Package 'BloodCancerMultiOmics2017'

December 10, 2024

Type Package

Title ``Drug-perturbation-based stratification of blood cancer" by Dietrich S, Oles M, Lu J et al. - experimental data and complete analysis

Version 1.27.0

Author Malgorzata Oles, Sascha Dietrich, Junyan Lu, Britta Velten, Andreas Mock, Vladislav Kim, Wolfgang Huber

Maintainer Malgorzata Oles <dr.malgorzata.oles@gmail.com>

Description The package contains data of the Primary Blood Cancer Encyclopedia (PACE) project together with a complete executable transcript of the statistical analysis and reproduces figures presented in the paper ``Drug-perturbation-based stratification of blood cancer" by Dietrich S, Oles M, Lu J et al., J. Clin. Invest. (2018) 128(1):427-445. doi:10.1172/JCI93801.

License LGPL (>= 3)

Encoding UTF-8

VignetteBuilder knitr

Depends R (>= 3.5.0)

Imports beeswarm, Biobase, DESeq2, devtools, dplyr, ggdendro, ggplot2, glmnet, graphics, grDevices, grid, gtable, ipflasso, methods, RColorBrewer, reshape2, scales, stats, SummarizedExperiment, survival, tibble

Suggests BiocStyle, knitr, rmarkdown, abind, AnnotationDbi, biomaRt, broom, colorspace, cowplot, dendsort, doParallel, foreach, forestplot, genefilter, ggbeeswarm, ggtern, gridExtra, hexbin, IHW, limma, magrittr, Matrix, maxstat, nat, org.Hs.eg.db, pheatmap, piano, readxl, Rtsne, tidyr, xtable

biocViews ExperimentData, ReproducibleResearch, CancerData, LeukemiaCancerData

LazyData true

git_url https://git.bioconductor.org/packages/BloodCancerMultiOmics2017
git_branch devel
git_last_commit ce612ea

2 Contents

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-12-10

Contents

Index

ldNrisk		3
ol2hex		4
onctab		5
rtokineViab		5
y23rep		6
ls		6
eckel		7
efineResponseGroups		8
par		9
ugs		10
p10div		10
prTreat		11
veDrugLabel		11
g10div		12
dAll		13
eltWholeDF		13
ethData	 	14
oround		15
utCOM		16
isk		16
atmeta		17
ercentAxisScale		18
neatmapwh	 	18
feMatch	 	23
ientific_10	 	24
nunlist	 	24
ripConc	 	25
rvplot		26
Caps		27
ılidateExp		28
hichInGrob		29

30

addNrisk 3

addNrisk	Add number-at-risk annotations to a plot
----------	--

Description

Add number-at-risk (NAR) annotations to an existing survival plot, underneath the X-axis.

Usage

Arguments

x	A list as returned by survfit.
at	Time points at which the NAR values are calculated and placed.
line	Number of lines into the margin to start displaying the NAR.
hadj	Horizontal adjustment for the NAR values.
title	Optional title above the NAR.
title.adj	Text adjustment for the title
labels	Labels for each stratum.
hoff	Horizontal offset for the labels
col	Color for each stratum.

Details

This function was written and documented by Aron Charles Eklund in his package survplot version 0.0.7.

Value

Invisibly, a matrix containing the number-at-risk values

Author(s)

Aron Charles Eklund (survplot version 0.0.7)

See Also

See nrisk to retrieve number-at-risk values without plotting them. See also survplot.

4 col2hex

Examples

```
library(survival)
s <- Surv(colon$time / 365, colon$status)

## Need to increase margins a bit
par(mar = c(10,6,2,1))

## no stratification
fit1 <- survfit(s ~ 1)
plot(fit1)
addNrisk(fit1)

## with stratification
fit2 <- survfit(s ~ rx, data = colon)
plot(fit2, xlab = 'Time (years)', ylab = 'Survival')
addNrisk(fit2)</pre>
```

col2hex

Converts color names with alpha to hex

Description

The function takes the color names as specified in colors() together with alpha levels and transforms it to hex representation. Optionally it can also name the returned vector by names provided by the user.

Usage

```
col2hex(cols, alpha=1, names=NA)
```

Arguments

cols character vector alpha numeric, ranged 0-1

names character vector, default NA

Value

numeric vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

```
col2hex(cols=c("hotpink","skyblue"), alpha=0.5)
col2hex(cols=c("hotpink","skyblue"), alpha=0.5, names = c("A","B"))
```

conctab 5

conctab

Concentrations of drugs used in the drug screen

Description

This data set contains drug concentrations used in the drug screen. Each of the 64 compounds (drug IDs as row names) was screened in 5 concentrations steps c1-c5 (column names). The column 'c1' indicates the highest, and 'c5' indicates the lowest drug concentration used in the screen.

