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Abstract

PureCN [1] is a purity and ploidy aware copy number caller for cancer samples inspired by
the ABSOLUTE algorithm [2]. It was designed for hybrid capture sequencing data, especially
with medium-sized targeted gene panels without matching normal samples in mind (matched
whole-exome data is of course supported).
It can be used to supplement existing normalization and segmentation algorithms, i.e. the
software can start from BAM files, from target-level coverage data, from copy number log-
ratios or from already segmented data. After the correct purity and ploidy solution was
identified, PureCN will accurately classify variants as germline vs. somatic or clonal vs.
sub-clonal.
PureCN was further designed to integrate well with industry standard pipelines [3], but it is
straightforward to generate input data from other pipelines.
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1The captured genomic
regions, e.g. exons.

1 Introduction

This tutorial will demonstrate on a toy example how we recommend running PureCN on
targeted sequencing data. To estimate tumor purity, we jointly utilize both target-level1
coverage data and allelic fractions of single nucleotide variants (SNVs), inside - and optionally
outside - the targeted regions. Knowledge of purity will in turn allow us to accurately (i)
infer integer copy number and (ii) classify variants (somatic vs. germline, mono-clonal vs.
sub-clonal, heterozygous vs. homozygous etc.).
This requires 3 basic input files:

1. A VCF file containing germline SNPs and somatic mutations. Somatic status is not
required in case the variant caller was run without matching normal sample.

2. The tumor BAM file.
3. A BAM file from a normal control sample, either matched or process-matched.

In addition, we need to know a little bit more about the assay. This is the annoying step, since
here the user needs to provide some information. Most importantly, we need to know the
positions of all targets. Then we need to correct for GC-bias, for which we need GC-content
for each target. Optionally, if gene-level calls are wanted, we also need for each target a gene
symbol. To obtain best results, we can finally use a pool of normal samples to automatically
learn more about the assay and its biases and common artifacts.
The next sections will show how to do all this with PureCN alone or with the help of GATK
and/or existing copy number pipelines.

2 Basic input files

2.1 VCF

Germline SNPs and somatic mutations are expected in a single VCF file. At the bare mini-
mum, this VCF should contain read depths of reference and alt alleles in an AD format field
and a DB info flag for dbSNP membership. Without DB flag, variant ids starting with rs are
assumed to be in dbSNP. If a matched normal is available, then somatic status information
is currently expected in a SOMATIC info flag in the VCF. The VariantAnnotation package
provides examples how to add info fields to a VCF in case the used variant caller does not
add this flag. If the VCF contains a BQ format field containing base quality scores, PureCN
can remove low quality calls.
VCF files generated by MuTect [4] should work well and in general require no post-processing.
PureCN can handle MuTect VCF files generated in both tumor-only and matched normal
mode. Experimental support for MuTect 2 and FreeBayes VCFs generated in tumor-only
mode is available.
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2While PureCN can
use a pool of normal
samples to learn which
intervals are reliable
and which not, it is
highly recommended
to provide the correct
intervals. Garbage in,
garbage out.

2.2 Target information

For the default segmentation function provided by PureCN, the algorithm first needs to
calculate log-ratios of tumor vs. normal control coverage. To do this, we need to know the
locations of the captured genomic regions (targets). These are provided by the manufacturer
of your capture kit2. Please double check that the genome version of the interval file matches
the reference.
Default parameters assume that these intervals do NOT include a "padding" to include
flanking regions of targets. PureCN will automatically include variants in the 50bp flanking
regions if the variant caller was either run without interval file or with interval padding (See
section 12.2).
PureCN will attempt to optimize the targets for copy number calling:

• Large targets are split to obtain a higher resolution
• Targets in regions of low mappability are dropped
• Optionally, accessible regions inbetween the target (off-target) regions are included so

that available coverage information in on- and off-target reads can be used by the
segmentation function.

It further annotates targets by GC-content (how coverage is normalized is described later in
Section 3).
PureCN provides the calculateGCContentByInterval function:
reference.file <- system.file("extdata", "ex2_reference.fa",

package = "PureCN", mustWork = TRUE)

bed.file <- system.file("extdata", "ex2_intervals.bed",

package = "PureCN", mustWork = TRUE)

mappability.file <- system.file("extdata", "ex2_mappability.bigWig",

package = "PureCN", mustWork = TRUE)

intervals <- import(bed.file)

mappability <- import(mappability.file)

calculateGCContentByInterval(intervals, reference.file,

mappability=mappability, output.file = "ex2_gc_file.txt")

## INFO [2017-12-10 20:24:08] Calculating GC-content...

A command line script described in a separate vignette provides convenient access to this
function and also attempts to annotate the intervals with gene symbols using the annotate

Targets function.

2.3 Coverage data

The calculateBamCoverageByInterval function can be used to generate the required cover-
age data from BAM files. All we need to do is providing the desired intervals (as generated
by calculateGCContentByInterval):
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bam.file <- system.file("extdata", "ex1.bam", package="PureCN",

mustWork = TRUE)

interval.file <- system.file("extdata", "ex1_intervals.txt",

package="PureCN", mustWork = TRUE)

calculateBamCoverageByInterval(bam.file=bam.file,

interval.file=interval.file, output.file="ex1_coverage.txt")

2.4 Third-party coverage tools

Calculating coverage from BAM files is a common task and your pipeline might already provide
this information. As alternative to calculateBamCoverageByInterval, PureCN currently
supports coverage files generated by GATK DepthOfCoverage and by CNVkit. By providing
files with standard file extension, PureCN will automatically detect the correct format and
all following steps are the same for all tools. You will, however, still need the interval file
generated in Section 2.2 and the third-party tool must use the exact same intervals. See also
FAQ Section 12.2 for recommended settings for GATK DepthOfCoverage.

2.5 Third-party segmentation tools

PureCN integrates well with existing copy number pipelines. Instead of coverage data, the
user then needs to provide either already segmented data or a wrapper function. This is
described in Section 10.1.

2.6 Example data

We now load a few example files that we will use throughout this tutorial:
library(PureCN)

normal.coverage.file <- system.file("extdata", "example_normal.txt",

package="PureCN")

normal2.coverage.file <- system.file("extdata", "example_normal2.txt",

package="PureCN")

normal.coverage.files <- c(normal.coverage.file, normal2.coverage.file)

tumor.coverage.file <- system.file("extdata", "example_tumor.txt",

package="PureCN")

seg.file <- system.file("extdata", "example_seg.txt",

package = "PureCN")

vcf.file <- system.file("extdata", "example_vcf.vcf", package="PureCN")

gc.gene.file <- system.file("extdata", "example_gc.gene.file.txt",

package="PureCN")

5

http://bioconductor.org/packages/PureCN
http://bioconductor.org/packages/PureCN
http://bioconductor.org/packages/PureCN


Copy number calling and SNV classification using targeted short read sequencing

3 GC-bias

The algorithm works best when the coverage files are GC-normalized. We can easily create
GC-normalized coverage files (Figure 1).
correctCoverageBias(normal.coverage.file, gc.gene.file,

output.file="example_normal_loess.txt", plot.gc.bias=TRUE)
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Figure 1: Coverage before and after GC-normalization
This plot shows coverage as a function of target GC-content before and after normalization. Each dot is a
target interval. The example data is already GC-normalized; real data will show more dramatic differences.

All the following steps in this vignette assume that the coverage data are GC-
normalized. The example coverage files are already GC-normalized. We provide a con-
venient command line script for generating GC-normalized coverage data from BAM files or
from GATK coverage files (see Quick vignette).

