,quadratic,squareroot
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

dat <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))
rat1<-ratio("FSC-H", "SSC-H",transformationId="rat1")
transOut<-eval(rat1)(exprs(dat))

```
```

ratiotGml2-class Class "ratiotGml2"

```

\section*{Description}

Ratio transformation as parameterized in Gating-ML 2.0.

\section*{Details}
ratiotGml2 is defined by the following function:
\[
\text { bound }(f, \text { boundMin, boundMax })=\max (\min (f, \text { boundMax }), \text { boundMin }))
\]
where
\[
f(p 1, p 2, A, B, C)=A *(p 1-B) /(p 2-C)
\]

If a boundary is defined by the boundMin and/or boundMax parameters, then the result of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the result of the \(f\) function be less than boundMin, then let the result of this transformation be boundMin. Analogically, should the result of the \(f\) function be more than boundMax, then let the result of this transformation be boundMax. The boundMin parameter shall not be greater than the boundMax parameter.

\section*{Slots}
. Data Object of class function.
numerator Object of class "transformation" - flow parameter to be used as numerator in the transformation function.
denominator Object of class "transformation" - flow parameter to be used as denominator in the transformation function.
pA Object of class numeric constant A.
pB Object of class numeric constant \(B\).
pC Object of class numeric constant \(C\).
transformationId Object of class "character" - unique ID to reference the transformation.
boundMin Object of class numeric - lower bound of the transformation, default -Inf.
boundMax Object of class numeric - upper bound of the transformation, default Inf.

\section*{Objects from the Class}

Objects can be created by calls to the constructor
```

ratiotGml2(p1, p2, A, B, C, transformationId, boundMin, boundMax)

```

\section*{Extends}

Class "transform", directly.
Class "transformation", by class "transform", distance 2.
Class "characterOrTransformation", by class "transform", distance 3.

\section*{Note}

The ratiotGml2 transformation object can be evaluated using the eval method by passing the data frame as an argument. The transformed parameters are returned as matrix with one column. (See example below)

\section*{Author(s)}

Spidlen, J.

\section*{References}

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for representing gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/ 20141009.pdf

\section*{See Also}
```

ratio, transform-class, transform

```

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
```

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))
myRatioT <- ratiotGml2("FSC-H", "SSC-H", pA = 2, pB = 3,
pC = -10, transformationId = "myRatioT")
transOut <- eval(myRatioT)(exprs(myDataIn))

```
```

read.FCS Read an FCS file

```

\section*{Description}

Check validity and Read Data File Standard for Flow Cytometry

\section*{Usage}
isFCSfile(files)
read.FCS(filename, transformation="linearize", which.lines=NULL, alter. names=FALSE, column.pattern=NULL, invert.pattern = FALSE, decades=0, ncdf = FALSE, min.limit=NULL, truncate_max_range = TRUE, dataset=NULL, emptyValue=TRUE, channel_alias = NULL, ...)

\section*{Arguments}
\[
\begin{array}{ll}
\text { filename } & \text { Character of length 1: filename } \\
\text { transformation } & \begin{array}{l}
\text { An character string that defines the type of transformation. Valid values are } \\
\text { linearize (default), linearize-with-PnG-scaling, or scale. The linearize } \\
\text { transformation applies the appropriate power transform to the data. The linearize-wi th-PnG-scaling } \\
\text { transformation applies the appropriate power transform for parameters stored } \\
\text { on log scale, and also a linear scaling transformation based on the 'gain' (FCS }
\end{array} \\
& \begin{array}{ll}
\text { ISPnG keywords) for parameters stored on a linear scale. The scale transforma- } \\
\text { tion scales all columns to } \$\left[0,10^{\wedge}\right. \text { decades]\$. defaulting to decades=0 as in the }
\end{array} \\
& \text { FCS4 specification. A logical can also be used: TRUE is equal to linearize and } \\
\text { FALSE(or NULL) corresponds to no transformation. Also when the transformation } \\
\text { keyword of the FCS header is set to "custom" or "applied", no transformation } \\
\text { will be used. }
\end{array}
\]
\begin{tabular}{ll}
ncdf & Deprecated. Please use 'ncdfFlow' package for cdf based storage. \\
min.limit \\
The minimum value in the data range that is allowed. Some instruments produce \\
extreme artifactual values. The positive data range for each parameter is com- \\
pletely defined by the measurement range of the instrument and all larger values \\
are set to this threshold. The lower data boundary is not that well defined, since \\
compensation might shift some values below the original measurement range of \\
the instrument. This can be set to an arbitrary number or to NULL (the default \\
value), in which case the original values are kept. When the transformation key- \\
word of the FCS header is set (typically to "custom" or "applied"), no shift up \\
to min.limit will occur. \\
truncate_max_range \\
logical type. Default is TRUE. can be optionally turned off to avoid truncat- \\
ing the extreme positive value to the instrument measurement range .i.e.'\$PnR'. \\
When the transformation keyword of the FCS header is set (typically to "cus- \\
tom" or "applied"), no truncation will occur. \\
The FCS file specification allows for multiple data segments in a single file. \\
dataset & Since the output of read.FCS is a single flowFrame we can't automatically read \\
in all available sets. This parameter allows to chose one of the subsets for import. \\
Its value is supposed to be an integer in the range of available data sets. This \\
argument is ignored if there is only a single data segment in the FCS file. \\
boolean indicating whether or not we allow empty value for keyword values in
\end{tabular}

\section*{Details}

The function isFCSfile determines whether its arguments are valid FCS files.

The function read. FCS works with the output of the FACS machine software from a number of vendors (FCS 2.0, FCS 3.0 and List Mode Data LMD). However, the FCS 3.0 standard includes some options that are not yet implemented in this function. If you need extensions, please let me know. The output of the function is an object of class flowFrame.
For specifications of FCS 3.0 see http://www.isac-net.org and the file ../doc/fcs3.html in the doc directory of the package.

The which.lines arguments allow you to read a subset of the record as you might not want to read the thousands of events recorded in the FCS file. It is mainly used when there is not enough memory to read one single FCS (which probably will not happen). It will probably take more time than reading the entire FCS (due to the multiple disk IO).

\section*{Value}
isFCSfile returns a logical vector.
read.FCS returns an object of class flowFrame that contains the data in the exprs slot, the parameters monitored in the parameters slot and the keywords and value saved in the header of the FCS file.

\section*{Author(s)}
F. Hahne, N.Le Meur

\section*{See Also}
read.flowSet

\section*{Examples}
```


## a sample file

fcsFile <- system.file("extdata", "0877408774.B08", package="flowCore")

## read file and linearize values

samp <- read.FCS(fcsFile, transformation="linearize")
exprs(samp[1:3,])
keyword(samp)[3:6]
class(samp)

## Only read in lines 2 to 5

subset <- read.FCS(fcsFile, which.lines=2:5, transformation="linearize")
exprs(subset)

## Read in a random sample of 100 lines

subset <- read.FCS(fcsFile, which.lines=100, transformation="linearize")
nrow(subset)
\#manually supply the alias vs channel options mapping as a data.frame
map <- data.frame(alias = c("A", "B")
, channels = c("FL2", "FL4")
)
fr <- read.FCS(fcsFile, channel_alias = map)

```
fr
read. FCSheader Read the TEXT section of a FCS file

\section*{Description}

Read (part of) the TEXT section of a Data File Standard for Flow Cytometry that contains FACS keywords.

\section*{Usage}
read.FCSheader(files, path \(=\) ".", keyword \(=\) NULL, ...)

\section*{Arguments}
\begin{tabular}{ll}
files & Character vector of filenames. \\
path & Directory where to look for the files. \\
keyword & An optional character vector that specifies the FCS keyword to read. \\
\(\ldots\) & other arguments passed to link[flowCore]\{read.FCS\}
\end{tabular}

\section*{Details}

The function read. FCSheader works with the output of the FACS machine software from a number of vendors (FCS 2.0, FCS 3.0 and List Mode Data LMD). The output of the function is the TEXT section of the FCS files. The user can specify some keywords to limit the output to the information of interest.

\section*{Value}

A list of character vectors. Each element of the list correspond to one FCS file.

\section*{Author(s)}
N.Le Meur

\section*{See Also}
link[flowCore]\{read.flowSet\}, link[flowCore]\{read.FCS \}

\section*{Examples}
```

samp <- read.FCSheader(system.file("extdata",
"0877408774.B08", package="flowCore"))
samp
samp <- read.FCSheader(system.file("extdata",
"0877408774.B08", package="flowCore"), keyword=c("$DATE", "$FIL"))
samp

```
read.flowSet
Read a set of FCS files

\section*{Description}

Read one or several FCS files: Data File Standard for Flow Cytometry

\section*{Usage}
```

read.flowSet(files=NULL, path=".", pattern=NULL, phenoData,
descriptions,name.keyword, alter.names=FALSE,
transformation = "linearize", which.lines=NULL,
column.pattern = NULL, invert.pattern = FALSE, decades=0, sep="\t",
as.is=TRUE, name, ncdf=FALSE, dataset=NULL, min.limit=NULL,
truncate_max_range = TRUE, emptyValue=TRUE,
ignore.text.offset = FALSE, channel_alias = NULL, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline files & Optional character vector with filenames. \\
\hline path & Directory where to look for the files. \\
\hline pattern & This argument is passed on to dir, see details. \\
\hline phenoData & An object of class AnnotatedDataFrame, character or a list of values to be extracted from the flowFrame object, see details. \\
\hline descriptions & Character vector to annotate the object of class flowSet. \\
\hline name.keyword & An optional character vector that specifies which FCS keyword to use as the sample names. If this is not set, the GUID of the FCS file is used for sampleNames, and if that is not present (or not unique), then the file names are used. \\
\hline alter.names & see read. FCS for details. \\
\hline transformation & see read. FCS for details. \\
\hline which.lines & see read. FCS for details. \\
\hline column.pattern & see read. FCS for details. \\
\hline invert.pattern & see read. FCS for details. \\
\hline decades & see read. FCS for details. \\
\hline
\end{tabular}
```

sep Separator character that gets passed on to read.AnnotatedDataFrame.
as.is Logical that gets passed on to read.AnnotatedDataFrame. This controls the
automatic coercion of characters to factors in the phenoDataslot.
name An optional character scalar used as name of the object.
ncdf Deprecated. Please refer to 'ncdfFlow' package for cdf based storage.
dataset see read.FCS for details.
min.limit see read.FCS for details.
truncate_max_range
see read.FCS for details.
emptyValue see read.FCS for details.
ignore.text.offset
see read.FCS for details.
channel_alias see read.FCS for details.
Further arguments that get passed on to read.AnnotatedDataFrame, see de- tails.

```

\section*{Details}

There are four different ways to specify the file from which data is to be imported:
First, if the argument phenoData is present and is of class AnnotatedDataFrame, then the file names are obtained from its sample names (i.e. row names of the underlying data.frame). Also column name will be generated based on sample names if it is not there. This column is mainly used by visualization methods in flowViz. Alternatively, the argument phenoData can be of class character, in which case this function tries to read a AnnotatedDataFrame object from the file with that name by calling read. AnnotatedDataFrame(file.path(path, phenoData), .. \{\}).

In some cases the file names are not a reasonable selection criterion and the user might want to import files based on some keywords within the file. One or several keyword value pairs can be given as the phenoData argument in form of a named list.

Third, if the argument phenoData is not present and the argument files is not NULL, then files is expected to be a character vector with the file names.

Fourth, if neither the argument phenoData is present nor files is not NULL, then the file names are obtained by calling dir(path, pattern).

\section*{Value}

An object of class flowSet.

\section*{Author(s)}
F. Hahne, N.Le Meur, B. Ellis

\section*{Examples}
```

fcs.loc <- system.file("extdata",package="flowCore")
file.location <- paste(fcs.loc, dir(fcs.loc), sep="/")
samp <- read.flowSet(file.location[1:3])

```
```

rectangleGate-class Class "rectangleGate"

```

\section*{Description}

Class and constructor for \(n\)-dimensional rectangular filter objects.

\section*{Usage}
rectangleGate(..., .gate, filterId="defaultRectangleGate")

\section*{Arguments}
filterId An optional parameter that sets the filterId of this gate. The object can later be identified by this name.
.gate A definition of the gate. This can be either a list, or a matrix, as described below.
... You can also directly provide the boundaries of a rectangleGate as additional named arguments, as described below.

