## ----set-options, echo=FALSE, cache=FALSE--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- options(width = 400) ## ---- eval = FALSE, message=FALSE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # # if (!requireNamespace("BiocManager", quietly=TRUE)) # # install.packages("BiocManager") # # BiocManager::install("SpectralTAD") # devtools::install_github("cresswellkg/SpectralTAD") # library(SpectralTAD) ## ---- echo=FALSE, message=FALSE, warning=FALSE---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- library(SpectralTAD) ## ---- echo = FALSE, warning = FALSE, message = FALSE---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- data("rao_chr20_25_rep") rao_chr20_25_rep = HiCcompare::sparse2full(rao_chr20_25_rep) row.names(rao_chr20_25_rep) = colnames(rao_chr20_25_rep) = format(as.numeric(row.names(rao_chr20_25_rep)), scientific = FALSE) rao_chr20_25_rep[1:5, 1:5] ## ---- echo = FALSE, warning = FALSE--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- row.names(rao_chr20_25_rep) = NULL sub_mat = cbind.data.frame("chr19", as.numeric(colnames(rao_chr20_25_rep)), as.numeric(colnames(rao_chr20_25_rep))+25000, rao_chr20_25_rep)[1:10, 1:10] colnames(sub_mat) = NULL sub_mat ## ---- echo = FALSE, warning = FALSE--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- head(HiCcompare::full2sparse(rao_chr20_25_rep), 5) ## ---- eval = FALSE-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # #Read in data # cool_mat = read.table("Rao.GM12878.50kb.txt") # #Convert to sparse 3-column matrix using cooler2sparse from HiCcompare # sparse_mats = HiCcompare::cooler2sparse(cool_mat) # #Remove empty matrices if necessary # #sparse_mats = sparse_mats$cis[sapply(sparse_mats, nrow) != 0] # #Run SpectralTAD # spec_tads = lapply(names(sparse_mats), function(x) { # SpectralTAD(sparse_mats[[x]], chr = x) # }) # ## ---- eval = FALSE-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # #Read in both files # mat = read.table("amyg_100000.matrix") # bed = read.table("amyg_100000_abs.bed") # #Convert to modified bed format # sparse_mats = HiCcompare::hicpro2bedpe(mat,bed) # #Remove empty matrices if necessary # #sparse_mats$cis = sparse_mats$cis[sapply(sparse_mats, nrow) != 0] # #Go through all matrices # sparse_tads = lapply(sparse_mats$cis, function(x) { # #Pull out chromosome # chr = x[,1][1] # #Subset to make three column matrix # x = x[,c(2,5,7)] # #Run SpectralTAD # SpectralTAD(x, chr=chr) # }) ## ---- message = FALSE, warning = FALSE------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ #Get the rao contact matrix built into the package data("rao_chr20_25_rep") head(rao_chr20_25_rep) #We see that this is a sparse 3-column contact matrix #Running the algorithm with resolution specified results = SpectralTAD(rao_chr20_25_rep, chr = "chr20", resolution = 25000, qual_filter = FALSE, z_clust = FALSE) #Printing the top 5 TADs head(results$Level_1, 5) #Repeating without specifying resolution no_res = SpectralTAD(rao_chr20_25_rep, chr = "chr20", qual_filter = FALSE, z_clust = FALSE) #We can see below that resolution can be estimated automatically if necessary identical(results, no_res) ## ---- message = FALSE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- #Running SpectralTAD with silhouette score filtering qual_filt = SpectralTAD(rao_chr20_25_rep, chr = "chr20", qual_filter = TRUE, z_clust = FALSE, resolution = 25000) #Showing quality filtered results head(qual_filt$Level_1,5) #Quality filtering generally has different dimensions dim(qual_filt$Level_1) dim(results$Level_1) ## ---- message = FALSE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- z_filt = SpectralTAD(rao_chr20_25_rep, chr = "chr20", qual_filter = FALSE, z_clust = TRUE, resolution = 25000) head(z_filt$Level_1, 5) dim(z_filt$Level_1) ## ---- message = FALSE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- #Running SpectralTAD with 3 levels and no quality filtering spec_hier = SpectralTAD(rao_chr20_25_rep, chr = "chr20", resolution = 25000, qual_filter = FALSE, levels = 3) #Level 1 remains unchanged head(spec_hier$Level_1,5) #Level 2 contains the sub-TADs for level 1 head(spec_hier$Level_2,5) #Level 3 contains even finer sub-TADs for level 1 and level 2 head(spec_hier$Level_3,5) ## ---- eval = FALSE-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # #Creating replicates of our HiC data for demonstration # cont_list = replicate(3,rao_chr20_25_rep, simplify = FALSE) # #Creating a vector of chromosomes # chr_over = c("chr20", "chr20", "chr20") # #Creating a list of labels # labels = c("Replicate 1", "Replicate 2", "Replicate 3") # SpectralTAD_Par(cont_list = cont_list, chr_over = chr_over, labels = labels, cores = 3) # ## ---- message = FALSE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- library(microbenchmark) #Converting to nxn n_n = HiCcompare::sparse2full(rao_chr20_25_rep) #Converting to nxn+3 n_n_3 = cbind.data.frame("chr20", as.numeric(colnames(n_n)), as.numeric(colnames(n_n))+25000, n_n) #Defining each function sparse = SpectralTAD(cont_mat = rao_chr20_25_rep, chr = "chr20", qual_filter = FALSE) n_by_n = SpectralTAD(cont_mat = n_n, chr = "chr20", qual_filter = FALSE) n_by_n_3 =SpectralTAD(cont_mat = n_n_3, chr = "chr20", qual_filter = FALSE) #Benchmarking different parameters microbenchmark(sparse = SpectralTAD(cont_mat = rao_chr20_25_rep, chr = "chr20", qual_filter = FALSE), n_by_n = SpectralTAD(cont_mat = n_n, chr = "chr20", qual_filter = FALSE), n_by_n_3 =SpectralTAD(cont_mat = n_n_3, chr = "chr20", qual_filter = FALSE), unit = "s", times = 3) ## ---- message = FALSE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- microbenchmark(quality_filter = SpectralTAD(cont_mat = n_n, chr = "chr20", qual_filter = TRUE, z_clust = FALSE), no_filter = SpectralTAD(cont_mat = n_n, chr = "chr20", qual_filter = FALSE, z_clust = FALSE), z_clust = SpectralTAD(cont_mat = n_n, chr = "chr20", qual_filter = FALSE, z_clust = TRUE), times = 3, unit = "s")