4 Pool of normals

4.1 Selection of normals for log-ratio calculation

For calculating copy number log-ratios of tumor vs. normal, PureCN requires coverage from a
process-matched normal sample. Using a normal that was sequenced using a similar, but not
identical assay, rarely works, since differently covered genomic regions result in too many log-
ratio outliers. This section describes how to identify good process-matched normals in case
no matched normal is available or in case the matched normal has low or uneven coverage.
The createNormalDatabase function builds a database of coverage files (a command line
script providing this functionality is described in a separate vignette):
normalDB <- createNormalDatabase(normal.coverage.files)

## WARN [2017-12-10 20:24:17] Allosome coverage missing, cannot determine sex.

## WARN [2017-12-10 20:24:17] Allosome coverage missing, cannot determine sex.
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# serialize, so that we need to do this only once for each assay

saveRDS(normalDB, file="normalDB.rds")

Again, please make sure that all coverage files were GC-normalized prior to building the
database (Section 3). Internally, createNormalDatabase determines the sex of the samples
and trains a PCA that is later used for clustering a tumor file with all normal samples in the
database. This clustering is performed by the findBestNormal function:
normalDB <- readRDS("normalDB.rds")

# get the best 2 normals and average them

pool <- findBestNormal(tumor.coverage.file, normalDB,

num.normals=2, pool=TRUE, remove.chrs=c("chrX", "chrY"))

## INFO [2017-12-10 20:24:19] Pooling example_normal.txt, example_normal2.txt.

## INFO [2017-12-10 20:24:20] Coverage file does not contain read count information, using total coverage for calculating log-ratios.

This function will by default optimize averaging weights using the voomWithQualityWeights

function of the limma package. The num.normals should be set to a value between 2 and
10. More than 10 usually results in long runtimes with no significant gain in accuracy.
Giving recommendations for optimal parameters is hard since they depend on the size, cov-
erage and variance of the pool of normals. It is worth experimenting with different strategies
and the plotBestNormal function might be helpful.
Note that this example removes coverage from sex chromosomes; if the normal database
contains a sufficient number of samples with matching sex, findBestNormal will return only
normal samples with matching sex.

4.2 Artifact filtering

It is important to remove as many artifacts as possible, since low ploidy solutions are typically
punished more by artifacts than high ploidy solutions. High ploidy solutions are complex and
usually find ways of explaining artifacts reasonably well. The following steps in this section are
optional, but recommended since they will reduce the number of samples requiring manual
curation, especially when matching normal samples are not available.

4.2.1 VCF

We recommend running MuTect with a pool of normal samples to filter common sequencing
errors and alignment artifacts from the VCF. MuTect requires a single VCF containing all
normal samples, for example generated by the GATK CombineVariants tool (see Section 12.2).
It is highly recommended to provide PureCN this combined VCF as well; it will help the
software correcting non-reference read mapping biases. This is described in the setMapping

BiasVcf documentation. To reduce memory usuage, the normal panel VCF can be reduced
to contain only variants present in 5 or more samples (the VCF for MuTect should however
contain variants present in 2-3 samples).
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4.2.2 Coverage data

We next use coverage data of normal samples to estimate the expected variance in coverage
per target:
target.weight.file <- "target_weights.txt"

createTargetWeights(tumor.coverage.file, normal.coverage.files,

target.weight.file)

## INFO [2017-12-10 20:24:26] Loading coverage data...

## INFO [2017-12-10 20:24:27] Mean target coverages: 112X (tumor) 99X (normal).

## INFO [2017-12-10 20:24:28] Mean target coverages: 112X (tumor) 43X (normal).

This function calculates target-level copy number log-ratios using all normal samples provided
in the normal.coverage.files argument. Assuming that all normal samples are in general
diploid, a high variance in log-ratio is indicative of an target with either common germline
alterations or frequent artifacts; high or low copy number log-ratios in these targets are
unlikely measuring somatic copy number events. For the log-ratio calculation, we provide
a coverage file that is used as tumor in the log-ratio calculation. The corresponding tu

mor.coverage.file argument can also be an array of a small number of coverage files, in
which case the target coverage variance is averaged over all provided tumor files.
This target.weight.file is automatically generated by the NormalDB.R script described in
the Quick vignette.

4.3 Artifact filtering without a pool of normals

By default, PureCN will exclude targets with coverage below 15X from segmentation (with a
pool of normals, targets are filtered based on the coverage and variance in normal database
only). For variants in the provided VCF, the same 15X cutoff is applied. MuTect applies
more sophisticated artifact tests and flags suspicious variants. If MuTect was run in matched
normal mode, then both potential artifacts and germline variants are rejected, that means
we cannot just filter by the PASS/REJECT MuTect flags. The filterVcfMuTect function
optionally reads the MuTect 1.1.7 stats file and will keep germline variants, while removing
potential artifacts. Without the stats file, PureCN will use only the filters based on read
depths as defined in filterVcfBasic. Both functions are automatically called by PureCN,
but can be easily modified and replaced if necessary.
Instead of using a pool of normals to find SNPs with extremely biased allelic fractions, we can
also use a BED file to blacklist regions of low mappability. For example the simple repeats
track from the UCSC. This is recommended when neither matching normals nor a large pool
of normal VCF (Section 4.2) is available.
# Instead of using a pool of normals to find low quality regions,

# we use suitable BED files, for example from the UCSC genome browser.

# We do not download these in this vignette to avoid build failures

# due to internet connectivity problems.

downloadFromUCSC <- FALSE

if (downloadFromUCSC) {

library(rtracklayer)

mySession <- browserSession("UCSC")
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genome(mySession) <- "hg19"

simpleRepeats <- track( ucscTableQuery(mySession,

track="Simple Repeats", table="simpleRepeat"))

export(simpleRepeats, "hg19_simpleRepeats.bed")

# use only variants in unique regions. this will probably remove

# hotspot or other likely functional somatic mutations.

# mappability <- import("wgEncodeCrgMapabilityAlign100mer.bigWig")

# idx <- mappability$score < 1

# export(mappability[idx], "hg19_wgEncodeCrgMapabilityAlign100mer.bed")

# when off-target reads are used, we can provide one of the

# whole-genome blacklists tracks

# hg19_DukeBlacklist <- track( ucscTableQuery(mySession,

# track="Mappability",

# table="wgEncodeDukeMapabilityRegionsExcludable"))

# export(hg19_DukeBlacklist, "hg19_DukeBlacklist.bed")

}

snp.blacklist <- "hg19_simpleRepeats.bed"

5 Recommended run

Finally, we can run PureCN with all that information:
ret <-runAbsoluteCN(normal.coverage.file=pool,

# normal.coverage.file=normal.coverage.file,

tumor.coverage.file=tumor.coverage.file, vcf.file=vcf.file,

genome="hg19", sampleid="Sample1",

gc.gene.file=gc.gene.file, normalDB=normalDB,

# args.setMappingBiasVcf=list(normal.panel.vcf.file=normal.panel.vcf.file),

# args.filterVcf=list(snp.blacklist=snp.blacklist,

# stats.file=mutect.stats.file),

args.segmentation=list(target.weight.file=target.weight.file),

post.optimize=FALSE, plot.cnv=FALSE, verbose=FALSE)

## WARN [2017-12-10 20:24:29] Allosome coverage missing, cannot determine sex.

## WARN [2017-12-10 20:24:29] Allosome coverage missing, cannot determine sex.

The normal.coverage.file argument points to a coverage file obtained from either a matched
or a process-matched normal sample, but can be also a small pool of best normals (Sec-
tion 4.1).
The normalDB argument (Section 4.1) provides a pool of normal samples and for example
allows the segmentation function to skip targets with low coverage or common germline
deletions in the pool of normals. If available, a VCF containing all variants from the normal
samples should be provided via args.setMappingBiasVcf to correct read mapping biases. The

9

http://bioconductor.org/packages/PureCN


Copy number calling and SNV classification using targeted short read sequencing

files specified in args.filterVcf help PureCN filtering SNVs more efficiently for artifacts as
described in Sections 4.2 and 4.3. The snp.blacklist is only necessary if neither a matched
normal nor a large pool of normals is available.
The post.optimize flag will increase the runtime by about a factor of 2-5, but might re-
turn slightly more accurate purity estimates. For high quality whole-exome data, this is
typically not necessary for copy number calling (but might be for variant classification, see
Section 6.2.1). For smaller targeted panels, the runtime increase is typically marginal and
post.optimize should be always set to TRUE.
The plot.cnv argument allows the segmentation function to generate additional plots if set
to TRUE. Finally, verbose outputs important and helpful information about all the steps
performed and is therefore set to TRUE by default.