\section*{Details}

This class describes a rectangular region in \(n\) dimensions, which is a Cartesian product of \(n\) orthogonal intervals in these dimensions. \(n=1\) corresponds to a range gate, \(n=2\) to a rectangle gate, \(n=3\) corresponds to a box region and \(n>3\) to a hyper-rectangular regions. Intervals may be open on one side, in which case the value for the boundary is supposed to be Inf or -Inf, respectively. rectangleGates are inclusive, that means that events on the boundaries are considered to be in the gate.
The constructor is designed to be useful in both direct and programmatic usage. To use it programmatically, you may either construct a named list or you may construct a matrix with \(n\) columns and 2 rows. The first row corresponds to the minimal value for each parameter while the second row corresponds to the maximal value for each parameter. The names of the parameters are taken from the column names or from the list names, respectively. Alternatively, the boundaries of the rectangleGate can be given as additional named arguments, where each of these arguments should be a numeric vector of length 2 ; the function tries to collapse these boundary values into a matrix.
Note that boundaries of rectangleGates where min > max are syntactically valid, however when evaluated they will always be empty.
rectangleGate objects can also be multiplied using the * operator, provided that both gates have orthogonal axes. This results in higher-dimensional rectangleGates. The inverse operation of subsetting by parameter name(s) is also available.
Evaluating a rectangleGate generates an object of class logicalFilterResult. Accordingly, rectangleGates can be used to subset and to split flow cytometry data sets.

\section*{Value}

Returns a rectangleGate object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
min, max Objects of class "numeric". The minimum and maximum values of the n-dimensional rectangular region.
parameters Object of class "character", indicating the parameters for which the rectangleGate is defined.
filterId Object of class "character", referencing the filter.

\section*{Extends}

Class "parameterFilter", directly.
Class "concreteFilter", by class parameterFilter, distance 2.
Class "filter", by class parameterFilter, distance 3.

\section*{Objects from the Class}

Objects can be created by calls of the form new("rectangleGate", ...), by using the constructor rectangleGate or by combining existing rectangleGates using the * method. Using the constructor is the recommended way of object instantiation.

\section*{Methods}
\%in\% signature (\(x=\) "flowFrame", table = "rectangleGate" \():\) The workhorse used to evaluate the filter on data. This is usually not called directly by the user, but internally by calls to the filter methods.
show signature(object = "rectangleGate"): Print information about the filter.
* signature(e1 = "rectangleGate", e2 = "rectangleGate"): combining two rectangleGates into one higher dimensional representation.
[signature (\(x=\) "rectangleGate", i = "character"): Subsetting of a rectangleGate by parameter name(s). This is essentially the inverse to \(*\).

\section*{Note}

See the documentation in the flowViz package for details on plotting of rectangleGates.

\section*{Author(s)}
F.Hahne, B. Ellis N. Le Meur

\section*{See Also}
flowFrame, polygonGate, ellipsoidGate, polytopeGate, filter for evaluation of rectangleGates and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.
Other Gate classes: ellipsoidGate-class, polygonGate-class, polytopeGate-class, quadGate-class

\section*{Examples}
```


## Loading example data

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
\#Create directly. Most likely from a command line
rectangleGate(filterId="myRectGate", "FSC-H"=c(200, 600), "SSC-H"=c(0, 400))
\#To facilitate programmatic construction we also have the following
rg <- rectangleGate(filterId="myRectGate", list("FSC-H"=c(200, 600),
"SSC-H"=c(0, 400)))
mat <- matrix(c(200, 600, 0, 400), ncol=2, dimnames=list(c("min", "max"),
c("FSC-H", "SSC-H")))
rg <- rectangleGate(filterId="myRectGate", .gate=mat)

## Filtering using rectangleGates

fres <- filter(dat, rg)
fres
summary(fres)

## The result of rectangle filtering is a logical subset

Subset(dat, fres)

## We can also split, in which case we get those events in and those

## not in the gate as separate populations

split(dat, fres)

## Multiply rectangle gates

rg1 <- rectangleGate(filterId="FSC-", "FSC-H"=c(-Inf, 50))
rg2 <- rectangleGate(filterId="SSC+", "SSC-H"=c(50, Inf))
rg1 * rg2

## Subset rectangle gates

rg["FSC-H"]
\#\#2d rectangleGate can be coerced to polygonGate
as(rg, "polygonGate")

```

\section*{Description}

Rotate a Gate-type filter object through a specified angle

\section*{Usage}
\#\# Default S3 method:
rotate_gate(obj, deg = NULL, rot_center = NULL, ...)

\section*{Arguments}
\begin{tabular}{ll}
obj & An ellipsoidGate or polygonGate \\
deg & \begin{tabular}{l}
An angle in degrees by which the gate should be rotated in the counter-clockwise \\
direction
\end{tabular} \\
rot_center & \begin{tabular}{l}
A separate 2-dimensional center of rotation for the gate, if desired. By de- \\
fault, this will be the center for ellipsoidGate objects or the centroid for \\
polygonGate objects. The rot_center argument is currently only supported \\
for polygonGate objects.
\end{tabular} \\
\(\ldots\) & Additional arguments not used
\end{tabular}

\section*{Details}

This method allows for 2-dimensional geometric rotation of filter types defined by simple geometric gates (ellipsoidGate, and polygonGate). The method is not defined for rectangleGate or quadGate objects, due to their definition as having 1-dimensional boundaries. Further, keep in mind that the 2-dimensional rotation takes place in the plane where the dimensions of the two variables are evenly linearly scaled. Displaying a rotated ellipse in a plot where the axes are not scaled evenly may make it appear that the ellipse has been distorted even though this is not the case.
The angle provided in the deg argument should be in degrees rather than radians. By default, the rotation will be performed around the center of an ellipsoidGate or the centroid of the area encompassed by a polygonGate. The rot_center argument allows for specification of a different center of rotation for polygonGate objects (it is not yet implemented for ellipsoidGate objects) but it is usually simpler to perform a rotation and a translation individually than to manually specify the composition as a rotation around a shifted center.

\section*{Value}

A Gate-type filter object of the same type as gate, with the rotation applied

\section*{Examples}
```


## Not run:

\#' \# Rotates the original gate 15 degrees counter-clockwise
rotated_gate <- rotate_gate(original_gate, deg = 15)

# Rotates the original gate 270 degrees counter-clockwise

rotated_gate <- rotate_gate(original_gate, 270)

## End(Not run)

```
```

sampleFilter-class Class "sampleFilter"

```

\section*{Description}

This non-parameter filter selects a number of events from the primary flowFrame.

\section*{Usage}
sampleFilter(size, filterId="defaultSampleFilter")

\section*{Arguments}
\begin{tabular}{ll}
filterId & \begin{tabular}{l}
An optional parameter that sets the filterId of this filter. The object can \\
later be identified by this name.
\end{tabular} \\
size & The number of events to select.
\end{tabular}

\section*{Details}

Selects a number of events without replacement from a flowFrame.

\section*{Value}

Returns a sampleFilter object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
size Object of class "numeric". Then number of events that are to be selected.
filterId A character vector that identifies this filter.

\section*{Extends}

Class "concreteFilter", directly.
Class "filter", by class concreteFilter, distance 2.

\section*{Objects from the Class}

Objects can be created by calls of the form new("sampleFilter", ...) or using the constructor sampleFilter. The latter is the recommended way.

\section*{Methods}
\%in\% signature (\(x=\) "flowFrame", table = "sampleFilter"): The workhorse used to evaluate the gate on data. This is usually not called directly by the user, but internally by calls to the filter methods.
show signature (object = "sampleFilter"): Print information about the gate.

\section*{Author(s)}

\author{
B. Ellis, F.Hahne
}

\section*{See Also}
flowFrame, filter for evaluation of sampleFilters and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.

\section*{Examples}
```


## Loading example data

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
\#Create the filter
sf <- sampleFilter(filterId="mySampleFilter", size=500)
sf

## Filtering using sampleFilters

fres <- filter(dat, sf)
fres
summary(fres)

## The result of sample filtering is a logical subset

Subset(dat, fres)

## We can also split, in which case we get those events in and those

## not in the gate as separate populations

split(dat, fres)

```
scaleTransform

Create the definition of a scale transformation function to be applied on a data set

\section*{Description}

Create the definition of the scale Transformation that will be applied on some parameter via the transform method. The definition of this function is currently \(x=(x-a) /(b-a)\). The transformation would normally be used to convert to a \(0-1\) scale. In this case, \(b\) would be the maximum possible value and a would be the minimum possible value.

\section*{Usage}
scaleTransform(transformationId="defaultScaleTransform", a, b)

\section*{Arguments}
transformationId
character string to identify the transformation
a
double that corresponds to the value that will be transformed to 0
b double that corresponds to the value that will be transformed to 1

\section*{Value}

Returns an object of class transform.

\section*{Author(s)}
P. Haaland

\section*{See Also}
transform-class, transform
Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(), linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), splitScaleTransform(), truncateTransform()

\section*{Examples}
```

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
scaleTrans <- scaleTransform(transformationId="Truncate-transformation", a=1, b=10^4)
dataTransform <- transform(samp, transformList('FSC-H', scaleTrans))

```
 scale_gate Simplified geometric scaling of gates

\section*{Description}

Scale a Gate-type filter object in one or more dimensions

\section*{Usage}
\#\# Default S3 method:
scale_gate(obj, scale = NULL, ...)

\section*{Arguments}
obj
scale Either a numeric scalar (for uniform scaling in all dimensions) or numeric vector specifying the factor by which each dimension of the gate should be expanded (absolute value \(>1\)) or contracted (absolute value \(<1\)). Negative values will result in a reflection in that dimension.
... Additional arguments not used

\section*{Details}

This method allows uniform or non-uniform geometric scaling of filter types defined by simple geometric gates (quadGate, rectangleGate, ellipsoidGate, and polygonGate) Note that these methods are for manually altering the geometric definition of a gate. To easily transform the definition of a gate with an accompanyging scale transformation applied to its underlying data, see rescale_gate.

The scale argument passed to scale_gate should be either a scalar or a vector of the same length as the number of dimensions of the gate. If it is scalar, all dimensions will be multiplicatively scaled uniformly by the scalar factor provided. If it is a vector, each dimension will be scaled by its corresponding entry in the vector.

The scaling behavior of scale_gate depends on the type of gate passed to it. For rectangleGate and quadGate objects, this amounts to simply scaling the values of the 1-dimensional boundaries. For polygonGate objects, the values of scale will be used to determine scale factors in the direction of each of the 2 dimensions of the gate (scale_gate is not yet defined for higher-dimensional polytopeGate objects). Important: For ellipsoidGate objects, scale determines scale factors for the major and minor axes of the ellipse, in that order. Scaling by a negative factor will result in a reflection in the corresponding dimension.

\section*{Value}

A Gate-type filter object of the same type as gate, with the scaling applied

\section*{Examples}
```


## Not run:

# Scales both dimensions by a factor of 5

scaled_gate <- scale_gate(original_gate, 5)

# Shrinks the gate in the first dimension by factor of 1/2

# and expands it in the other dimension by factor of 3

scaled_gate <- scale_gate(original_gate, c(0.5,3))

## End(Not run)

```
```

setOperationFilter-class

```
Class "setOperationFilter"

\section*{Description}

This is a Superclass for the unionFilter, intersectFilter, complementFilter and subsetFilter classes, which all consist of two or more component filters and are constructed using set operators \((\&, \mid,!\), and \%\&\% or \%subset\% respectively).

\section*{Slots}
filters Object of class "list", containing the component filters.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filter", directly.

\section*{Author(s)}
B. Ellis

\section*{See Also}
filter
Other setOperationFilter classes: complementFilter-class, intersectFilter-class, subsetFilter-class, unionFilter-class
shift_gate Simplified geometric translation of gates

\section*{Description}

Shift a Gate-type filter object in one or more dimensions

\section*{Usage}
\#\# Default S3 method:
shift_gate(obj, \(\mathrm{dx}=\mathrm{NULL}, \mathrm{dy}=\) NULL, center \(=\) NULL,..)

\section*{Arguments}
obj A Gate-type filter object (quadGate, rectangleGate, ellipsoidGate, or polygonGate)
\(\mathrm{dx} \quad\) Either a numeric scalar or numeric vector. If it is scalar, this is just the desired shift of the gate in its first dimension. If it is a vector, it specifies both \(d x\) and dy as (\(\mathrm{dx}, \mathrm{dy}\)). This provides an alternate syntax for shifting gates, as well as allowing shifts of ellipsoidGate objects in more than 2 dimensions.
dy A numeric scalar specifying the desired shift of the gate in its second dimension.
center A numeric vector specifying where the center or centroid should be moved (rather than specifiying dx and/or dy)
... Additional arguments not used

\section*{Details}

This method allows for geometric translation of filter types defined by simple geometric gates (rectangleGate, quadGate, ellipsoidGate, or polygonGate). The method provides two approaches to specify a translation. For rectangleGate objects, this will shift the min and max bounds by the same amount in each specified dimension. For quadGate objects, this will simply shift the divinding boundary in each dimension. For ellipsoidGate objects, this will shift the center (and therefore all points of the ellipse). For polgonGate objects, this will simply shift all of the points defining the polygon.
The method allows two different approaches to shifting a gate. Through the dx and/or dy arguments, a direct shift in each dimension can be provided. Alternatively, through the center argument, the gate can be directly moved to a new location in relation to the old center of the gate. For quadGate objects, this center is the intersection of the two dividing boundaries (so the value of the boundary slot). For rectangleGate objects, this is the center of the rectangle defined by the intersections of the centers of each interval. For ellipsoidGate objects, it is the center of the ellipsoid, given by the mean slot. For polygonGate objects, the centroid of the old polygon will be calculated and shifted to the new location provided by center and all other points on the polygon will be shifted by relation to the centroid.

