## ----setup, message=FALSE, warning=FALSE-----------------------------------
library(dplyr)
library(biotmle)
library(biotmleData)
suppressMessages(library(SummarizedExperiment))
"%ni%" = Negate("%in%")

## ----simNGS----------------------------------------------------------------
set.seed(6423709)
n <- 50
g <- 2500
cases_pois <- 50
controls_pois <- 10

ngs_cases <- as.data.frame(matrix(replicate(n, rpois(g, cases_pois)), g))
ngs_controls <- as.data.frame(matrix(replicate(n, rpois(g, controls_pois)), g))

ngs_data <- as.data.frame(cbind(ngs_cases, ngs_controls))
exp_var <- c(rep(1, n), rep(0, n))
batch <- rep(1:2, n)
covar <- rep(1, n * 2)
design <- as.data.frame(cbind(exp_var, batch, covar))

head(ngs_data[, 1:7])

## ----data_proc-------------------------------------------------------------
se <- SummarizedExperiment(assays = list(counts = DataFrame(ngs_data)),
                           colData = DataFrame(design))
se

## ----biomarkertmle, eval=FALSE---------------------------------------------
#  rnaseqTMLEout <- biomarkertmle(se = se,
#                                 varInt = 1,
#                                 ngscounts = TRUE,
#                                 parallel = TRUE,
#                                 family = "gaussian",
#                                 g_lib = c("SL.mean", "SL.glm",
#                                           "SL.randomForest"),
#                                 Q_lib = c("SL.mean", "SL.glm",
#                                           "SL.randomForest", "SL.nnet")
#                                )
#  head(eif(rnaseqTMLEout)$E[, seq_len(6)])

## ----load_biomarkerTMLE_result, echo=FALSE---------------------------------
data(rnaseqtmleOut)
head(eif(rnaseqTMLEout)$E[, seq_len(6)])

## ----modtest_ic------------------------------------------------------------
limmaTMLEout <- modtest_ic(biotmle = rnaseqTMLEout)
head(toptable(limmaTMLEout))

## ----pval_hist_limma_adjp--------------------------------------------------
plot(x = limmaTMLEout, type = "pvals_adj")

## ----pval_hist_limma_rawp--------------------------------------------------
plot(x = limmaTMLEout, type = "pvals_raw")

## ----heatmap_limma_results-------------------------------------------------
varInt_index <- which(names(colData(se)) %in% "exp_var")
designVar <- as.data.frame(colData(se))[, varInt_index]
design <- as.numeric(designVar == max(designVar))

heatmap_ic(x = limmaTMLEout,
           row.dendrogram = TRUE,
           clustering.method = "hierarchical",
           design = design, FDRcutoff = 1.0, top = 10)

## ----volcano_plot_limma_results--------------------------------------------
volcano_ic(biotmle = limmaTMLEout)

## ----sessionInfo, echo=FALSE-----------------------------------------------
sessionInfo()