6 Output

6.1 Plots

We now create a few output files:
file.rds <- "Sample1_PureCN.rds"

saveRDS(ret, file=file.rds)

pdf("Sample1_PureCN.pdf", width=10, height=11)

plotAbs(ret, type="all")

dev.off()

## pdf

## 2

The RDS file now contains the serialized return object of the runAbsoluteCN call. The PDF
contains helpful plots for all local minima, sorted by likelihood. The first plot in the generated
PDF is displayed in Figure 2 and shows the purity and ploidy local optima, sorted by final
likelihood score after fitting both copy number and allelic fractions.
plotAbs(ret, type="overview")

We now look at the main plots of the maximum likelihood solution in more detail.
plotAbs(ret, 1, type="hist")

Figure 3 displays a histogram of tumor vs. normal copy number log-ratios for the maximum
likelihood solution (number 1 in Figure 2). The height of a bar in this plot is proportional
to the fraction of the genome falling into the particular log-ratio copy number range. The
vertical dotted lines and numbers visualize the, for the given purity/ploidy combination,
expected log-ratios for all integer copy numbers from 0 to 7. It can be seen that most of the
log-ratios of the maximum likelihood solution align well to expected values for copy numbers
of 0, 1, 2 and 4.
plotAbs(ret, 1, type="BAF")
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Figure 2: Overview
The colors visualize the copy number fitting score from low (blue) to high (red). The numbers indicate the
ranks of the local optima. Yellow fonts indicate that the corresponding solutions were flagged, which does
not necessarily mean the solutions are wrong. The correct solution (number 1) of this toy example was
flagged due to large amount of LOH.

Germline variant data are informative for calculating integer copy number because unbalanced
maternal and paternal chromosome numbers in the tumor portion of the sample lead to
unbalanced germline allelic fractions. Figure 4 shows the allelic fractions of predicted germline
SNPs. The goodness of fit (GoF) is provided on an arbitrary scale in which 100% corresponds
to a perfect fit and 0% to the worst possible fit. The latter is defined as a fit in which allelic
fractions on average differ by 0.2 from their expected fractions. Note that this does not
take purity into account and low purity samples are expected to have a better fit. In the
middle panel, the corresponding copy number log-ratios are shown. The lower panel displays
the calculated integer copy numbers, corrected for purity and ploidy. We can zoom into
particular chromosomes (Figure 5).
plotAbs(ret, 1, type="BAF", chr="chr19")

plotAbs(ret, 1, type="AF")

Finally, Figure 6 provides more insight into how well the variants fit the expected values.
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Figure 3: Log-ratio histogram
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Figure 4: B-allele frequency plot
Each dot is a (predicted) germline SNP. The first panel shows the allelic fractions as provided in the VCF
file. The alternating blue and white background colors visualize odd and even chromosome numbers, re-
spectively. The black lines visualize the expected (not the average!) allelic fractions in the segment. These
are calculated using the estimated purity and the total and minor segment copy numbers. These are vi-
sualized in black and grey, respectively, in the second and third panel. The second panel shows the copy
number log-ratios, the third panel the integer copy numbers.
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Figure 5: Chromosome plot
Similar to Figure 4, but zoomed into a particular chromosome. The grey dots in the middle panel visu-
alize copy number log-ratios of targets without heterozygous SNPs, which are omitted from the previous
genome-wide plot. The x-axis now indicates genomic coordinates in kbps.
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Figure 6: Allele fraction plots
Each dot is again a (predicted) germline SNP. The size of dots indicate quality, defined here as the product
of mapping bias and coverage. The shapes visualize the different SNV groups based on prior and posterior
probabilities. The labels show the expected values for all called states; 2m1 would be diploid, heterozygous,
2m2 diploid, homozygous. The relationship of allelic fraction and coverage is shown in the top right panel.
This plot normally also shows somatic mutations in two additional panels, with the left panel showing the
same plot as for germline SNPs and the bottom right panel a histogram of cellular fraction of predicted
somatic mutations. This toy example contains only germline SNPs however.

14



Copy number calling and SNV classification using targeted short read sequencing

3This number can be
above 1 when the ob-
served allelic fraction
is higher than expected
for a clonal mutation.
This may be due to
random sampling,
wrong copy number,
sub-clonal copy num-
ber events, or wrong
purity/ploidy estimates.

6.2 Data structures

The R data file (file.rds) contains gene-level copy number calls, SNV status and LOH calls.
The purity/ploidy combinations are sorted by likelihood and stored in ret$results.
names(ret)

## [1] "candidates" "results" "input"

We provide convenient functions to extract information from this data structure and show
their usage in the next sections. We recommend using these functions instead of accessing
the data directly since data structures might change in future versions.

6.2.1 Prediction of somatic status and cellular fraction

To understand allelic fractions of particular SNVs, we must know the (i) somatic status, the
(ii) tumor purity, the (iii) local copy number, as well as the (iv) number of chromosomes
harboring the mutations or SNPs. One of PureCN main functions is to find the most likely
combination of these four values. We further assign posterior probabilities to all possible
combinations or states. Availability of matched normals reduces the search space by already
providing somatic status.
The predictSomatic function provides access to these probabilities. For predicted somatic
mutations, this function also provides cellular fraction estimates, i.e. the fraction of tumor
cells with mutation. Fractions significantly below 1 indicate sub-clonality3:
head(predictSomatic(ret), 3)

## chr start end SOMATIC.M0 SOMATIC.M1

## chr1114515871xxx chr1 114515871 114515871 1.489365e-99 1.326389e-36

## chr1150044293xxx chr1 150044293 150044293 5.593399e-90 1.785678e-37

## chr1158449835xxx chr1 158449835 158449835 7.866328e-145 5.853257e-60

## SOMATIC.M2 SOMATIC.M3 SOMATIC.M4 SOMATIC.M5 SOMATIC.M6

## chr1114515871xxx 3.716211e-06 0 0 0 0

## chr1150044293xxx 2.516879e-09 0 0 0 0

## chr1158449835xxx 2.243871e-13 0 0 0 0

## SOMATIC.M7 GERMLINE.M0 GERMLINE.M1 GERMLINE.M2

## chr1114515871xxx 0 2.871343e-72 2.174245e-15 0.9999963

## chr1150044293xxx 0 9.571385e-67 1.402987e-18 1.0000000

## chr1158449835xxx 0 6.153738e-110 5.922900e-30 1.0000000

## GERMLINE.M3 GERMLINE.M4 GERMLINE.M5 GERMLINE.M6 GERMLINE.M7

## chr1114515871xxx 0 0 0 0 0

## chr1150044293xxx 0 0 0 0 0

## chr1158449835xxx 0 0 0 0 0

## GERMLINE.CONTHIGH GERMLINE.CONTLOW GERMLINE.HOMOZYGOUS

## chr1114515871xxx 4.970512e-42 1.143836e-287 0

## chr1150044293xxx 8.580603e-21 1.021313e-242 0

## chr1158449835xxx 2.336128e-26 0.000000e+00 0

## ML.SOMATIC POSTERIOR.SOMATIC ML.M ML.C ML.M.SEGMENT

## chr1114515871xxx FALSE 3.716211e-06 2 2 0

## chr1150044293xxx FALSE 2.516879e-09 2 2 0

## chr1158449835xxx FALSE 2.243871e-13 2 2 0
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## M.SEGMENT.POSTERIOR M.SEGMENT.FLAGGED ML.AR AR