\section*{Value}

A Gate-type filter object of the same type as gate, with the translation applied

\section*{Examples}
```


## Not run:

# Moves the entire gate +500 in its first dimension and 0 in its second dimension

shifted_gate <- shift_gate(original_gate, dx = 500)
\#Moves the entire gate +250 in its first dimension and +700 in its second dimension
shifted_gate <- shift_gate(original_gate, dx = 500, dy = 700)

# Same as previous

shifted_gate <- shift_gate(original_gate, c(500,700))

# Move the gate based on shifting its center to (700, 1000)

```
shifted_gate <- shift_gate(original_gate, center = c(700, 1000))
\#\# End(Not run)
singleParameterTransform-class
Class "singleParameterTransform"

\section*{Description}

A transformation that operates on a single parameter

\section*{Slots}
.Data Object of class "function". The transformation.
parameters Object of class "transformation". The parameter to transform. Can be a derived parameter from another transformation.
transformationId Object of class "character". An identifier for the object.

\section*{Objects from the Class}

Objects can be created by calls of the form new("singleParameterTransform", ...).

\section*{Extends}

Class "transform", directly. Class "transformation", by class "transform", distance 2. Class "characterOrTransformation", by class "transform", distance 3.

\section*{Author(s)}

F Hahne

\section*{Examples}
showClass("singleParameterTransform")
```

sinht-class Class "sinht"

```

\section*{Description}

Hyperbolic sin transform class, which represents a transformation defined by the function:
\[
f(\text { parameter }, a, b)=\sinh (\text { parameter } / b) / a
\]

This definition is such that it can function as an inverse of asinht using the same definitions of the constants a and b.

\section*{Slots}
.Data Object of class "function".
a Object of class "numeric" - non-zero constant.
b Object of class "numeric" - non-zero constant.
parameters Object of class "transformation" - flow parameter to be transformed
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor sinht (parameter, \(a, b\), transformationId).

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

\section*{Note}

The transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column.(See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

\section*{See Also}
asinht
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, splitscale-class, squareroot-class, unitytransform-class

\section*{Examples}
dat <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
sinh1<-sinht(parameters="FSC-H", \(\mathrm{a}=1, \mathrm{~b}=2000\), transformationId="sinH1")
transOut<-eval(sinh1)(exprs(dat))
split-methods Methods to split flowFrames and flowSets according to filters

\section*{Description}

Divide a flow cytometry data set into several subset according to the results of a filtering operation. There are also methods available to split according to a factor variable.

\section*{Details}

The splitting operation in the context of flowFrames and flowSets is the logical extension of subsetting. While the latter only returns the events contained within a gate, the former splits the data into the groups of events contained within and those not contained within a particular gate. This concept is extremely useful in applications where gates describe the distinction between positivity and negativity for a particular marker.

The flow data structures in flowCore can be split into subsets on various levels:
flowFrame: row-wise splitting of the raw data. In most cases, this will be done according to the outcome of a filtering operation, either using a filter that identifiers more than one sub-population or by a logical filter, in which case the data is split into two populations: "in the filter" and "not in the filter". In addition, the data can be split according to a factor (or a numeric or character vector that can be coerced into a factor).
flowSet: can be either split into subsets of flowFrames according to a factor or a vector that can be coerced into a factor, or each individual flowFrame into subpopulations based on the filters or filterResults provided as a list of equal length.
Splitting has a special meaning for filters that result in multipleFilterResults or manyFilterResults, in which case simple subsetting doesn't make much sense (there are multiple populations that are defined by the gate and it is not clear which of those should be used for the subsetting operation). Accordingly, splitting of multipleFilterResults creates multiple subsets. The argument population can be used to limit the output to only one or some of the resulting subsets. It takes as values a character vector of names of the populations of interest. See the documentation of the different filter classes on how population names can be defined and the respective default values. For splitting of
logicalFilterResults, the population argument can be used to set the population names since there is no reasonable default other than the name of the gate. The content of the argument prefix will be prepended to the population names and ' + ' or '-' are finally appended allowing for more flexible naming schemes.
The default return value for any of the split methods is a list, but the optional logical argument flowSet can be used to return a flowSet instead. This only applies when splitting flowFrames, splitting of flowSets always results in lists of flowSet objects.

\section*{Methods}
flowFrame methods:
split(\(\mathbf{x}=\) 'flowFrame", \(\mathbf{f}=\) "ANY', \(\mathbf{d r o p}=\) "ANY") Catch all input and cast an error if there is no method for \(f\) to dispatch to.
split(\(\mathbf{x}=\) ' 'flowFrame", \(\mathbf{f}=\) 'factor", drop = "ANY") Split a flowFrame by a factor variable. Length of \(f\) should be the same as \(\operatorname{nrow}(x)\), otherwise it will be recycled, possibly leading to undesired outcomes. The optional argument drop works in the usual way, in that it removes empty levels from the factor before splitting.
split(\(\mathbf{x}=\) 'flowFrame", \(\mathbf{f}=\) '"character", drop = "ANY'") Coerce \(f\) to a factor and split on that.
\(\operatorname{split}(\mathbf{x}=\) "flowFrame", \(\mathbf{f}=\) "numeric', drop = "ANY") Coerce \(f\) to a factor and split on that.
split(\(\mathbf{x}=\) 'flowFrame", \(\mathbf{f}=\) "filter'", drop = "ANY") First applies the filter to the flowFrame and then splits on the resulting filterResult object.
split(\(\mathbf{x}=\) 'flowFrame", \(\mathbf{f}=\) ' 'logicalFilterResult", drop = "ANY") Split into the two subpopulations (in and out of the gate). The optional argument population can be used to control the names of the results.
split(\(\mathbf{x}=\) 'flowFrame", f = 'manyFilterResult'", drop = "ANY") Split into the several subpopulations identified by the filtering operation. Instead of returning a list, the additional logical argument codeflowSet makes the method return an object of class flowSet. The optional population argument takes a character vector indicating the subpopulations to use for splitting (as identified by the population name in the filterDetails slot).
split(\(\mathbf{x}=\) 'flowFrame", \(\mathbf{f}=\) 'multipleFilterResult", drop = "ANY"') Split into the several subpopulations identified by the filtering operation. Instead of returning a list, the additional logical argument codeflowSet makes the method return an object of class flowSet. The optional population argument takes a character vector indicating the subpopulations to use for splitting (as identified by the population name in the filterDetails slot). Alternatively, this can be a list of characters, in which case the populations for each list item are collapsed into one flowFrame.
flowSet methods:
split(\(\mathbf{x}=\) 'flowSet', \(\mathbf{f}=\) "ANY", drop = "ANY") Catch all input and cast an error if there is no method for \(f\) to dispatch to.
split(\(\mathbf{x}=\) 'flowSet", \(\mathbf{f}=\) 'factor", \(\boldsymbol{d r o p}=\) "ANY") Split a flowSet by a factor variable. Length of \(f\) needs to be the same as length (\(x\)). The optional argument drop works in the usual way, in that it removes empty levels from the factor before splitting.
\(\operatorname{split}(\mathbf{x}=\) 'flowSet", \(\mathbf{f}=\) "character'", drop = "ANY") Coerce \(f\) to a factor and split on that.
\(\operatorname{split}(\mathbf{x}=\) "flowSet", \(\mathbf{f}=\) "numeric", drop = "ANY") Coerce f to a factor and split on that.
split(\(\mathbf{x}=\) 'flowSet", \(\mathbf{f}=\) 'list', drop = "ANY") Split a flowSet by a list of filterResults (as typically returned by filtering operations on a flowSet). The length of the list has to be equal to the length of the flowSet and every list item needs to be a filterResult of equal class with the same parameters. Instead of returning a list, the additional logical argument codeflowSet makes the method return an object of class flowSet. The optional population argument takes a character vector indicating the subpopulations to use for splitting (as identified by the population name in the filterDetails slot). Alternatively, this can be a list of characters, in which case the populations for each list item are collapsed into one flowFrame. Note that using the population argument implies common population names for allfilterResults in the list and there will be an error if this is not the case.

\section*{Author(s)}

F Hahne, B. Ellis, N. Le Meur

\section*{Examples}
```

data(GvHD)
qGate <- quadGate(filterId="qg", "FSC-H"=200, "SSC-H"=400)

## split a flowFrame by a filter that creates

## a multipleFilterResult

samp <- GvHD[[1]]
fres <- filter(samp, qGate)
split(samp, qGate)

## return a flowSet rather than a list

split(samp, fres, flowSet=TRUE)

## only keep one population

names(fres)
\#\#split(samp, fres, population="FSC-Height+SSC-Height+")

## split the whole set, only keep two populations

\#\#split(GvHD, qGate, population=c("FSC-Height+SSC-Height+",
\#\#"FSC-Height-SSC-Height+"))

## now split the flowSet according to a factor

split(GvHD, pData(GvHD)\$Patient)

```
splitscale-class Class "splitscale"

\section*{Description}

The split scale transformation class defines a transformation that has a logarithmic scale at high values and a linear scale at low values. The transition points are chosen so that the slope of the transformation is continuous at the transition points.

\section*{Details}

The split scale transformation is defined by the function
\[
\begin{gathered}
f(\text { parameter, } r, \text { maxValue,transitionChannel })=a * \text { parameter }+b, \text { parameter }<=t \\
(\text { parameter, } r, \text { maxValue,transitionChannel })=\log _{10}(c * \text { parameter }) * \frac{r}{d}, \text { parameter }>t
\end{gathered}
\]
where,
\[
\begin{gathered}
b=\frac{\text { transitionChannel }}{2} \\
d=\frac{2 * \log _{10}(e) * r}{\text { transitionChannel }}+\log _{10}(\text { maxValue }) \\
t=10^{\log _{10} t} \\
a=\frac{\text { transitionChannel }}{2 * t} \\
\log _{10} c t=\frac{(a * t+b) * d}{r} \\
c=10^{\log _{10} c t}
\end{gathered}
\]

\section*{Slots}
.Data Object of class "function".
\(r\) Object of class "numeric" - a positive value indicating the range of the logarithmic part of the display.
maxValue Object of class "numeric" - a positive value indicating the maximum value the transformation is applied to.
transitionChannel Object of class "numeric" - non negative value that indicates where to split the linear vs. logarithmic transformation.
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor splitscale(parameters, \(r\), maxValue, transitionChannel, transform

\section*{Extends}

Class "singleParameterTransform", directly. Class "transform", by class "singleParameterTransform", distance 2. Class "transformation", by class "singleParameterTransform", distance 3. Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note
The transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column. (See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry

\section*{See Also}
invsplitscale
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, squareroot-class, unitytransform-class

