%\VignetteIndexEntry{Mitoode data} %\VignetteKeywords{ExperimentData, siRNAData} %\VignettePackage{mitoODEdata} \documentclass[10pt,a4paper]{article} \RequirePackage{amsfonts,amsmath,amstext,amssymb,amscd} \usepackage{graphicx} \usepackage{verbatim} \usepackage{hyperref} \usepackage{color} \definecolor{darkblue}{rgb}{0.2,0.0,0.4} \usepackage[a4paper,left=2.2cm,top=2.2cm,bottom=2.8cm,right=2.2cm,ignoreheadfoot]{geometry} \newcommand{\lib}[1]{{\mbox{\normalfont\textsf{#1}}}} \newcommand{\file}[1]{{\mbox{\normalfont\textsf{'#1'}}}} \newcommand{\R}{{\mbox{\normalfont\textsf{R}}}} \newcommand{\Rfunction}[1]{{\mbox{\normalfont\texttt{#1}}}} \newcommand{\Robject}[1]{{\mbox{\normalfont\texttt{#1}}}} \newcommand{\Rpackage}[1]{{\mbox{\normalfont\textsf{#1}}}} \newcommand{\Rclass}[1]{{\mbox{\normalfont\textit{#1}}}} \newcommand{\code}[1]{{\mbox{\normalfont\texttt{#1}}}} \newcommand{\email}[1]{\mbox{\href{mailto:#1}{\textcolor{darkblue}{\normalfont{#1}}}}} \newcommand{\web}[2]{\mbox{\href{#2}{\textcolor{darkblue}{\normalfont{#1}}}}} %\usepackage[pdftitle={{mitoODEdata: Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay},pdfauthor={Gregoire Pau},pdfsubject={mitoODEdata},pdfkeywords={image processing},pagebackref,bookmarks,colorlinks,linkcolor=darkblue,citecolor=darkblue,pagecolor=darkblue,raiselinks,plainpages,pdftex]{hyperref} \SweaveOpts{keep.source=TRUE,eps=FALSE} \begin{document} \title{mitoODEdata: Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay} \author{Gregoire Pau\\\email{pau.gregoire@gene.com}} \maketitle \tableofcontents \section{Introduction} The Mitocheck screen \cite{mitocheck} is a time-lapse imaging assay that employed small-interfering RNAs (siRNAs) to test the implication of human genes in transient biological processes such as cell division or migration genome-wide. In this experiment, HeLa cells stably expressing core histone 2B tagged with green fluorescent protein (GFP) were seeded on siRNA-spotted slides, incubated for 18 h and imaged with automated fluorescence microscopy for 48~h. Video sequences of cell populations on each siRNA-spot were analysed by image segmentation, and at each frame, each individual cell was categorised into one of 16 morphological classes mostly related to cell division. The \code{mitoODE} package implements a modelling by differential equations of cellular populations \cite{mitoODE}, to quantify the phenotypic effect induced by siRNA treatments in the Mitocheck screen. The package includes the code to fit any time course data to the model and the scripts used to generate the figures and results presented in the paper. The \code{mitoODEdata} package, the experimental companion package of \code{mitoODE}, contains the screen data and methods to access the Mitocheck assay layout, siRNA annotation, time-lapse cell counts and the fitted phenotypes for each spot. Four cell types are reported: interphase (referred in the Mitocheck paper as: Interphase, Large, Elongated, Folded, Hole, SmallIrregular or UndefinedCondensed), mitotic (Metaphase, Anaphase, MetaphaseAlignment, Prometaphase or ADCCM), polynucleated (Shape1, Shape3, Grape) and apoptotic (Apoptosis). \section{Data access} Loading the package \code{mitoODEdata} loads the Mitocheck screen annotation variables \code{tab} and \code{anno} in the global environment. The object \code{tab} is a data frame containing spot metadata, including: \code{plate} (plate number), \code{replicate} (replicate number), \code{spot} (spot number within the plate), \code{qc} (original quality control from the paper), \code{type} (spot type) and \code{sirna} (spot siRNA ID). The object \code{anno} is a data frame containing the siRNA to gene mapping, including: \code{sirna} (siRNA ID), \code{ensembl} (target Ensembl gene ID), \code{hgnc} (target HGNC gene symbol), \code{entrez} (target Entrez gene ID), \code{genename} (target HGNC gene name). <>= library("mitoODEdata") tab[1:5,] anno[1:5,] @ The functions \code{getspot}, \code{getsirna} and \code{getanno} allow simple conversions between HGNC gene symbols, Mitocheck siRNAs and spot IDs. <>= getsirna(ann="CDH1") getspot(ann="FGFR2") getanno(spot=1234, field=c("hgnc", "entrez", "genename")) @ The function \code{readspot} reads the time-course cell counts of a given spot ID. The output value is a matrix containing the number of cells of a given type (interphase \code{i}, mitotic \code{m}, polynucleated \code{s} and apoptotic \code{a}) per frame. The first image (e.g. row) was acquired 18 h after siRNA transfection and the following images were acquired every 30 minutes during 48 h. The function \code{plotspot} plots the cell count time series of a given spot ID. <>= spotid <- getspot(ann="FGFR2")[1] y <- readspot(spotid) y[1:10,] plotspot(spotid) @ \section{References} \begin{thebibliography}{9} \bibitem{mitoODE} Pau G, Walter T, Neumann B, Heriche JK, Ellenberg J, and Huber W (2013) {{D}ynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay}. \newblock (submitted) \bibitem{mitocheck} Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, et~al. (2010) {{P}henotypic profiling of the human genome by time-lapse microscopy reveals cell division genes}. \newblock Nature 464: 721--727. \end{thebibliography} \end{document}