## chr1114515871xxx 1 FALSE 0.835 0.755183

## chr1150044293xxx 1 FALSE 0.835 0.817078

## chr1158449835xxx 1 FALSE 0.835 0.834266

## AR.ADJUSTED MAPPING.BIAS ML.LOH CN.SUBCLONAL CELLFRACTION

## chr1114515871xxx 0.7760674 0.9730894 TRUE FALSE NA

## chr1150044293xxx 0.8396741 0.9730894 TRUE FALSE NA

## chr1158449835xxx 0.8573374 0.9730894 TRUE FALSE NA

## FLAGGED log.ratio depth prior.somatic prior.contamination

## chr1114515871xxx FALSE 0.2518341 184 9.9e-05 0.01

## chr1150044293xxx FALSE -0.2229396 138 9.9e-05 0.01

## chr1158449835xxx FALSE 0.4341407 217 9.9e-05 0.01

## on.target seg.id gene.symbol

## chr1114515871xxx 1 1 HIPK1

## chr1150044293xxx 1 1 VPS45

## chr1158449835xxx 1 1 OR10R2

The output columns are explained in Table 1.
To annotate the input VCF file with these values:
vcf <- predictSomatic(ret, return.vcf=TRUE)

writeVcf(vcf, file="Sample1_PureCN.vcf")

For optimal classification results:
• Set post.optimize=TRUE since small inaccuracies in purity can decrease the classifica-

tion performance significantly
• Provide args.setMappingBias a pool of normal VCF to obtain position-specific map-

ping bias information
• Exclude variants in regions of low mappability
• Use a somatic posterior probability cutoff of 0.8 and 0.2 for somatic and germline

variants, respectively. This appears to be a good compromise of call rate and accuracy.
If the beta-binomial model was selected in the model argument of runAbsoluteCN, these
cutoffs might need to be relaxed to get acceptable call rates.

• Add a Cosmic.CNT info field to the VCF or provide a COSMIC VCF in runAbsoluteCN

(see Section 10.2).
Note that the posterior probabilities assume that the purity and ploidy combination is
correct. Before classifying variants, it is thus important to manually curate samples.

6.2.2 Amplifications and deletions

To call amplifications, we recommend using a cutoff of 6 for focal amplifications and a cutoff
of 7 otherwise. For homozygous deletions, a cutoff of 0.5 is useful to allow some heterogeneity
in copy number.
For samples that failed PureCN calling we recommended using common log-ratio cutoffs to
call amplifications, for example 0.9.
This strategy is implemented in the callAlterations function:
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gene.calls <- callAlterations(ret)

head(gene.calls)

## chr start end C seg.mean seg.id number.targets

## EIF2A chr3 150264590 150301699 6 1.3465 5 14

## AADAC chr3 151531951 151545961 6 1.3465 5 5

## GPNMB chr7 23286477 23313844 6 1.4069 19 11

## SH2D4B chr10 82298088 82403838 0 -1.5482 26 8

## IFIT2 chr10 91065719 91067133 0 -1.3627 28 1

## SLC35G1 chr10 95653791 95661248 0 -1.3627 28 3

## gene.mean gene.min gene.max focal breakpoints pvalue

## EIF2A 1.4830291 0.6683109 2.111757 TRUE 0 1.438860e-06

## AADAC 0.7816257 0.4414606 1.172597 TRUE 1 1.648879e-02

## GPNMB 1.4121498 0.8729038 1.793736 TRUE 0 4.784969e-06

## SH2D4B -1.5445815 -1.9607423 -1.289613 FALSE 0 9.119033e-03

## IFIT2 -1.1725794 -1.1725794 -1.172579 FALSE 0 8.634796e-03

## SLC35G1 -1.6914753 -1.8427584 -1.476617 FALSE 0 2.183641e-03

## type num.snps.segment loh

## EIF2A AMPLIFICATION 0 NA

## AADAC AMPLIFICATION 0 NA

## GPNMB AMPLIFICATION 0 NA

## SH2D4B DELETION 2 TRUE

## IFIT2 DELETION 0 NA

## SLC35G1 DELETION 0 NA

It is also often useful to filter the list further by known biology, for example to exclude
non-focal amplifications of tumor suppressor genes. The Sanger Cancer Gene Census [5] for
example provides such a list.
The output columns of callAlterations are explained in Table 2.

6.2.3 Find genomic regions in LOH

The gene.calls data.frame described above provides gene-level LOH information. To find
the corresponding genomic regions in LOH, we can use the callLOH function:
loh <- callLOH(ret)

head(loh)

## chr start end arm C M type

## 1 chr1 114515871 121535434 p 2 0 WHOLE ARM COPY-NEUTRAL LOH

## 2 chr1 124535434 247419499 q 2 0 WHOLE ARM COPY-NEUTRAL LOH

## 3 chr2 10262881 92326171 p 1 0 WHOLE ARM LOH

## 4 chr2 95326171 231775198 q 1 0 WHOLE ARM LOH

## 5 chr2 236403412 239039169 q 2 0 COPY-NEUTRAL LOH

## 6 chr3 11888043 90504854 p 2 1

The output columns are explained in Table 3.
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Table 1: predictSomatic output columns

Column name Description
chr, start, end Variant coordinates
SOMATIC.M* Posterior probabilities for all somatic states. M0 to M7 are mul-

tiplicity values, i.e. the number of chromosomes harboring the
mutation (e.g. 1 heterozygous, 2 homozygous if copy number
C is 2). SOMATIC.M0 represents a sub-clonal state (somatic
mutations by definition have a multiplicity larger than 0).

GERMLINE.M* Posterior probabilities for all heterozygous germline states
GERMLINE.CONTHIGH Posterior probability for contamination. This state corresponds

to homozygous germline SNPs that were not filtered out because
reference alleles from another individual were sequenced, resulting
in allelic fractions smaller than 1.

GERMLINE.CONTLOW Posterior probability for contamination. This state corresponds to
non-reference alleles only present in the contamination.

GERMLINE.HOMOZYGOUS Posterior probability that SNP is homozygous in normal. Requires
the model.homozygous option in runAbsoluteCN. See Section 8.