\section*{Examples}
```

    dat <- read.FCS(system.file("extdata","0877408774.B08",package="flowCore"))
    sp1<-splitscale("FSC-H",r=768,maxValue=10000,transitionChannel=256)
    transOut<-eval(sp1)(exprs(dat))
    ```
splitScaleTransform Compute the split-scale transformation describe by FL. Battye

\section*{Description}

The split scale transformation described by Francis L. Battye [B15] (Figure 13) consists of a logarithmic scale at high values and a linear scale at low values with a fixed transition point chosen so that the slope (first derivative) of the transform is continuous at that point. The scale extends to the negative of the transition value that is reached at the bottom of the display.

\section*{Usage}
\[
\begin{aligned}
\text { splitScaleTransform(transformationId="defaultSplitscaleTransform", } \\
\text { maxValue=1023, transitionChannel=64, } r=192)
\end{aligned}
\]

\section*{Arguments}
```

transformationId

```

A name to assign to the transformation. Used by the transform/filter integration routines.
maxValue Maximum value the transformation is applied to, e.g., 1023
transitionChannel
Where to split the linear versus the logarithmic transformation, e.g., 64
\(r \quad\) Range of the logarithm part of the display, ie. it may be expressed as the maxChannel - transitionChannel considering the maxChannel as the maximum value to be obtained after the transformation.

\section*{Value}

Returns values giving the inverse of the biexponential within a certain tolerance. This function should be used with care as numerical inversion routines often have problems with the inversion process due to the large range of values that are essentially 0 . Do not be surprised if you end up with population splitting about w and other odd artifacts.

\section*{Author(s)}
N. LeMeur

\section*{References}

Battye F.L. A Mathematically Simple Alternative to the Logarithmic Transform for Flow Cytometric Fluorescence Data Displays. http://www.wehi.edu.au/cytometry/Abstracts/AFCG05B.html.

\section*{See Also}
```

transform

```

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(), linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(), truncateTransform()

\section*{Examples}
```

data(GvHD)
ssTransform <- splitScaleTransform("mySplitTransform")
after.1 <- transform(GvHD, transformList('FSC-H', ssTransform))
opar = par(mfcol=c(2, 1))
plot(density(exprs(GvHD[[1]])[, 1]), main="Original")
plot(density(exprs(after.1[[1]])[, 1]), main="Split-scale Transform")

```
```

squareroot-class Class "squareroot"

```

\section*{Description}

Square root transform class, which represents a transformation defined by the function
\[
f(\text { parameter }, a)=\sqrt{\left|\frac{\text { parameter }}{a}\right|}
\]

\section*{Slots}
. Data Object of class "function"
a Object of class "numeric" - non-zero multiplicative constant
parameters Object of class "transformation" - flow parameter to be transformed.
transformationId Object of class "character" - unique ID to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor squareroot (parameters, a, transformationId)

\section*{Extends}

Class "singleParameterTransform", directly.
Class "transform", by class "singleParameterTransform", distance 2.
Class "transformation", by class "singleParameterTransform", distance 3.
Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note
The squareroot transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a column vector. (See example below)

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{References}

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry

\section*{See Also}
dg1polynomial, ratio, quadratic
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, unitytransform-class

\section*{Examples}
```

    dat <- read.FCS(system.file("extdata","0877408774.B08",
    package="flowCore"))
    sqrt1<-squareroot(parameters="FSC-H",a=2, transformationId="sqrt1")
    transOut<-eval(sqrt1)(exprs(dat))
    ```
Subset-methods Subset a flowFrame or a flowSet

\section*{Description}

An equivalent of a subset function for flowFrame or a flowSet object. Alternatively, the regular subsetting operators can be used for most of the topics documented here.

\section*{Usage}

Subset (x, subset, ...)

\section*{Arguments}
x
subset A filter object or, in the case of flowset subsetting, a named list of filters. Like the original subset function, you can also select columns.

\section*{Details}

The Subset method is the recommended method for obtaining a flowFrame that only contains events consistent with a particular filter. It is functionally equivalent to frame[as(filter (frame, subset), "logical"),] when used in the flowFrame context. Used in the flowSet context, it is equivalent to using fsApply to apply the filtering operation to each flowFrame.
Additionally, using Subset on a flowSet can also take a named list as the subset. In this case, the names of the list object should correspond to the sampleNames of the flowSet, allowing a different filter to be applied to each frame. If not all of the names are used or excess names are present, a warning will be generated but the valid filters will be applied for the rare instances where this is the intended operation. Note that a filter operation will generate a list of filterResult objects that can be used directly with Subset in this manner.

\section*{Value}

Depending on the original context, either a flowFrame or a flowSet.

\section*{Author(s)}
B. Ellis

\section*{See Also}
split, subset

\section*{Examples}
```

sample <- read.flowSet(path=system.file("extdata", package="flowCore"),
pattern="0877408774")
result <- filter(sample, rectangleGate("FSC-H"=c(-Inf, 1024)))
result
Subset(sample,result)

```
```

subsetFilter-class Class subsetFilter

```

\section*{Description}

This class represents the action of applying a filter on the subset of data resulting from another filter. This is itself a filter that can be incorporated in to further set operations. This is similar to an intersectFilter, with behavior only differing if the component filters are data-driven.

\section*{Details}
subsetFilters are constructed using the equivalent binary set operators "\%\&\%" or "\%subset\%". The operator is not symmetric, as the filter on the right-hand side will take the subset of the filter on the left-hand side as input. Left-hand side operands can be a filter or list of filters, while the right-hand side operand must be a single filter.

\section*{Slots}
filters Object of class "list", containing the component filters.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filter", directly.

\section*{Author(s)}
B. Ellis

\section*{See Also}
filter, setOperationFilter
Other setOperationFilter classes: complementFilter-class, intersectFilter-class, setOperationFilter-class, unionFilter-class
```

summarizeFilter-methods

```
```

Methods for function summarizeFilter

```

\section*{Description}

Internal methods to populate the filterDetails slot of a filterResult object.

\section*{Usage}
summarizeFilter(result, filter)

\section*{Arguments}
result A filterResult (or one of its derived classes) representing the result of a filtering operation in whose filterDetails slot the information will be stored.
filter \(\quad\) The corresponding filter (or one of its derived classes).

\section*{Methods}
summarizeFilter(result = 'filterResult'", filter = 'filter'") summarizeFilter methods are called during the process of filtering. Their output is a list, and it can be arbitrary data that should be stored along with the results of a filtering operation.
summarizeFilter(result = 'filterResult", filter = 'filterReference") see above
summarizeFilter(result = 'filterResult', filter = 'parameterFilter") see above
summarizeFilter(result = 'filterResult'", filter = 'subsetFilter'") see above
summarizeFilter(result = 'logicalFilterResult'", filter = 'norm2Filter') see above
summarizeFilter(result = 'logicalFilterResult', filter = 'parameterFilter'') see above
summarizeFilter(result = 'multipleFilterResult'", filter = 'parameterFilter'') see above

\section*{Description}

Define a filter that removes stretches of unusual data distribution within a single parameter over time. This can be used to correct for problems during data acquisition like air bubbles or clods.

\section*{Usage}
timeFilter(..., bandwidth=0.75, binSize, timeParameter, filterId="defaultTimeFilter")

\section*{Arguments}
... The names of the parameters on which the filter is supposed to work on. Names can either be given as individual arguments, or as a list or a character vector.
filterId An optional parameter that sets the filterId slot of this gate. The object can later be identified by this name.
bandwidth, binSize
Numerics used to set the bandwidth and binSize slots of the object.
timeParameter Character used to set the timeParameter slot of the object.

\section*{Details}

Clods and disturbances in the laminar flow of a FACS instrument can cause temporal aberrations in the data acquisition that lead to artifactual values. timeFilters try to identify such stretches of disturbance by computing local variance and location estimates and to remove them from the data.

\section*{Value}

Returns a timeFilter object for use in filtering flowFrames or other flow cytometry objects.

\section*{Slots}
bandwidth Object of class "numeric". The sensitivity of the filter, i.e., the amount of local variance of the signal we want to allow.
binSize Object of class "numeric". The size of the bins used for the local variance and location estimation. If NULL, a reasonable default is used when evaluating the filter.
timeParameter Object of class "character", used to define the time domain parameter. If NULL, the filter tries to guess the time domain from the flowFrame.
parameters Object of class "character", describing the parameters used to filter the flowFrame.
filterId Object of class "character", referencing the filter.

\section*{Extends}

Class "parameterFilter", directly.
Class "concreteFilter", by class parameterFilter, distance 2.
Class "filter", by class parameterFilter, distance 3.

\section*{Objects from the Class}

Objects can be created by calls of the form new("timeFilter", ...) or using the constructor timeFilter. Using the constructor is the recommended way.

\section*{Methods}
\%in\% signature \((x=\) "flowFrame", table = "timeFilter" \()\) : The workhorse used to evaluate the filter on data. This is usually not called directly by the user.
show signature(object = "timeFilter"): Print information about the filter.

\section*{Note}

See the documentation of timeLinePlot in the flowViz package for details on visualizing temporal problems in flow cytometry data.

\section*{Author(s)}

Florian Hahne

\section*{See Also}
flowFrame, filter for evaluation of timeFilters and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.

\section*{Examples}
```


## Loading example data

data(GvHD)
dat <- GvHD[1:10]

## create the filter

tf <- timeFilter("SSC-H", bandwidth=1, filterId="myTimeFilter")
tf

## Visualize problems

## Not run:

library(flowViz)
timeLinePlot(dat, "SSC-H")

## End(Not run)

## Filtering using timeFilters

fres <- filter(dat, tf)
fres[[1]]

```
```

summary(fres[[1]])
summary(fres[[7]])

## The result of rectangle filtering is a logical subset

cleanDat <- Subset(dat, fres)

## Visualizing after cleaning up

## Not run:

timeLinePlot(cleanDat, "SSC-H")

## End(Not run)

## We can also split, in which case we get those events in and those

## not in the gate as separate populations

allDat <- split(dat[[7]], fres[[7]])
par(mfcol=c(1,3))
plot(exprs(dat[[7]])[, "SSC-H"], pch=".")
plot(exprs(cleanDat[[7]])[, "SSC-H"], pch=".")
plot(exprs(allDat[[2]])[, "SSC-H"], pch=".")

```
transform

Transform a flowFrame or flowSet

\section*{Description}

Similar to the base transform method, this will transform the values of a flowFrame or flowSet object according to the transformations specified in one of two ways: 1. a [transformList][flowCore::transformListclass] or list of [transform][flowCore::transform-class] objects 2. named arguments specifying transformations to be applied to channels (see details)

\section*{Usage}
\#\# S4 method for signature 'flowFrame'
transform(`_data`, translist, ...)

\section*{Arguments}
\begin{tabular}{ll}
_data & a flowFrame or flowSet object \\
translist & a transformList object \\
\(\ldots\). & other arguments. e.g. 'FL1-H' \(=\) myFunc('FL1-H')
\end{tabular}

\section*{Details}

To specify the transformations in the second way, the names of these arguments should correspond to the new channel names and the values should be functions applied to channels currently present in the flowFrame or flowSet. There are a few examples below.

\section*{Examples}
```

data(GvHD)

# logarithmically transform FL1-H and FL2-H for the entire flowSet

# using a transformList

fs <- transform(GvHD,
transformList(c("FL1-H", "FL2-H"), list(log, log)))

# transform a single flowFrame using named arguments. Note the first

# transformation will overwrite FL1-H while the second will create a new

# channel

fr <- transform(GvHD[[1]],
`FL1-H`=log(`FL1-H`),
` }\operatorname{logFL2`=log(`FL2-H`))

```
transform-class 'transform': a class for transforming flow-cytometry data by applying
 scale factors.

\section*{Description}

Transform objects are simply functions that have been extended to allow for specialized dispatch. All of the "...Transform" constructors return functions of this type for use in one of the transformation modalities.

\section*{Slots}
.Data Object of class "function"
transformationId A name for the transformation object

\section*{Methods}
summary Return the parameters

\section*{Author(s)}

N LeMeur

\section*{See Also}
linearTransform, lnTransform, logicleTransform, biexponentialTransform, arcsinhTransform, quadraticTransform, logTransform

\section*{Examples}
```

cosTransform <- function(transformId, a=1, b=1){
t = new("transform", .Data = function(x) cos(a*x+b))
t@transformationId = transformId
t
}
cosT <- cosTransform(transformId="CosT",a=2,b=1)
summary (cosT)

```
 transformation-class Class "transformation"

\section*{Description}

A virtual class to abstract transformations.

\section*{Objects from the Class}

A virtual Class: No objects may be created from it.

\section*{Extends}

Class "characterOrTransformation", directly.

\section*{Author(s)}
N. Gopalakrishnan
transformFilter-class A class for encapsulating a filter to be performed on transformed parameters

\section*{Description}

The transformFilter class is a mechanism for including one or more variable transformations into the filtering process. Using a special case of transform we can introduce transformations inline with the filtering process eliminating the need to process flowFrame objects before applying a filter.

\section*{Slots}
transforms A list of transforms to perform on the target flowFrame
filter The filter to be applied to the transformed frame
filterId The name of the filter (chosen automatically)

\section*{Objects from the Class}

Objects of this type are not generally created "by hand". They are a side effect of the use of the \%on\% method with a filter object on the left hand side and a transformList on the right hand side.

\section*{Extends}

Class "filter", directly.

\section*{Author(s)}
B. Ellis

\section*{See Also}
"filter", "transform", transform

\section*{Examples}
```

require(flowStats)
samp <- read.FCS(system.file("extdata", "0877408774.B08", package="flowCore"))

## Gate this object after log transforming the forward and side

## scatter variables

filter(samp, norm2Filter("FSC-H", "SSC-H", scale.factor=2)
%on% transform("FSC-H"=log,"SSC-H"=log))

```
```

transformList-class Class "transformList"

```

\section*{Description}

A list of transformMaps to be applied to a list of parameters.

\section*{Usage}
transformList(from, tfun, to=from, transformationId = "defaultTransformation")

\section*{Arguments}
from, to Characters giving the names of the measurement parameter on which to transform on and into which the result is supposed to be stored. If both are equal, the existing parameters will be overwritten.

\title{
tfun A list if functions or a character vector of the names of the functions used to transform the data. R's recycling rules apply, so a single function can be given to be used on all parameters. \\ transformationId \\ The identifier for the object.
}

\section*{Slots}
transforms Object of class "list", where each list item is of class transformMap.
transformationId Object of class "character", the identifier for the object.

\section*{Objects from the Class}

Objects can be created by calls of the form new("transformList", . .), by calling the transform method with key-value pair arguments of the form key equals character and value equals function, or by using the constructor transformList. See below for details

\section*{Methods}
colnames signature (\(x=\) "transformList"): This returns the names of the parameters that are to be transformed.
c signature(\(x=\) "transformList"): Concatenate transformLists or regular lists and transformLists.
\%on\% signature(e1 = "transformList", e2 = "flowFrame"): Perform a transformation using the transformList on a flowFrame or flowSet.

\section*{Author(s)}
B. Ellis, F. Hahne

\section*{See Also}
transform, transformMap

\section*{Examples}
```

tl <- transformList(c("FSC-H", "SSC-H"), list(log, asinh))
colnames(tl)
c(tl, transformList("FL1-H", "linearTransform"))
data(GvHD)
transform(GvHD[[1]], tl)

```

\section*{Description}

This class provides a mapping between parameters and transformed parameters via a function.

\section*{Slots}
output Name of the transformed parameter.
input Name of the parameter to transform.
f Function used to accomplish the transform.

\section*{Objects from the Class}

Objects of this type are not usually created by the user, except perhaps in special circumstances. They are generally automatically created by the inline transform process during the creation of a transformFilter, or by a call to the transformList constructor.

\section*{Methods}
show signature(object = "transformList"): Print details about the object.

\section*{Author(s)}
B. Ellis, F. Hahne

\section*{See Also}
transform, transformList

\section*{Examples}
```

new("transformMap", input="FSC-H", output="FSC-H", f=log)

```
```

transformReference-class
Class "transformReference"

```

\section*{Description}

Class allowing for reference of transforms, for instance as parameters.

\section*{Slots}
.Data The list of references.
searchEnv The environment into which the reference points.
transformationId The name of the transformation.

\section*{Objects from the Class}

Objects will be created internally whenever necessary and this should not be of any concern to the user.

\section*{Extends}

Class "transform", directly. Class "transformation", by class "transform", distance 2. Class "characterOrTransformation", by class "transform", distance 3.

\section*{Author(s)}
N. Gopalakrishnan
```

transform_gate Simplified geometric transformation of gates

```

\section*{Description}

Perform geometric transformations of Gate-type filter objects

\section*{Usage}
\#\# Default S3 method: transform_gate(
obj,
scale = NULL,
deg = NULL,
rot_center = NULL,
dx = NULL,
dy = NULL,
center = NULL,
)

\section*{Arguments}
\(\left.\begin{array}{ll}\text { obj } & \begin{array}{l}\text { A Gate-type filter object (quadGate, rectangleGate, ellipsoidGate, or } \\ \text { polygonGate) }\end{array} \\ \text { Either a numeric scalar (for uniform scaling in all dimensions) or numeric vector } \\ \text { specifying the factor by which each dimension of the gate should be expanded } \\ \text { (absolute value > 1) or contracted (absolute value < 1). Negative values will } \\ \text { result in a reflection in that dimension. } \\ \text { For rectangleGate and quadGate objects, this amounts to simply scaling the } \\ \text { values of the 1-dimensional boundaries. For polygonGate objects, the values } \\ \text { of scale will be used to determine scale factors in the direction of each of the } \\ \text { 2 dimensions of the gate (scale_gate is not yet defined for higher-dimensional } \\ \text { polytopeGate objects). Important: For ellipsoidGate objects, scale de- } \\ \text { termines scale factors for the major and minor axes of the ellipse, in that order. }\end{array}\right\}\) An angle in degrees by which the gate should be rotated in the counter-clockwise

\section*{Details}

This method allows changes to the four filter types defined by simple geometric gates (quadGate, rectangleGate, ellipsoidGate, and polygonGate) using equally simple geometric transformations (shifting/translation, scaling/dilation, and rotation). The method also allows for directly resetting the slots of each Gate-type object. Note that these methods are for manually altering the geometric definition of a gate. To easily transform the definition of a gate with an accompanyging scale transformation applied to its underlying data, see rescale_gate.
First, transform_gate will apply any direct alterations to the slots of the supplied Gate-type filter object. For example, if "mean \(=c(1,3)\) " is present in the argument list when transform_gate is called on a ellipsoidGate object, the first change applied will be to shift the mean slot to (1,3). The method will carry over the dimension names from the gate, so there is no need to provide column or row names with arguments such as mean or cov for ellipsoidGate or boundaries for polygonGate.
transform_gate then passes the geometric arguments (dx, dy, deg, rot_center, scale, and center) to the methods which perform each respective type of transformation: shift_gate, scale_gate, or rotate_gate. The order of operations is to first scale, then rotate, then shift. The default behavior of each operation follows that of its corresponding method but for the most part these are what the user would expect. A few quick notes:
- rotate_gate is not defined for rectangleGate or quadGate objects, due to their definition as having 1 -dimensional boundaries.
- The default center for both rotation and scaling of a polygonGate is the centroid of the polygon. This results in the sort of scaling most users expect, with a uniform scale factor not distorting the shape of the original polygon.

\section*{Value}

A Gate-type filter object of the same type as gate, with the geometric transformations applied

\section*{Examples}
```


## Not run:

# Scale the original gate non-uniformly, rotate it 15 degrees, and shift it

transformed_gate <- transform_gate(original_gate, scale = c(2,3), deg = 15, dx = 500, dy = -700)

# Scale the original gate (in this case an ellipsoidGate) after moving its center to (1500, 2000)

transformed_gate <- transform_gate(original_gate, scale = c(2,3), mean = c(1500, 2000))

## End(Not run)

```
truncateTransform Create the definition of a truncate transformation function to be applied on a data set

\section*{Description}

Create the definition of the truncate Transformation that will be applied on some parameter via the transform method. The definition of this function is currently \(x[x<a]<-a\). Hence, all values less than a are replaced by a. The typical use would be to replace all values less than 1 by 1 .

\section*{Usage}
truncateTransform(transformationId="defaultTruncateTransform", a=1)

\section*{Arguments}
transformationId
character string to identify the transformation
a
double that corresponds to the value at which to truncate

\section*{Value}

Returns an object of class transform.

\section*{Author(s)}
P. Haaland

\section*{See Also}
transform-class, transform
Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(), linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(), splitScaleTransform()

\section*{Examples}
```

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
truncateTrans <- truncateTransform(transformationId="Truncate-transformation", a=5)
dataTransform <- transform(samp,transformList('FSC-H', truncateTrans))

```
 unionFilter-class Class unionFilter

\section*{Description}

This class represents the union of two filters, which is itself a filter that can be incorporated in to further set operations. unionFilters are constructed using the binary set operator " \(\mid\) " with operands consisting of a single filter or list of filters.

\section*{Slots}
filters Object of class "list", containing the component filters.
filterId Object of class "character" referencing the filter applied.

\section*{Extends}

Class "filter", directly.

\section*{Author(s)}
B. Ellis

\section*{See Also}
filter, setOperationFilter
Other setOperationFilter classes: complementFilter-class, intersectFilter-class, setOperationFilter-class, subsetFilter-class
unitytransform-class Class "unitytransform"

\section*{Description}

Unity transform class transforms parameters names provided as characters into unity transform objects which can be evaluated to retrieve the corresponding columns from the data frame

\section*{Slots}
.Data Object of class "function".
parameters Object of class "character" - the flow parameters to be transformed.
transformationId Object of class "character" - a unique Id to reference the transformation.

\section*{Objects from the Class}

Objects can be created by calls to the constructor unitytransform(parameters, transformationId).

\section*{Extends}

Class "transform", directly.
Class "transformation", by class "transform", distance 2.
Class "characterOrTransformation", by class "transform", distance 3.

\section*{Author(s)}

Gopalakrishnan N, F.Hahne

\section*{See Also}
dg1polynomial, ratio
Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class, exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class, splitscale-class, squareroot-class

\section*{Examples}
```

    dat <- read.FCS(system.file("extdata","0877408774.B08",
    package="flowCore"))
    un1<-unitytransform(c("FSC-H", "SSC-H"),transformationId="un1")
    transOut<-eval(un1)(exprs(dat))
    ```
updateTransformKeywords
modify description to reflect the transformation Involve inserting/updating 'transformation' and flowCore_\$PnRmax keywords

\section*{Description}
modify description to reflect the transformation Involve inserting/updating 'transformation' and flowCore_\$PnRmax keywords

\section*{Usage}
updateTransformKeywords(fr)

\section*{Arguments}
fr flowFrame

\section*{Value}
updated description slot
```

validFilters
Check if all filters in a filters matches same paramters

```

\section*{Description}

Check if all filters in a filters matches same paramters

\section*{Usage}
validFilters(flist)

\section*{Arguments}
flist a filters object

\section*{Value}

TRUE or FALSE
```

write.FCS Write an FCS file

```

\section*{Description}

Write FCS file from a flowFrame

\section*{Usage}
write.FCS(x, filename, what="numeric", delimiter = "|", endian="big")

\section*{Arguments}
x
filename
what

Details
The function write. FCS creates FCS 3.0 standard file from an object of class flowFrame.
For specifications of FCS 3.0 see http://www.isac-net.org and the file ../doc/fcs3.html in the doc directory of the package.

\section*{Value}

A character vector of the file name.

\section*{Author(s)}
F. Hahne

\section*{See Also}
link[flowCore]\{write.flowSet\}

\section*{Examples}
```


## a sample file

inFile <- system.file("extdata", "0877408774.B08", package="flowCore")
foo <- read.FCS(inFile, transform=FALSE)
outFile <- file.path(tempdir(), "foo.fcs")

## now write out into a file

write.FCS(foo, outFile)
bar <- read.FCS(outFile, transform=FALSE)
all(exprs(foo) == exprs(bar))

```
write.flowSet Write an FCS file

\section*{Description}

Write FCS file for each flowFrame in a flowSet

\section*{Usage}
write.flowSet(x, outdir=identifier(x), filename, ...)

\section*{Arguments}
x
A flowSet.
outdir A character scalar giving the output directory. As the default, the output of identifier (x) is used.
filename A character scalar or vector giving the output file names. By default, the function will use the identifiers of the individual flowFrames as the file name, potentially adding the .fcs suffix unless a file extension is already present. Alternatively, one can supply either a character scalar, in which case the prefix \(i_{-}\)is appended (i being an integer in seq_len(length(x))), or a character vector of the same length as the flowSet \(x\).
... Further arguments that are passed on to write.FCS.

\section*{Details}

The function write.flowSet creates FCS 3.0 standard file for all flowFrames in an object of class flowSet. In addition, it will write the content of the phenoData slot in the ASCII file "annotation.txt". This file can subsequently be used to reconstruct the whole flowSet using the read.flowSet function, e.g.:
read.flowSet(path=outdir, phenoData="annotation.txt"
The function uses write. FCS for the actual writing of the FCS files.

\section*{Value}

A character vector of the output directory.

\section*{Author(s)}
F. Hahne

\section*{See Also}
link[flowCore]\{write.FCS\}

\section*{Examples}
```


## sample data

data(GvHD)
foo <- GvHD[1:5]
outDir <- file.path(tempdir(), "foo")

## now write out into files

write.flowSet(foo, outDir)
dir(outDir)

## and read back in

bar <- read.flowSet(path=outDir, phenoData="annotation.txt")

```

\section*{Index}
```

!,filter-method (filter-class), 34

* Gate classes
ellipsoidGate-class,26
polygonGate-class,98
polytopeGate-class, 100
quadGate-class,102
rectangleGate-class,116
* IO
fr_append_cols,60
read.FCS, 110
read.FCSheader,113
read.flowSet,114
write.FCS, 152
write.flowSet, 153
* Transform functions
arcsinhTransform, 5
biexponentialTransform, 10
inverseLogicleTransform,70
linearTransform,77
lnTransform,80
logicleTransform, 86
logTransform,90
quadraticTransform, 105
scaleTransform, 121
splitScaleTransform, 132
truncateTransform,148
* classes
asinht-class,6
asinhtGml2-class, 8
boundaryFilter-class,11
characterOrNumeric-class, 13
characterOrParameters-class,14
characterOrTransformation-class,
14
compensatedParameter-class,16
compensation-class, 18
complementFilter-class, 21
concreteFilter-class,21
dg1polynomial-class, 23

```

EHtrans-class, 25
exponential-class, 29
expressionFilter-class, 30
filter-class, 34
filterList-class, 39
filterReference-class, 40
filterResult-class, 41
filterResultList-class, 41
filters-class, 43
filterSummary-class, 44
filterSummaryList-class, 46
flowFrame-class, 47
flowSet-class, 54
hyperlog-class, 65
hyperlogtGml2-class, 66
intersectFilter-class, 70
invsplitscale-class, 72
kmeansFilter-class, 75
lintGml2-class, 78
logarithm-class, 81
logicalFilterResult-class, 82
logicletGml2-class, 83
logtGml2-class, 88
manyFilterResult-class, 91
multipleFilterResult-class, 93
normalization-class, 94
nullParameter-class, 95
parameterFilter-class, 96
parameters-class, 96
parameterTransform-class, 98
quadGate-class, 102
quadratic-class, 104
randomFilterResult-class, 106
ratio-class, 107
ratiotGml2-class, 108
rectangleGate-class, 116
sampleFilter-class, 120
setOperationFilter-class, 124
singleParameterTransform-class,
```