ML.SOMATIC TRUE if the maximum likelihood state is a somatic state
POSTERIOR.SOMATIC The posterior probability that the variant is somatic (sum of all

somatic state posterior probabilities)
ML.M Maximum likelihood multiplicity
ML.C Maximum likelihood integer copy number
ML.M.SEGMENT Maximum likelihood minor segment copy number
M.SEGMENT.POSTERIOR Posterior probability of ML.M.SEGMENT
M.SEGMENT.FLAGGED Segment flag indicating ML.M.SEGMENT is unreliable, either

due to low posterior probability (< 0.5) or few variants (<
min.variants.segment)

ML.AR Expected allelic fraction of the maximum likelihood state
AR Observed allelic fraction (as provided in VCF)
AR.ADJUSTED Observed allelic fraction adjusted for mapping bias
ML.LOH TRUE if variant is most likely in LOH
CN.SUBCLONAL TRUE if copy number segment is sub-clonal
CELLFRACTION Fraction of tumor cells harboring the somatic mutation
FLAGGED Flag indicating that call is unreliable (currently only due to high

mapping bias and high pool of normal counts)
log.ratio The copy number log-ratio (tumor vs. normal) for this variant
depth The total sequencing depth at this position
prior.somatic Prior probability of variant being somatic
prior.contamination Prior probability that variant is contamination from another indi-

vidual
on.target 1 for variants within intervals, 2 for variants in flanking regions,

0 for off-target variants
seg.id Segment id
pon.count Number of hits in the normal.panel.vcf.file

gene.symbol Gene symbol if available
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Table 2: callAlterations output columns

Column name Description
chr, start, end Gene coordinates
C Segment integer copy number
seg.mean Segment mean of copy number log-ratios (not adjusted for pu-

rity/ploidy)
seg.id Segment id
number.targets Number of targets annotated with this symbol
gene.* Gene copy number log-ratios (not adjusted for purity/ploidy)
focal TRUE for focal amplification, as defined by the fun.focal argu-

ment in runAbsoluteCN

breakpoints Number of breakpoints between start and end

pvalue Gene p-value against pool of normals. Requires normalDB. Not
adjusted for multiple testing.

num.snps.segment Number of SNPs in this segment informative for LOH detection
loh TRUE if segment is in LOH, FALSE if not and NA if number of SNPs

is insufficient
type Amplification or deletion

Table 3: callLOH output columns

Column name Description
chr, start, end Segment coordinates
arm Chromosome arm
C Segment integer copy number
M Minor integer copy number (M +N = C,M ≤ N)
type LOH type if M = 0
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7 Curation

For prediction of variant status (germline vs. somatic, sub-clonal vs. clonal, homozygous
vs. heterozygous), it is important that both purity and ploidy are correct. We provide
functionality for curating results:
createCurationFile(file.rds)

This will generate a CSV file in which the correct purity and ploidy values can be manually
entered. It also contains a column "Curated", which should be set to TRUE, otherwise the file
will be overwritten when re-run.
Then in R, the correct solution (closest to the combination in the CSV file) can be loaded
with the readCurationFile function:
ret <- readCurationFile(file.rds)

This function has various handy features, but most importantly it will re-order the local
optima so that the curated purity and ploidy combination is ranked first. This means
plotAbs(ret,1,type="hist") would show the plot for the curated purity/ploidy combination,
for example.
The default curation file will list the maximum likelihood solution:
read.csv("Sample1_PureCN.csv")

## Sampleid Purity Ploidy Sex Contamination Flagged Failed Curated

## 1 Sample1 0.67 1.734221 ? 0 TRUE FALSE FALSE

## Comment

## 1 EXCESSIVE LOH

PureCN currently only flags samples with warnings, it does not mark any samples as failed.
The Failed column in the curation file can be used to manually flag samples for exclusion in
downstream analyses. See Table 4 for an explanation of all flags.
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Table 4: createCurationFile flags

Flag Description
EXCESSIVE LOH > 50% of genome in LOH and ploidy <

2.6
EXCESSIVE LOSSES ≥ 1% of genome deleted
HIGH AT- OR GC-DROPOUT High GC-bias exceeding cutoff in

max.dropout

HIGH PURITY (when model.homozygous=FALSE). For
very high purity samples, it is recom-
mended to set model.homozygous=TRUE.
See Section 8.

LOW PURITY Purity < 30%
LOW BOOTSTRAP VALUE bootstrapResults identified multiple

plausible solutions
NOISY LOG-RATIO Log-ratio standard deviation >

max.logr.sdev

NOISY SEGMENTATION More than max.segments

NON-ABERRANT ≥ 99% of genome has identical copy
number and ≥ 0.5% has second most
common state

POLYGENOMIC ≥ 0.75× max.non.clonal fraction of the
genome in sub-clonal state

POOR GOF GoF < min.gof

POTENTIAL SAMPLE CONTAMINATION Significant portion of dbSNP variants po-
tentially cross-contaminated

RARE KARYOTYPE Ploidy < 1.5 or > 4.5

8 Cell lines

Default parameters assume some normal contamination. In 100% pure samples without
matching normal samples such as cell lines, we cannot distinguish homozygous SNPs from
LOH by looking at single allelic fractions alone. It is thus necessary to keep homozygous
variants and include this uncertainty in the likelihood model. This is done by setting the
runAbsoluteCN argument model.homozygous=TRUE. If matched normals are available, then
variants homozygous in normal are automatically removed since they are uninformative.
For technical reasons, the maximum purity PureCN currently models is 0.99. We recommend
setting test.purity=seq(0.9,0.99,by=0.01) in runAbsoluteCN for cell lines.
Please note that in order to detect homozygous deletions in 100% pure samples, you will need
to provide a normalDB in runAbsoluteCN to filter low quality targets efficiently (Section 5).
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4If the third-party tool
provides target-level
log-ratios, then these
can be provided via the
log.ratio argument in
addition to seg.file

though. See also Sec-
tion 10.1.2.
5This segmentation file
can contain multiple
samples, in which case
the provided sampleid

must match a sample
in the column ID

6If this behaviour is
not wanted, because
maybe the custom
function already identi-
fies CNNLOH reliably,
segmentationCBS can be
replaced with a minimal
version.

9 Maximizing the number of heterozygous SNPs

It is possible to use SNPs in off-target reads in the variant fitting step by running MuTect
without interval file and then setting the filterVcfBasic argument remove.off.target.snvs
to FALSE. We recommend a large pool of normals in this case and then generating SNP
blacklists as described in Sections 4.2 and 4.3. Remember to also run all the normals in
MuTect without interval file.
An often better alternative to including all off-target reads is only including variants in the
flanking regions of targets (between 50-100bp). This will usually significantly increase the
number of heterozygous SNPs (see Section 12.2). These SNPs are automatically added if
the variant caller was run without interval file or with interval padding.

10 Advanced usage

10.1 Custom normalization and segmentation

Copy number normalization and segmentation are crucial for obtaining good purity and ploidy
estimates. If you have a well-tested pipeline that produces clean results for your data, you
might want to use PureCN as add-on to your pipeline. By default, we will use DNAcopy [6]
to segment normalized target-level coverage log-ratios. It is straightforward to replace the
default with other methods and the segmentationCBS function can serve as an example.
The next section describes how to replace the default segmentation. For the probably more
uncommon case that only the coverage normalization is performed by third-party tools, see
Section 10.1.2.

10.1.1 Custom segmentation

It is possible to provide already segmented data, which is especially recommended when
matched SNP6 data are available or when third-party segmentation tools are not written in
R. Otherwise it is usually however better to customize the default segmentation function,
since the algorithm then has access to the raw log-ratio distribution4. The expected file
format for already segmented copy number data is5:

ID chrom loc.start loc.end num.mark seg.mean

Sample1 1 61723 5773942 2681 0.125406444072723

Sample1 1 5774674 5785170 10 -0.756511807441712

Since its likelihood model is exon-based, PureCN currently still requires an interval file to
generate simulated target-level log-ratios from a segmentation file. For simplicity, this in-
terval file is expected either in GATK DepthOfCoverage format and provided via the tu

mor.coverage.file argument or via the gc.gene.file argument (see Figure 7). Note that
PureCN will re-segment the simulated log-ratios using the default segmentationCBS function,
in particular to identify regions of copy-number neutral LOH and to cluster segments with
similar allelic imbalance and log-ratio. The provided interval file should therefore cover all
significant copy number alterations6. Please check that the log-ratios are similar to the ones
obtained by the default PureCN segmentation and normalization.
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retSegmented <- runAbsoluteCN(seg.file=seg.file,

gc.gene.file=gc.gene.file, vcf.file=vcf.file,

max.candidate.solutions=1, genome="hg19",

test.purity=seq(0.3,0.7,by=0.05), verbose=FALSE,

plot.cnv=FALSE)

## WARN [2017-12-10 20:26:25] Allosome coverage missing, cannot determine sex.

## WARN [2017-12-10 20:26:25] Allosome coverage missing, cannot determine sex.

The max.candidate.solutions and test.purity arguments are set to non-default values to
reduce the runtime of this vignette.
plotAbs(retSegmented, 1, type="BAF")
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Figure 7: B-allele frequency plot for segmented data
This plot shows the maximum likelihood solution for an example where segmented data are provided in-
stead of coverage data. Note that the middle panel shows no variance in log-ratios, since only segment-
level log-ratios are available.