            126
    sinht-class,127
    splitscale-class,130
    squareroot-class,134
    subsetFilter-class, 136
    timeFilter-class,138
    transform-class,141
    transformation-class,142
    transformFilter-class,142
    transformList-class, }14
    transformMap-class, 145
    transformReference-class,146
    unionFilter-class, 149
    unitytransform-class, 150
    * datasets
GvHD,64
* internal
CytoExploreR_exports,22
* iteration
fsApply,61
* manip
Subset-methods,135
* mathematical transform classes
asinht-class,6
asinhtGml2-class,8
dg1polynomial-class, 23
EHtrans-class,25
exponential-class,29
hyperlog-class,65
hyperlogtGml2-class,66
invsplitscale-class,72
lintGml2-class,78
logarithm-class, 81
logicletGml2-class, 83
logtGml2-class, }8
quadratic-class, 104
ratio-class, 107
ratiotGml2-class,108
sinht-class, 127
splitscale-class,130
squareroot-class,134
unitytransform-class, 150
* methods
arcsinhTransform, 5
biexponentialTransform,10
boundaryFilter-class,11
coerce, 15
compensation-class,18

```
 each_col, 24
 ellipsoidGate-class, 26
 expressionFilter-class, 30
 FCSTransTransform, 32
 filter-and-methods, 34
 filter-in-methods, 36
 filter-methods, 36
 filter-on-methods, 38
 filterDetails-methods, 38
 getIndexSort, 63
 identifier-methods, 69
 inverseLogicleTransform, 70
 keyword-methods, 73
 kmeansFilter-class, 75
 linearTransform, 77
 lnTransform, 80
 logicleTransform, 86
 logTransform, 90
 normalization-class, 94
 parameters-methods, 97
 polygonGate-class, 98
 polytopeGate-class, 100
 quadGate-class, 102
 quadraticTransform, 105
 rectangleGate-class, 116
 sampleFilter-class, 120
 scaleTransform, 121
 split-methods, 128
 splitScaleTransform, 132
 summarizeFilter-methods, 137
 timeFilter-class, 138
 truncateTransform, 148
* package
 flowCore-package, 5
* setOperationFilter classes
 complementFilter-class, 21
 intersectFilter-class, 70
 setOperationFilter-class, 124
 subsetFilter-class, 136
 unionFilter-class, 149
*, rectangleGate, rectangleGate-method
 (rectangleGate-class), 116
<, flowFrame, ANY-method
 (flowFrame-class), 47
<=,flowFrame, ANY-method
 (flowFrame-class), 47
==,filterResult,flowFrame-method
 (filterResult-class), 41
==,flowFrame,filterResult-method (flowFrame-class), 47
==,flowFrame,flowFrame-method (flowFrame-class), 47
>,flowFrame, ANY-method
(flowFrame-class), 47
>=, flowFrame, ANY-method
(flowFrame-class), 47
[,filterResultList, ANY-method (filterResultList-class), 41
[,flowFrame, ANY-method (flowFrame-class), 47
[,flowFrame,filter-method (flowFrame-class), 47
[,flowFrame,filterResult-method (flowFrame-class), 47
[, flowSet, ANY-method (flowSet-class), 54
[,flowSet-method (flowSet-class), 54
[,multipleFilterResult, ANY-method (multipleFilterResult-class), 93
[,rectangleGate,ANY-method (rectangleGate-class), 116
[,rectangleGate, character-method (rectangleGate-class), 116
[[,filterResult,ANY-method (filterResult-class), 41
[[,filterResultList, ANY-method (filterResultList-class), 41
[[,filterSummary, character-method (filterSummary-class), 44
[[,filterSummary, numeric-method (filterSummary-class), 44
[[,flowSet, ANY-method (flowSet-class), 54
[[,flowSet-method (flowSet-class), 54
[[,logicalFilterResult, ANY-method (logicalFilterResult-class), 82
[[,manyFilterResult, ANY-method (manyFilterResult-class), 91
[[,manyFilterResult-method (manyFilterResult-class), 91
[[,multipleFilterResult,ANY-method (multipleFilterResult-class), 93
[[,multipleFilterResult-method (multipleFilterResult-class), 93
[[<-,flowFrame-method (flowSet-class), 54
[[<-, flowSet, ANY, ANY, flowFrame-method (flowSet-class), 54
[[<-,flowSet-method (flowSet-class), 54
\$,filterSummary-method
(filterSummary-class), 44
\$,flowSet-method (flowSet-class), 54
\$. flowFrame (flowFrame-class), 47
\%\&\% (filter-and-methods), 34
\(\% \& \%\), ANY-method (filter-and-methods), 34
\(\% \& \%\),filter,filter-method (filter-and-methods), 34
\(\% \& \%\)-methods (filter-and-methods), 34
\%in\% (filter-in-methods), 36
\%in\%, ANY, filterReference-method
(filter-in-methods), 36
\%in\%, ANY,filterResult-method
(filter-in-methods), 36
\%in\%, ANY, manyFilterResult-method (filter-in-methods), 36
\%in\%,ANY,multipleFilterResult-method (filter-in-methods), 36
\%in\%, flowFrame, boundaryFilter-method (filter-in-methods), 36
\%in\%, flowFrame, complementFilter-method (filter-in-methods), 36
\%in\%, flowFrame,ellipsoidGate-method (filter-in-methods), 36
\%in\%, flowFrame, expressionFilter-method (filter-in-methods), 36
\%in\%, flowFrame,filterResult-method (filter-in-methods), 36
\%in\%, flowFrame, intersectFilter-method (filter-in-methods), 36
\%in\%, flowFrame,kmeansFilter-method (filter-in-methods), 36
\%in\%,flowFrame, norm2Filter-method (filter-in-methods), 36
\%in\%,flowFrame, polygonGate-method (filter-in-methods), 36
\%in\%,flowFrame, polytopeGate-method (filter-in-methods), 36
\%in\%, flowFrame, quadGate-method (filter-in-methods), 36
\%in\%, flowFrame, rectangleGate-method (filter-in-methods), 36
\%in\%,flowFrame,sampleFilter-method
(filter-in-methods), 36
\%in\%,flowFrame, subsetFilter-method (filter-in-methods), 36
\%in\%, flowFrame, timeFilter-method (filter-in-methods), 36
\%in\%, flowFrame,transformFilter-method (filter-in-methods), 36
\%in\%,flowFrame, unionFilter-method (filter-in-methods), 36
\%in\%-methods (filter-in-methods), 36
\%on\% (filter-on-methods), 38
\%on\%, ANY, flowSet-method (filter-on-methods), 38
\%on\%, filter, parameterTransform-method (filter-on-methods), 38
\%on\%, filter,transform-method (filter-on-methods), 38
\%on\%,filter,transformList-method (filter-on-methods), 38
\%on\%, parameterTransform, flowFrame-method (filter-on-methods), 38
\%on\%, transform, flowFrame-method (filter-on-methods), 38
\%on\%, transformList,flowFrame-method (filter-on-methods), 38
\%on\%, transformList,flowSet-method (filter-on-methods), 38
\%on\%-methods (filter-on-methods), 38
\%subset\% (filter-and-methods), 34
\%subset\%, ANY-method
(filter-and-methods), 34
\%subset\%,filter,filter-method (filter-and-methods), 34
\%subset\%, list,filter-method (filter-and-methods), 34
\&,filter,filter-method
(filter-and-methods), 34
\&,filter, list-method
(filter-and-methods), 34
\&,list,filter-method
(filter-and-methods), 34
\%on\%, 51, 143

AnnotatedDataFrame, 48, 49, 54, 55, 97, 115
AnnotatedDataFrames, 49
apply, 24, 25, 61
arcsinhTransform, 5, 10, 71, 78, 81, 87, 90, \(106,122,133,141,149\)
as.data.frame.manyFilterResult
(manyFilterResult-class), 91
asinht, 9, 127
asinht (asinht-class), 6
asinht-class, 6
asinhtGml2 (asinhtGml2-class), 8
asinhtGml2-class, 8
biexponentialTransform, 6, 10, 71, 78, 81, 86, 87, 90, 106, 122, 133, 141, 149
booleanGate, filter-class
(filter-class), 34
boundaryFilter (boundaryFilter-class), 11
boundaryFilter-class, 11
c, transformList-method
(transformList-class), 143
call,filter-method (filter-methods), 36
cbind2, flowFrame, matrix-method
(flowFrame-class), 47
cbind2, flowFrame, numeric-method (flowFrame-class), 47
char2ExpressionFilter
(expressionFilter-class), 30
character,filter-method
(filter-methods), 36
characterOrNumeric
(characterOrNumeric-class), 13
characterOrNumeric-class, 13
characterOrParameters
(characterOrParameters-class), 14
characterOrParameters-class, 14
characterOrTransformation, 7, 9, 17, 23, \(25,29,65,68,73,79,82,85,89\), \(104,107,109,126,127,131,134\), 142, 146, 150
characterOrTransformation
(characterOrTransformation-class), 14
characterOrTransformation-class, 14
checkOffset, 15
cleanup (read. FCS), 110
coerce, 15
coerce, call,filter-method (coerce), 15
coerce, character, filter-method
(coerce), 15
coerce, complementFilter, call-method (coerce), 15
coerce, complementFilter,logical-method (coerce), 15
coerce,ellipsoidGate, polygonGate-method (coerce), 15
coerce, environment,flowSet-method (coerce), 15
coerce, factor, filterResult-method (coerce), 15
coerce,filter, call-method (coerce), 15
coerce,filter,logical-method (coerce), 15
coerce,filterReference, call-method (coerce), 15
coerce,filterReference, concreteFilter-method (coerce), 15
coerce,filterResult,logical-method (coerce), 15
coerce,filterResultList,list-method (coerce), 15
coerce,filterSummary, data.frame-method (filterSummary-class), 44
coerce,flowFrame,flowSet-method (coerce), 15
coerce, flowSet,flowFrame-method (coerce), 15
coerce,flowSet,list-method (coerce), 15
coerce, formula, filter-method (coerce), 15
coerce, intersectFiler, call-method (coerce), 15
coerce, intersectFilter, call-method (filter-and-methods), 34
coerce, intersectFilter,logical-method (coerce), 15
coerce,list,filterResultList-method (coerce), 15
coerce, list, flowSet-method (coerce), 15
coerce, list, transformList-method (coerce), 15
coerce,logical,filterResult-method (coerce), 15
coerce,logicalFilterResult,logical-method (coerce), 15
coerce, matrix,filterResult-method (coerce), 15
coerce, name, filter-method (coerce), 15
coerce, nullParameter, character-method (coerce), 15
coerce, numeric,filterResult-method (coerce), 15
coerce, parameters, character-method (coerce), 15
coerce, randomFilterResult,logical-method (coerce), 15
coerce, ratio, character-method (coerce), 15
coerce, rectangleGate, polygonGate-method (coerce), 15
coerce, subsetFilter, call-method (coerce), 15
coerce, subsetFilter,logical-method (coerce), 15
coerce, transform, character-method (coerce), 15
coerce, unionFilter, call-method (coerce), 15
coerce, unionFilter,logical-method (coerce), 15
coerce, unitytransform, character-method (coerce), 15
collapse_desc, 16
colnames, flowFrame-method
(flowFrame-class), 47
colnames,flowSet-method (flowSet-class), 54
colnames, transformList-method (transformList-class), 143
colnames<- (flowFrame-class), 47
colnames<-, flowFrame-method
(flowFrame-class), 47
colnames<-, flowSet-method (flowSet-class), 54
compensate (compensation-class), 18
compensate, flowFrame, compensation-method (flowFrame-class), 47
compensate, flowFrame, data.frame-method (flowFrame-class), 47
compensate, flowFrame, matrix-method (flowFrame-class), 47
compensate, flowSet, ANY-method (flowSet-class), 54
compensate, flowSet, data.frame-method (flowSet-class), 54
compensate, flowSet, list-method
(flowSet-class), 54
compensatedParameter
(compensatedParameter-class), 16