10.1.2 Custom normalization

If third-party tools such as GATK4 are used to calculate target-level copy number log-ratios,
and PureCN should be used for segmentation and purity/ploidy inference only, it is possible
to provide these log-ratios:
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# We still use the log-ratio exactly as normalized by PureCN for this

# example

log.ratio <- calculateLogRatio(readCoverageFile(normal.coverage.file),

readCoverageFile(tumor.coverage.file))

retLogRatio <- runAbsoluteCN(log.ratio=log.ratio,

gc.gene.file=gc.gene.file, vcf.file=vcf.file,

max.candidate.solutions=1, genome="hg19",

test.purity=seq(0.3,0.7,by=0.05), verbose=FALSE,

normalDB=normalDB, plot.cnv=FALSE)

## WARN [2017-12-10 20:26:56] Allosome coverage missing, cannot determine sex.

## WARN [2017-12-10 20:26:56] Allosome coverage missing, cannot determine sex.

Again, the max.candidate.solutions and test.purity arguments are set to non-default
values to reduce the runtime of this vignette. It is highly recommended to compare the
log-ratios obtained by PureCN and the third-party tool, since some pipelines automatically
adjust log-ratios for a default purity value. Note that this example uses a pool of normals to
filter low quality targets. Interval coordinates are again expected in either a gc.gene.file

or a tumor.coverage.file. If a tumor coverage file is provided, then all targets below the
coverage minimum are further excluded.

10.2 COSMIC annotation

If a matched normal is not available, it is also helpful to provide runAbsoluteCN the COSMIC
database [7] via cosmic.vcf.file (or via a Cosmic.CNT INFO field in the VCF). While this
has limited effect on purity and ploidy estimation due the sparsity of hotspot mutations, it
often helps in the manual curation to compare how well high confidence germline (dbSNP)
vs. somatic (COSMIC) variants fit a particular purity/ploidy combination.
For variant classification (Section 6.2.1), providing COSMIC annotation also avoids that
hotspot mutations with dbSNP id get assigned a very low prior probability of being somatic.

10.3 Mutation burden

The predictSomatic function described in Section 6.2.1 can be used to efficiently remove
private germline mutations. This in turn allows the calculation of mutation burden for un-
matched tumor samples. A wrapper function for this specific task is included as callMuta

tionBurden:
callableBed <- import(system.file("extdata", "example_callable.bed.gz",

package = "PureCN"))

callMutationBurden(ret, callable=callableBed)

## somatic.ontarget somatic.all private.germline.ontarget

## 1 0 0 0

## private.germline.all callable.bases.ontarget callable.bases.flanking

## 1 0 1521760 2259999

## callable.bases.all somatic.rate.ontarget somatic.rate.ontarget.95.lower
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## 1 3063762 0 0

## somatic.rate.ontarget.95.upper private.germline.rate.ontarget

## 1 1.971402 0

## private.germline.rate.ontarget.95.lower

## 1 0

## private.germline.rate.ontarget.95.upper

## 1 1.971402

The callableBed file should be a file parsable by rtracklayer . This file can specify genomic
regions that are callable, for example as obtained by GATK CallableLoci. This is optional,
but if provided can be used to accurately calculate mutation rates per megabase. Variants
outside the callable regions are not counted. Private germline rates should be fairly constant
across samples; outliers here should be manually inspected.
The output columns are explained in Table 5.

Table 5: callMutationBurden output columns

Column name Description
somatic.ontarget Number of mutations in target regions
somatic.all Total number of mutations. Depending

on input VCF and runAbsoluteCN argu-
ments, this might include calls in flanking
regions and off-targets reads.

private.germline.ontarget Number of private germline SNPs in tar-
gets

private.germline.all Total number of private germline SNPs
callable.bases.ontarget Number of callable on-target bases
callable.bases.flanking Number of callable on-target and flanking

bases
callable.bases.all Total number of callable bases. With

default parameters includes off-target re-
gions that were ignored by runAbso

luteCN.
somatic.rate.ontarget Somatic mutations per megabase in tar-

get regions
somatic.rate.ontarget.95.lower Lower 95% of confidence interval
somatic.rate.ontarget.95.upper Upper 95% of confidence interval
private.germline.rate.ontarget Private germline mutations per megabase

in target regions
private.germline.rate.ontarget.95.lower Lower 95% of confidence interval
private.germline.rate.ontarget.95.upper Upper 95% of confidence interval

10.4 Power to detect somatic mutations

As final quality control step, we can test if coverage and tumor purity are sufficent to detect
mono-clonal or even sub-clonal somatic mutations. We strictly follow the power calculation
by Carter et al. [2].
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The following Figure 8 shows the power to detect mono-clonal somatic mutations as a function
of tumor purity and sequencing coverage (reproduced from [2]):
purity <- c(0.1,0.15,0.2,0.25,0.4,0.6,1)

coverage <- seq(5,35,1)

power <- lapply(purity, function(p) sapply(coverage, function(cv)

calculatePowerDetectSomatic(coverage=cv, purity=p, ploidy=2,

verbose=FALSE)$power))

# Figure S7b in Carter et al.

plot(coverage, power[[1]], col=1, xlab="Sequence coverage",

ylab="Detection power", ylim=c(0,1), type="l")

for (i in 2:length(power)) lines(coverage, power[[i]], col=i)

abline(h=0.8, lty=2, col="grey")

legend("bottomright", legend=paste("Purity", purity),

fill=seq_along(purity))
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Figure 8: Power to detect mono-clonal somatic mutations
Reproduced from [2].

Figure 9 then shows the same plot for sub-clonal mutations present in 20% of all tumor cells:
coverage <- seq(5,350,1)

power <- lapply(purity, function(p) sapply(coverage, function(cv)

calculatePowerDetectSomatic(coverage=cv, purity=p, ploidy=2,

cell.fraction=0.2, verbose=FALSE)$power))

26



Copy number calling and SNV classification using targeted short read sequencing

plot(coverage, power[[1]], col=1, xlab="Sequence coverage",

ylab="Detection power", ylim=c(0,1), type="l")

for (i in 2:length(power)) lines(coverage, power[[i]], col=i)

abline(h=0.8, lty=2, col="grey")

legend("bottomright", legend=paste("Purity", purity),

fill=seq_along(purity))
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Figure 9: Power to detect sub-clonal somatic mutations present in 20% of all tumor cells
Reproduced from [2].
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7Loss of Y chromosome
(LOY) can result in
wrong female calls, es-
pecially in high purity
samples or if LOY is in
both tumor and con-
taminating normal cells.
The software throws
a warning in this case
when germline SNPs
are provided.

11 Limitations

PureCN currently assumes a completely diploid normal genome. For human samples, it tries
to detect sex by calculating the coverage ratio of chromosomes X and Y and will then remove
sex chromosomes in male samples7. For non-human samples, the user needs to manually
remove all non-diploid chromosomes from the coverage data and specify sex="diploid" in
the PureCN call.
While PureCN supports and models sub-clonal somatic copy number alterations, it currently
assumes that the majority of alterations are mono-clonal. For most clinical samples, this is
reasonable, but very heterogeneous samples are likely not possible to call without manual
curation. Poly-genomic tumors are often called as high ploidy or low purity. The former
usually happens when sub-clonal losses are called as 2 copies and mono-clonal losses correctly
as 1 copy. The latter when sub-clonal losses are called mono-clonal, which only happens when
there are far more sub-clonal than mono-clonal losses. Please note however that unless purities
are very high, algorithms that model poly-genomic tumors do not necessarily have a higher
call rate, since they tend to overfit noisy samples or similarly confuse true high-ploidy with
poly-genomic tumors. Due to the lack of signal, manual curation is also recommended in low
purity samples or very quiet genomes.

12 Support

If you encounter bugs or have problems running PureCN, please post them at
• https://support.bioconductor.org/p/new/post/?tag_val=PureCN or
• https://github.com/lima1/PureCN/issues.

If PureCN throws user errors, then there is likely a problem with the input files. If the error
message is not self-explanatory, feel free to seek help at the support site. In your report,
please add the outputs of the runAbsoluteCN call (with verbose=TRUE) and sessionInfo().
Please also check that your problem is not already covered in the following sections.
For general feedback such as suggestions for improvements, feature requests, complaints, etc.
please do not hesitate to send us an email.

12.1 Checklist

• Used the correct interval files provided by the manufacturer of the capture kit and the
genome version of the interval file matches the reference.

• For hybrid capture data, included off-target reads in the coverage calculation
• BAM files were generated following established best practices and tools finished suc-

cessfully.
• Checked standard QC metrics such as AT/GC dropout and duplication rates.
• Tumor and normal data were obtained using the same capture kit and pipeline.
• Coverage data of tumor and normal were GC-normalized.
• The VCF file contains germline variants (i.e. not only somatic calls).
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• Maximized the number of high coverage heterozygous SNPs, for example by running
MuTect with a 50bp interval padding (Section 9).

• If a pool of normal samples is available, followed the steps in Section 4.2.
• Read the output of runAbsoluteCN with verbose=TRUE, fixed all warnings.
• If third-party segmentation tools are used, checked that normalized log-ratios are not

biased, i.e. very similar compared to PureCN log-ratios (some pipelines already adjust
for a default normal contamination).

12.2 FAQ

If the ploidy is frequently too high, please check:

• Does the log-ratio histogram (Figure 3) look noisy? If yes, then
• Is the coverage sufficient? Tumor coverages below 80X can be difficult, especially

in low purity samples. Normal coverages below 50X might result in high variance
of log-ratios. See Section 4.1 for finding a good normal sample for log-ratio
calculation.

• Is the coverage data of both tumor and normal GC-normalized? If not, see cor

rectCoverageBias.
• Is the quality of both tumor and normal sufficient? A high AT or GC-dropout

might result in high variance of log-ratios. Challenging FFPE samples also might
need parameter tuning of the segmentation function. See segmentationCBS. A
high expected tumor purity allows more aggressive segmentation parameters, such
as prune.hclust.h=0.2 or higher.

• Was the correct target interval file used (genome version and capture kit, see
Section 2.4)? If unsure, ask the help desk of your sequencing center.

• Were the normal samples run with the same assay and pipeline?
• Did you provide runAbsoluteCN all the recommended files as described in Sec-

tion 5?
• For whole-genome data, you will get better results using a specialized third-party

segmentation method as described in section 10.1, since our default is optimized
for targeted sequencing.

• Otherwise, if log-ratio peaks are clean as in Figure 3:
• Was MuTect run without a matched normal? If yes, then make sure to provide

either a pool of normal VCF or a SNP blacklist (if no pool of normal samples is
available) as described in Sections 4.2 and 4.3.

• A high fraction of sub-clonal copy-number alterations might also result in a low
ranking of correct low ploidy solutions (see Section 11).

If the ploidy is frequently too low:

• PureCN with default parameters is conservative in calling genome duplications.
• This should only affect low purity samples (< 35%), since in higher purity samples the

duplication signal is usually strong enough to reliably detect it.
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• In whole-exome data, it is usually safe to decrease the max.homozygous.loss default,
since such large losses are rare.

Will PureCN work with my data?

• PureCN was designed for medium-sized (>2-3Mb) targeted panels. The more data,
the better, best results are typically achieved in whole-exome data.

• The same is obviously true for coverage. Coverages below 80X are difficult unless
purities are high and coverages are even.

• The number of heterozygous SNPs is also important (>1000 per sample). Copy number
probes enriched in SNPs are therefore very helpful (see Section 9).

• PureCN also needs process-matched normal samples, again, the more the better.
• Samples with tumor purities below 20% usually cannot be analyzed with this algorithm

and PureCN might return very wrong purity estimates.
• Whole-genome data is not officially supported and specialized tools will likely provide

better results. Third-party segmentation tools designed for this data type would be
again required.

• Amplicon sequencing data is also not officially supported. If the assay contains tiling
probes (at least with 1Mb spacing) and uses a barcode protocol that reduces PCR
bias of measured allelic fractions, then this method might produce acceptable results.
Setting the model argument of runAbsoluteCN to betabin is recommended. Specialized
segmentation tools might be again better than our default.

If you have trouble generating input data PureCN accepts, please check:

• For problems related to generating valid coverage data, either consult the GATK manual
for the DepthOfCoverage tool or Section 2.3 for the equivalent function in PureCN. If
you use DepthOfCoverage and off-target intervals as generated by IntervalFile.R (See
Quick vignette), make sure to run it with parameters -omitDepthOutputAtEachBase

and -interval_merging OVERLAPPING_ONLY.
• Currently only VCF files generated by MuTect 1 are officially supported and well tested.

A minimal example MuTect call would be:
$JAVA7 -Xmx6g -jar $MUTECT \

--analysis_type MuTect -R $REFERENCE \

--dbsnp $DBSNP_VCF \

--cosmic $COSMIC_VCF \

-I:normal $BAM_NORMAL \

-I:tumor $BAM_TUMOR \

-o $OUT/${ID}_bwa_mutect_stats.txt \

-vcf $OUT/${ID}_bwa_mutect.vcf

The normal needs to be matched; without matched normal, only provide the tumor
BAM file (do NOT provide a process-matched normal here). The default output file
is the stats or call-stats file; this can be provided in addition to the required VCF
file via args.filterVcf in runAbsoluteCN. If provided, it may help PureCN filter
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artifacts. This requires MuTect in version 1.1.7. This version is currently available at
https://software.broadinstitute.org/gatk/download/mutect and requires Java 1.7 (it
does not work with Java 1.8).
Note that this MuTect VCF will contain variants in off-target reads. By default, PureCN
will remove variants outside the provided targets and their 50bp flanking regions. We
highly recommend finding good values for each assay. A good cutoff will maximize the
number of heterozygous SNPs and keep only an acceptable number of lower quality
calls. This cutoff is set via interval.padding in args.filterVcf. See Section 9.

• For VCFs generated by other callers, the required dbSNP annotation can be added for
example with bcftools:

bcftools annotate --annotation $DBSNP_VCF \

--columns ID --output $OUT/${ID}_bwa_dbsnp.vcf.gz --output-type z \

$OUT/${ID}_bwa.vcf.gz

• To generate a mappability file with the GEM library:
• Calculate mappability, set kmer size to length of mapped reads.