compensatedParameter-class, 16
compensation, 51
compensation (compensation-class), 18
compensation-class, 18
complementFilter
(complementFilter-class), 21
complementFilter-class, 21
concreteFilter, 12, 27, 31, 42, 76, 96, 99, 102, 117, 120, 139
concreteFilter (concreteFilter-class), 21
concreteFilter-class, 21
CytoExploreR_.estimateLogicle
(CytoExploreR_exports), 22
CytoExploreR_exports, 22
data.frames, 48, 49
decisionTreeGate,filter-class (filter-class), 34
decompensate, 22
decompensate, flowFrame, compensation-method (decompensate), 22
decompensate, flowFrame, data.frame-method (decompensate), 22
decompensate, flowFrame, matrix-method (decompensate), 22
decompensate-methods (decompensate), 22
description, 74
description (flowFrame-class), 47
description,flowFrame-method
(flowFrame-class), 47
description<-, flowFrame, ANY-method (flowFrame-class), 47
description<-,flowFrame,list-method (flowFrame-class), 47
dg1polynomial (dg1polynomial-class), 23
dg1polynomial-class, 23
dim (flowFrame-class), 47
dim,flowFrame-method (flowFrame-class), 47
dir, 114
do.call, 94
each_col, 24, 51
each_col, flowFrame-method (each_col), 24
each_col-methods (each_col), 24
each_row (each_col), 24
each_row,flowFrame-method (each_col), 24
each_row-methods (each_col), 24
EHtrans (EHtrans-class), 25
EHtrans-class, 25
ellipsoidGate, 27, 100, 118, 119, 123, 125, 147
ellipsoidGate (ellipsoidGate-class), 26
ellipsoidGate,filter-class
(filter-class), 34
ellipsoidGate-class, 26
environment, 54, 57
estimateLogicle, 33, 87
estimateLogicle (logicleTransform), 86
estimateMedianLogicle, 28
eval, asinht,missing-method (asinht-class), 6
eval, asinhtGml2,missing-method (asinhtGml2-class), 8
eval, compensatedParameter, missing-method (compensatedParameter-class), 16
eval,dg1polynomial,missing-method (dg1polynomial-class), 23
eval,EHtrans,missing-method (EHtrans-class), 25
eval, exponential,missing-method (exponential-class), 29
eval,filterReference,missing-method (filterReference-class), 40
eval, hyperlog, missing-method (hyperlog-class), 65
eval, hyperlogtGml2, missing-method (hyperlogtGml2-class), 66
eval, invsplitscale,missing-method (invsplitscale-class), 72
eval, lintGml2,missing-method (lintGml2-class), 78
eval,logarithm,missing-method (logarithm-class), 81
eval,logicletGml2,missing-method (logicletGml2-class), 83
eval,logtGml2,missing-method (logtGml2-class), 88
eval, quadratic,missing-method (quadratic-class), 104
eval,ratio,missing-method
(ratio-class), 107
eval, ratiotGml2,missing-method (ratiotGml2-class), 108
eval,sinht,missing-method (sinht-class), 127
eval,splitscale,missing-method (splitscale-class), 130
eval, squareroot,missing-method (squareroot-class), 134
eval, transformReference, missing-method
(transformReference-class), 146
eval, unitytransform, missing-method
(unitytransform-class), 150
exponential (exponential-class), 29
exponential-class, 29
expressionFilter, 31
expressionFilter
(expressionFilter-class), 30
expressionFilter-class, 30
exprs (flowFrame-class), 47
exprs,flowFrame-method
(flowFrame-class), 47
exprs<- (flowFrame-class), 47
exprs<-,flowFrame,ANY-method
(flowFrame-class), 47
exprs<-,flowFrame, matrix-method (flowFrame-class), 47

FCSTransTransform, 32
featureNames (flowFrame-class), 47
featureNames,flowFrame-method (flowFrame-class), 47
filter, 11, 12, 21, 22, 26-28, 30, 31, 34-44, \(48,51,56,57,69,70,76,77,83,91\), 93, 96-103, 106, 116-118, 120, 121, 123-125, 128, 129, 135-139, 143, 146, 147, 149, 150
filter (filter-methods), 36
filter,filter-method (filter-class), 34
filter, flowFrame,filter-method (filter-methods), 36
filter, flowFrame, norm2Filter (filter-methods), 36
filter,flowFrame, polygonGate (filter-methods), 36
filter,flowFrame, rectangleGate (filter-methods), 36
filter, flowFrame-method (filter-methods), 36
filter,flowSet,filter-method (filter-methods), 36
filter,flowSet,filterList-method (filter-methods), 36
filter,flowSet,list-method (filter-methods), 36
filter-and-methods, 34
filter-class, 34
filter-in-methods, 36
filter-method (filter-methods), 36
filter-methods, 36
filter-on-methods, 38
filterDetails (filterDetails-methods), 38
filterDetails,filterResult, ANY-method (filterDetails-methods), 38
filterDetails,filterResult,missing-method (filterDetails-methods), 38
filterDetails-methods, 38
filterDetails<-
(filterDetails-methods), 38
filterDetails<-,filterResult, character, ANY-method (filterDetails-methods), 38
filterDetails<-,filterResult, character,filter-method (filterDetails-methods), 38
filterDetails<-,filterResult, character, setOperationFilter-(filterDetails-methods), 38
filtergate,filter-class(filter-class), 34
filterList, 43, 44
filterList (filterList-class), 39
filterList-class, 39
filterReference, 21, 69
filterReference
(filterReference-class), 40
filterReference, environment, character-method (filterReference-class), 40
filterReference-class, 40
filterResult, 12, 35-38, 42, 44, 45, 47, 48, \(51,56,57,69,76,83,91,93,94\), 106, 128-130, 135, 137
filterResult(filterResult-class), 41
filterResult-class, 41
filterResultList, 37, 46, 47
filterResultList
(filterResultList-class), 41
filterResultList-class, 41
filters (filters-class), 43
filters-class, 43
filtersList (filters-class), 43
filtersList-class (filters-class), 43
filterSummary, 47
filterSummary (filterSummary-class), 44
filterSummary-class, 44
filterSummaryList, 42, 45
filterSummaryList
(filterSummaryList-class), 46
filterSummaryList-class, 46
flowCore (flowCore-package), 5
flowCore-package, 5
flowFrame, 5, 12, 18, 19, 24, 27, 28, 31, \(35-38,45,47,54-58,60,61,69,74\), 76, 77, 91, 97, 99-103, 112, 114, 117, 118, 120, 121, 128-130, 135, \(136,138,139,142,144,152\)
flowFrame (flowFrame-class), 47
flowFrame-class, 47
flowFrames, 42, 59, 76
flowSet, 5, 12, 18, 19, 36-38, 42, 51, 52, 59, \(61,74,77,94,95,102,103,114\), \(115,128-130,135,136,144,153\)
flowSet (flowSet-class), 54
flowSet-class, 54
flowSet_to_list, 59
flowSets, 19, 46
flowViz, 28, 50, 76, 99, 103, 117, 139
formula, filter-method (filter-methods), 36
fr_append_cols, 60
fsApply, 61, 135
fsApply, flowSet, ANY (fsApply), 61
fsApply,flowSet-method (flowSet-class), 54
function, 98
getChannelMarker, 62
getIndexSort, 63
getIndexSort, flowFrame-method
(getIndexSort), 63
getIndexSort-methods (getIndexSort), 63
ggcyto, 50
GvHD, 64
head, flowFrame-method
(flowFrame-class), 47
here, 35
histogram, 50
hyperlog, 68
hyperlog (hyperlog-class), 65
hyperlog-class, 65
hyperlogtGml2 (hyperlogtGml2-class), 66
hyperlogtGml2-class, 66
identifier, 50
identifier (identifier-methods), 69
identifier, compensation-method (compensation-class), 18
identifier,filter-method (identifier-methods), 69
identifier,filterList-method (filterList-class), 39
identifier,filterReference-method (identifier-methods), 69
identifier,filterResult-method (identifier-methods), 69
identifier,flowFrame-method (identifier-methods), 69
identifier,flowSet-method (flowSet-class), 54
identifier, normalization-method (normalization-class), 94
identifier,NULL-method (identifier-methods), 69
identifier,transform-method (identifier-methods), 69
identifier,transformList-method (transformList-class), 143
identifier-methods, 69
identifier<- (identifier-methods), 69
identifier<-, compensation, character-method (compensation-class), 18
identifier<-,filter, character-method (filter-methods), 36
identifier<-,filterList, character-method (filterList-class), 39
identifier<-,flowFrame, ANY-method (identifier-methods), 69
identifier<-,flowFrame-method (identifier-methods), 69
identifier<-,flowSet, ANY-method (flowSet-class), 54
identifier<-, normalization, character-method (normalization-class), 94
identifier<-, transformList, character-method (transformList-class), 143
initialize,dg1polynomial-method (dg1polynomial-class), 23
initialize,flowFrame-method (flowFrame-class), 47
initialize, parameterFilter-method (parameterFilter-class), 96
initialize, ratio-method (ratio-class), 107
initialize, ratiotGml2-method (ratiotGml2-class), 108
initialize,singleParameterTransform-method (singleParameterTransform-class), 126
intersectFilter
(intersectFilter-class), 70
intersectFilter-class, 70
intersectFilter-method (filter-and-methods), 34
inverseLogicleTransform, \(6,10,33,70,78\), 81, 87, 90, 106, 122, 133, 149
invsplitscale (invsplitscale-class), 72
invsplitscale-class, 72
isFCSfile (read.FCS), 110
keyword, 49, 56
keyword (keyword-methods), 73
keyword, flowFrame, character-method (keyword-methods), 73
keyword, flowFrame, function-method (keyword-methods), 73
keyword,flowFrame,list-method (keyword-methods), 73
keyword,flowFrame, missing-method (keyword-methods), 73
keyword,flowSet, ANY-method (keyword-methods), 73
keyword,flowSet,list-method (keyword-methods), 73
keyword-methods, 73
keyword<- (keyword-methods), 73
keyword<-, flowFrame, ANY-method (keyword-methods), 73
keyword<-, flowFrame, character-method (keyword-methods), 73
keyword<-,flowFrame,list-method (keyword-methods), 73
keyword<-,flowSet,list-method (keyword-methods), 73
kmeansFilter, 35
kmeansFilter (kmeansFilter-class), 75
kmeansFilter(), 35
kmeansFilter-class, 75
length,filter-method(filter-methods), 36
length,filterReference-method (filterReference-class), 40
length,filterSummary-method (filterSummary-class), 44
length,flowSet-method (flowSet-class), 54
length, kmeansFilter-method (kmeansFilter-class), 75
length, logicalFilterResult-method (logicalFilterResult-class), 82
length, manyFilterResult-method (manyFilterResult-class), 91
length,multipleFilterResult-method (multipleFilterResult-class), 93
linearTransform, 6, 10, 71, 77, 80, 81, 87, 90, 106, 122, 133, 141, 149
lintGml2 (lintGml2-class), 78
lintGml2-class, 78
list, 39, 42, 44, 47, 96
lnTransform, 6, 10, 71, 78, 80, 87, 90, 106, 122, 133, 141, 149
logarithm (logarithm-class), 81
logarithm-class, 81
logicalFilterResult, 41, 42, 45, 47, 117, 129
logicalFilterResult (logicalFilterResult-class), 82
logicalFilterResult-class, 82
logicletGml2, 68
logicletGml2 (logicletGml2-class), 83
logicletGml2-class, 83
logicleTransform, 6, 10, 33, 68, 71, 78, 81, \(85,86,86,90,106,122,133,141\), 149
logtGml2 (logtGml2-class), 88
logtGml2-class, 88
logTransform, \(6,10,71,78,81,87,89,90\), \(106,122,133,141,149\)
make.names, 110
manyFilterResult, 128
```

manyFilterResult
(manyFilterResult-class), 91
manyFilterResult-class, 91
markernames,92
markernames,flowFrame-method
(markernames), }9
markernames,flowSet-method
(markernames), }9
markernames<- (markernames), 92
markernames<-,flowFrame-method
(markernames), }9
markernames<-,flowSet-method
(markernames), }9
multipleFilterResult, 41, 42, 45, 47, 76,
102,128
multipleFilterResult
(multipleFilterResult-class),
93
multipleFilterResult-class,93
multipleFilterResults,45
name,filter-method(filter-methods), 36
names (flowFrame-class), 47
names,filterResultList-method
(filterResultList-class), 41
names,filterSummary-method
(filterSummary-class),44
names,flowFrame-method
(flowFrame-class), 47
names,logicalFilterResult-method
(logicalFilterResult-class), 82
names,manyFilterResult-method
(manyFilterResult-class), 91
names,multipleFilterResult-method
(multipleFilterResult-class),
93
names<-,multipleFilterResult,ANY-method
(multipleFilterResult-class),
93
names<-,multipleFilterResult-method
(multipleFilterResult-class),
93
ncol,flowFrame-method
(flowFrame-class), 47
norm2Filter, 34, 35
norm2Filter,filter-class
(filter-class), 34
normalization (normalization-class), }9
normalization-class,94

```
normalize (normalization-class), 94
normalize,flowSet, normalization-method (normalization-class), 94
nrow, flowFrame-method (flowFrame-class), 47
nullParameter (nullParameter-class), 95
nullParameter-class, 95
parameterFilter, 12, 22, 27, 35, 76, 97, 99, 102, 117, 139
parameterFilter-class, 96
parameters, 14, 49, 76
parameters (parameters-methods), 97
parameters, compensation-method (compensation-class), 18
parameters,filter-method (parameters-methods), 97
parameters,filterReference-method (parameters-methods), 97
parameters,filterResult-method (parameters-methods), 97
parameters,filterResultList-method (filterResultList-class), 41
parameters,flowFrame,missing-method (parameters-methods), 97
parameters,flowFrame-method (parameters-methods), 97
parameters, manyFilterResult-method (manyFilterResult-class), 91
parameters, normalization-method (normalization-class), 94
parameters, nullParameter-method (parameters-methods), 97
parameters, parameterFilter-method (parameters-methods), 97
parameters, parameterTransform-method (parameters-methods), 97
parameters, ratio-method (parameters-methods), 97
parameters,ratiotGml2-method (ratiotGml2-class), 108
parameters, setOperationFilter-method (parameters-methods), 97
parameters,singleParameterTransform-method (singleParameterTransform-class), 126
parameters,transform-method (parameters-methods), 97
parameters,transformReference-method
(transformReference-class), 146
parameters-class, 96
parameters-methods, 97
parameters<- (parameters-methods), 97
parameters<-, dg1polynomial, character-method (dg1polynomial-class), 23
parameters<-, dg1polynomial, parameters-method (dg1polynomial-class), 23
parameters<-, dg1polynomial,transform-method (parameters-methods), 97
polytopeGate, 28, 100, 118
polytopeGate (polytopeGate-class), 100
polytopeGate-class, 100
print,filterSummary-method
(filterSummary-class), 44
quadGate, \(123,125,147\)
quadGate (quadGate-class), 102
quadGate-class, 102
quadratic (quadratic-class), 104
quadratic-class, 104
parameters<-,flowFrame, AnnotatedDataFrame-metभyaddraticTransform, 6, 10, 71, 78, 81, 87, (parameters-methods), 97

90, 105, 122, 133, 141, 149
parameters<-, parameterFilter, character-method
(parameters-methods), 97
parameters<-, parameterFilter, list-method (parameters-methods), 97
parameters<-, parameterFilter, transform-method (parameters-methods), 97
parameters<-, singleParameterTransform, character-methof (flowFrame-class), 47
(parameters-methods), 97
parameters<-, singleParameterTransform, transforatio, 109
(parameters-methods), 97
parameterTransform
(parameterTransform-class), 98
parameterTransform-class, 98
pData, flowSet-method (flowSet-class), 54
pData<-,flowSet, data.frame-method
(flowSet-class), 54
phenoData,flowSet-method
(flowSet-class), 54
phenoData<-, flowSet, ANY-method (flowSet-class), 54
phenoData<-,flowSet, phenoData-method (flowSet-class), 54
plot,flowFrame, ANY-method
(flowFrame-class), 47
plot,flowFrame-method
(flowFrame-class), 47
plot,flowSet, ANY-method (flowSet-class), 54
plot,flowSet-method (flowSet-class), 54
polygonGate, 28, 99, 101, 118, 119, 123, 125, 147
polygonGate (polygonGate-class), 98
polygonGate,filter-class
(filter-class), 34
polygonGate-class, 98
ratiotratio-class), 107
ratio-class, 107
ratiotGml2 (ratiotGml2-class), 108
ratiotGml2-class, 108
rbind2,flowFrame,flowSet-method (flowSet-class), 54
rbind2,flowSet,flowFrame-method (flowSet-class), 54
rbind2,flowSet,flowSet,missing-method (flowSet-class), 54
rbind2,flowSet,flowSet-method (flowSet-class), 54
rbind2,flowSet,missing (flowSet-class), 54
rbind2,flowSet,missing-method (flowSet-class), 54
read.AnnotatedDataFrame, 115
read. FCS, 48, 52, 110, 114, 115
read. FCSheader, 113
read.flowSet, 55, 58, 112, 114, 153
rectangleGate, 28, 100, 101, 117, 123, 125, 147
rectangleGate (rectangleGate-class), 116
rectangleGate(), 35
rectangleGate,filter-class
(filter-class), 34
rectangleGate-class, 116
rescale_gate, 123, 147
rotate_gate, 118, 148
sampleFilter (sampleFilter-class), 120
sampleFilter-class, 120
sampleNames,flowSet-method
(flowSet-class), 54
sampleNames<-, flowSet, ANY-method
(flowSet-class), 54
sapply, 56, 61
scale_gate, 122, 148
scaleTransform, \(6,10,71,78,81,87,90\), 106, 121, 133, 149
setOperationFilter, 21, 70, 137, 150
setOperationFilter
(setOperationFilter-class), 124
setOperationFilter-class, 124
shift_gate, 124, 148
show, boundaryFilter-method (boundaryFilter-class), 11
show, compensation-method (compensation-class), 18
show, complementFilter-method (complementFilter-class), 21
show, ellipsoidGate-method (ellipsoidGate-class), 26
show, expressionFilter-method (expressionFilter-class), 30
show, filter-method (filter-methods), 36
show, filterList-method (filterList-class), 39
show, filterReference-method (filterReference-class), 40
show, filterResult-method (filterResult-class), 41
show, filterResultList-method (filterResultList-class), 41
show, filters-method (filters-class), 43
show, filtersList-method (filters-class), 43
show, filterSummary-method (filterSummary-class), 44
show, flowFrame-method (flowFrame-class), 47
show, flowSet-method (flowSet-class), 54
show, intersectFilter-method (intersectFilter-class), 70
show, kmeansFilter-method (kmeansFilter-class), 75
show, manyFilterResult-method (manyFilterResult-class), 91
show, multipleFilterResult-method (multipleFilterResult-class), 93
show, polygonGate-method (polygonGate-class), 98
show, polytopeGate-method (polytopeGate-class), 100
show, quadGate-method (quadGate-class), 102
show, rectangleGate-method (rectangleGate-class), 116
show, sampleFilter-method (sampleFilter-class), 120
show, subsetFilter-method (subsetFilter-class), 136
show, timeFilter-method (timeFilter-class), 138
show, transform-method (transform-class), 141
show, transformFilter-method (transformFilter-class), 142
show, transformMap-method (transformMap-class), 145
show, unionFilter-method (unionFilter-class), 149
show, unitytransform-method (unitytransform-class), 150
singleParameterTransform, 7, 9, 25, 29, 65, \(68,73,79,82,85,89,104,127,131\), 134
singleParameterTransform-class, 126
sinht, 6
sinht (sinht-class), 127
sinht-class, 127
smoothScatter, 50
spillover, 19, 20
spillover (flowFrame-class), 47
spillover,flowFrame-method
(flowFrame-class), 47
split, 28, 31, 42, 51, 56, 76, 77, 100, 103, 118, 121, 136, 139
split (split-methods), 128
split,flowFrame,ANY-method
(split-methods), 128
split,flowFrame, character-method
(split-methods), 128
split,flowFrame,factor-method (split-methods), 128
split,flowFrame,filter-method (split-methods), 128
split,flowFrame,logicalFilterResult-method (split-methods), 128
split,flowFrame, manyFilterResult-method (split-methods), 128
split,flowFrame,multipleFilterResult-method (split-methods), 128
split,flowFrame, numeric-method (split-methods), 128
split,flowSet, ANY-method (split-methods), 128
split,flowSet, character-method (split-methods), 128
split,flowSet,factor-method (split-methods), 128
split,flowSet,filter-method (split-methods), 128
split,flowSet,filterResult-method (split-methods), 128
split,flowSet,filterResultList-method (filterResultList-class), 41
split,flowSet,list-method (split-methods), 128
split,flowSet, numeric-method (split-methods), 128
split-methods, 128
splitscale (splitscale-class), 130
splitscale-class, 130
splitScaleTransform, \(6,10,71,78,81,87\), 90, 106, 122, 132, 149
splom, 50
squareroot (squareroot-class), 134
squareroot-class, 134
Subset, 12, 28, 31, 37, 100, 118, 121, 139
Subset (Subset-methods), 135
subset, 135, 136
Subset,flowFrame,filter-method (Subset-methods), 135
Subset,flowFrame,logical-method (Subset-methods), 135
Subset, flowFrame-method (Subset-methods), 135
Subset, flowSet, ANY (Subset-methods), 135
Subset, flowSet, ANY-method (Subset-methods), 135

Subset,flowSet,filterResultList-method (Subset-methods), 135
Subset,flowSet,list-method
(Subset-methods), 135
Subset-methods, 135
subsetFilter(subsetFilter-class), 136
subsetFilter-class, 136
subsetFilter-method
(filter-and-methods), 34
summarizeFilter
(summarizeFilter-methods), 137
summarizeFilter,filterResult,filter-method (summarizeFilter-methods), 137
summarizeFilter,filterResult,filterReference-method (summarizeFilter-methods), 137
summarizeFilter,filterResult, parameterFilter-method (summarizeFilter-methods), 137
summarizeFilter,filterResult, subsetFilter-method (summarizeFilter-methods), 137
summarizeFilter,logicalFilterResult, norm2Filter-method (summarizeFilter-methods), 137
summarizeFilter,logicalFilterResult, parameterFilter-method (summarizeFilter-methods), 137
summarizeFilter, multipleFilterResult, parameterFilter-metho (summarizeFilter-methods), 137
summarizeFilter-methods, 137
summary, 34
summary,filter-method (filter-methods),
36
summary,filterReference-method
(filterReference-class), 40
summary,filterResult-method
(filterSummary-class), 44
summary,filterResultList-method (filterResultList-class), 41
summary, flowFrame-method (flowFrame-class), 47
summary, flowSet-method (flowSet-class), 54
summary, logicalFilterResult-method
(logicalFilterResult-class), 82
summary, manyFilterResult-method
(manyFilterResult-class), 91
summary, multipleFilterResult-method (multipleFilterResult-class), 93
summary, rectangleGate-method
(rectangleGate-class), 116
summary, subsetFilter-method (subsetFilter-class), 136
summary, transform-method
(transform-class), 141
tail, flowFrame-method
(flowFrame-class), 47
timeFilter, 138
timeFilter (timeFilter-class), 138
timeFilter-class, 138
timeLinePlot, 139
toTable (filterSummary-class), 44
toTable, filterSummary-method (filterSummary-class), 44
toTable, filterSummaryList-method (filterSummaryList-class), 46
transform, \(6,7,9,10,17-19,23,25,29,35\),
\(38,51,65,68,69,73,75,78-82,85\), 86, 89, 90, 98, 104, 106, 107, 109, 122, 126, 127, 131, 133, 134, 140, 142-146, 149, 150
transform,flowFrame-method (transform), 140
transform, flowSet-method (transform), 140
transform, missing-method (transform-class), 141
transform-class, 141
transform_gate, 146
transformation, \(7,9,14,17,23,25,29,65\), \(68,73,75,76,79,82,85,89,104\), \(107,109,126,127,131,134,146\), 150
transformation (transformation-class), 142
transformation-class, 142
transformFilter, 145
transformFilter
(transformFilter-class), 142
transformFilter-class, 142
transformList, \(35,38,143,145\)
transformList (transformList-class), 143
transformList-class, 143
transformMap, 144
transformMap (transformMap-class), 145
transformMap-class, 145
transformReference
(transformReference-class), 146
transformReference-class, 146
transformReferences, 20
transforms, 20
truncateTransform, \(6,10,71,78,81,87,90\), 106, 122, 133, 148
unionFilter (unionFilter-class), 149
unionFilter-class, 149
uniroot, 10
unitytransform (unitytransform-class), 150
unitytransform-class, 150
updateTransformKeywords, 151
validFilters, 151
varLabels,flowSet-method (flowSet-class), 54
varLabels<-,flowSet,ANY-method (flowSet-class), 54
varLabels<-,flowSet-method (flowSet-class), 54
varMetadata, flowSet-method (flowSet-class), 54
varMetadata<-, flowSet, ANY-method (flowSet-class), 54
vector, 96
write.FCS, 152, 153
write.flowSet, 153
xyplot, 43```