REFERENCE="hg38.fa"

PREF=`basename $REFERENCE .fa`

THREADS=4

KMER=100

gem-indexer -T ${THREADS} -c dna -i ${REFERENCE} -o ${PREF}_index

gem-mappability -T ${THREADS} -I ${PREF}_index.gem -l ${KMER} \

-o ${PREF}_${KMER} -m 2 -e 2

gem-2-wig -I ${PREF}_index.gem -i ${PREF}_${KMER}.mappability \

-o ${PREF}_${KMER}

• Convert to bigWig format, for example using the UCSC wigToBigWig tool:
cut -f1,2 ${REFERENCE}.fai > ${PREF}.sizes

wigToBigWig ${PREF}_${KMER}.wig ${PREF}.sizes ${PREF}_${KMER}.bw

• To generate the normal panel VCF (normal.panel.vcf.file) with GATK :
• Run MuTect on the normal with -I:tumor $BAM_NORMAL and optionally with the

-artifact_detection_mode flag.
• Remove the empty none sample from the VCF:

$JAVA -Xmx6g -jar $GATK \

--analysis_type SelectVariants -R $REFERENCE \

--exclude_sample_expressions none \

-V $OUT/${ID}_bwa_mutect_artifact_detection_mode.vcf \

-o $OUT/${ID}_bwa_mutect_artifact_detection_mode_no_none.vcf

• Merge the VCFs:
CMD="java -Xmx12g -jar $GATK -T CombineVariants --minimumN 5 -R $REFERENCE"

for VCF in $OUT/*bwa_mutect_artifact_detection_mode_no_none.vcf;

do

CMD="$CMD --variant $VCF"
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done

CMD="$CMD -o $OUT/normals_merged_min5.vcf"

echo $CMD > $OUT/merge_normals_min5.sh

Questions related to pool of normals. As described in detail in Sections 4.1 and 4.2, a
pool of normal samples is used in PureCN for coverage normalization (to adjust for target-
specific capture biases) and for artifact filtering. A few recommendations:

• Matched normals are obviously perfect for identifying most alignment artifacts and map-
ping biases. While not critical, we still recommend generating a normal.panel.vcf.file
for MuTect and setMappingBiasVcf using the available normals.

• Without matched normals, we need process-matched normals for coverage normal-
ization. We recommend at least 2, ideally more than 5 from 2-3 different library
preparation and sequencing batches.

• These normals used for coverage normalization should be ideally sequenced to similar
coverage as the tumor samples. This is completely different from matched normals for
germline calling where 30-40X provide sufficient power to detect heterozygosity.

• For artifact removal, the more normals available, the more rare artifacts are removed.
We recommend at least 10, 50 or more are ideal. The more artifacts are removed, the
less likely PureCN output requires manual curation (Section 4.2).

• For position-specific mapping bias correction, the more normals are available, the more
rare SNPs will have reliable mapping bias estimates. This requires at least about 25
normals to be useful, 100 or more are ideal.

• With smaller pool of normals, we additionally recommend filtering SNPs from low
quality regions (Section 4.3). Additionally, it is worth trying the beta-binomial function
instead of the default in the model argument of runAbsoluteCN. This will incorporate
uncertainty of observed variant allelic fractions in the variant fitting step.

Questions related to manual curation. PureCN, like most other related tools, essentially
finds the most simple explanation of the data. There are three major problems with this
approach:

• First, hybrid capture data can be noisy and the algorithm must distinguish signal from
noise; if the algorithm mistakes noise for signal, then this often results in wrong high
ploidy calls (see Sections 4.2 and 4.3). If all steps in this vignette were followed, then
PureCN should ignore common artifacts. Noisy samples thus often have outlier ploidy
values and are often automatically flagged by PureCN. The correct solution is in most
of these cases ranked second or third.

• The second problem is that signal can be sparse, i.e. when the tumor purity is very low
or when there are only few somatic events. Manual curation is often easy in the latter
case. For example when small losses are called as homozygous, but corresponding
germline allele-frequencies are unbalanced (a complete loss would result in balanced
germline allele frequencies, since only normal DNA is left). Future versions might
improve calling in these cases by underweighting uninformative genomic regions.

• The third problem is that tumor evolution is fast and complex and very difficult to
incorporate into general likelihood models. Sometimes multiple solutions explain the
data equally well, but one solution is then often clearly more consistent with known
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biology, for example LOH in tumor suppressor genes such as TP53. A basic under-
standing of both the algorithm and the tumor biology of the particular cancer type
are thus important for curation. Fortunately, in most cancer types, such ambiguity is
rather rare. See also Section 11.

If all or most of the samples are flagged as:

Noisy segmentation: The default of 300 for max.segments is calibrated for high quality
and high coverage whole-exome data. For whole-genome data or lower coverage data,
this value needs to be re-calibrated. In case the copy number data looks indeed noisy,
please see the first FAQ. Please be aware that PureCN will apply more aggressive
segmentation parameters when the number of segments exceeds this cutoff. If the high
segment count is real, this might confound downstream analyses.

High AT/GC dropout: If the data is GC-normalized, then there might be issues with either
the target intervals or the provided GC content. Please double check that all files are
correct and that all the coverage files are GC-normalized (Section 3).
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• R version 3.4.3 (2017-11-30), x86_64-pc-linux-gnu
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LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 16.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,

utils
• Other packages: Biobase 2.38.0, BiocGenerics 0.24.0, Biostrings 2.46.0,

DNAcopy 1.52.0, DelayedArray 0.4.1, GenomeInfoDb 1.14.0, GenomicRanges 1.30.0,
IRanges 2.12.0, PureCN 1.8.1, Rsamtools 1.30.0, S4Vectors 0.16.0,
SummarizedExperiment 1.8.0, VariantAnnotation 1.24.2, XVector 0.18.0,
matrixStats 0.52.2

• Loaded via a namespace (and not attached): AnnotationDbi 1.40.0,
BSgenome 1.46.0, BiocParallel 1.12.0, BiocStyle 2.6.1, DBI 0.7,
GenomeInfoDbData 0.99.1, GenomicAlignments 1.14.1, GenomicFeatures 1.30.0,
Matrix 1.2-12, R6 2.2.2, RColorBrewer 1.1-2, RCurl 1.95-4.8, RMySQL 0.10.13,
RSQLite 2.0, Rcpp 0.12.14, VGAM 1.0-4, XML 3.98-1.9, assertthat 0.2.0,
backports 1.1.1, biomaRt 2.34.0, bit 1.1-12, bit64 0.9-7, bitops 1.0-6, blob 1.1.0,
colorspace 1.3-2, compiler 3.4.3, data.table 1.10.4-3, digest 0.6.12, edgeR 3.20.1,
evaluate 0.10.1, futile.logger 1.4.3, futile.options 1.0.0, ggplot2 2.2.1, grid 3.4.3,
gtable 0.2.0, highr 0.6, htmltools 0.3.6, knitr 1.17, labeling 0.3, lambda.r 1.2,
lattice 0.20-35, lazyeval 0.2.1, limma 3.34.3, locfit 1.5-9.1, magrittr 1.5,
memoise 1.1.0, munsell 0.4.3, plyr 1.8.4, prettyunits 1.0.2, progress 1.1.2, rlang 0.1.4,
rmarkdown 1.8, rprojroot 1.2, rtracklayer 1.38.2, scales 0.5.0, splines 3.4.3,
stringi 1.1.6, stringr 1.2.0, tibble 1.3.4, tools 3.4.3, yaml 2.1.15, zlibbioc 1.24.0
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