Usage

conctab

Format

data.frame with 64 rows and 5 columns.

Author(s)

Malgorzata Oles

cytokineViab

Response of CLL to exposure to cytokines

Description

The data set include the response measurements of 18 CLL patient samples exposed to six cytokines: IL-2, IL-10, IL-4, IL-21 (c1=0.001, c2=0.1, c3=10 ng/ul), LPS (c1=1, c2=10, c3=100 ng/ul) and IgM (c1=10 nM, c2=1, c3 = 10 uM) for 48 hours. Viability was measured using a CellTitre Glo assay, and luminescence was normalized to unstimulated controls. The results were stored in a tidy table (tibble) with 11 columns: 'Patient' is a patient sample ID, 'Timepoint' is a screening timepoint (48 h), 'Recording_date' is a date when the measurements were collected, 'Seeding_date' is a date when the experiment was started, 'Stimulation' is a name of cytokine used, 'Cytokine_Concentration' is a concentration of cytokine, 'Duplicate' is an information about the duplicates, 'Normalized_DMSO' is a drug response value after normalization by untreated control, 'mtor' is an information on whether the sample was classified into mtor group by our study, 'Edge' is an information of the position of the well respective to the whole screening plate, 'Cytokine_Concentration2 is again the concentration of the cytokine but in a different format.

Usage

cytokineViab

Format

tibble with 324 rows and 11 columns.

6 dds

Author(s)

Sascha Dietrich, Malgorzata Oles

day23rep

Cell viability data for 3 replicated samples

Description

This "NChannelSet" object contains normalized (to the negative control wells) viability data for 48 h ('day2' channel) and 72 h ('day3' channel) incubation period for the replicated experiment comprising 3 patient samples. Patient samples are annotated in columns and compounds are annotated in rows. The screen was performed for 67 drugs in 1-2 different drug concentrations (16 drugs in 1 and 51 drugs in 2 concentration steps; see fData(day23rep)).

Usage

day23rep

Format

"NChannelSet" object with 4 channels, 3 patient samples (columns) and 118 drugs (rows).

Author(s)

Malgorzata Oles

dds

Gene expression data

Description

The object contains the gene expression data after differential gene expression analysis performed with DESeq2 R/Bioconductor package. The preprocessing of the RNA-Seq data included read alignment to the human reference genome (GRCh 37.1 / hg 19; STAR version 2.3.0), and read counting done with htseq-count (default mode union).

Usage

dds

Format

"DESeqDataSet" object with 136 CLL samples and 63677 features.

deckel 7

Author(s)

Sascha Dietrich

References

Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21

Anders S, Pyl PT, and Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166-9

deckel

treshold an array from below and above

Description

treshold an array from below and above

Usage

```
deckel(x, lower = -Inf, upper = +Inf)
```

Arguments

x numeric matrix

lower numeric upper numeric

Details

The function takes the matrix and censores the values from below (if lower param is set) or from above (if upper param is set), or from both of them. If neither lower nor upper param is set or if none of the values meet the criteria for thresholding, then function returns unmodified object.

Value

matrix

Author(s)

Wolfgang Huber < wolfgang.huber@embl.de>

Examples

```
mat = matrix(1:40, nrow=5)

# threshold values below 5
deckel(mat, lower=5)

# threshold values above 15
deckel(mat, upper=15)

# threshold values below 5 and above 15
deckel(mat, lower=5, upper=15)

# threshold values below 0 and above 50 -> no thresholding will be done!
identical(mat, deckel(mat, lower=0, upper=50))
```

defineResponseGroups divides patients into response groups: BTK, MEK, mTOR, non-responders

Description

The function divides patients into 4 groups depending on their mean response to the two lowest concentrations of BTK inhibitor (ibrutinib), mTOR inhibitor (everolimus) and MEK inhibitor (selumetinib). Division is done by looking at the distribution of viabilities for the three drugs mentioned above and using the mirror method to derive, first, a measure of the background variation of the values for these drugs ('ssd') and then define a cutoff as multiple ('z_factor') of that. The mirror method assumes that the observed values are a mixture of two components:

- a null distribution, which is symmetric about 1, and
- responder distribution, which has negligible mass above 1.

The choice of 'z_factor' is a crucial step, because it determines the trade-off between falsely called responders (false positives) versus falsely called non-responders (false negatives). Under normality assumption, it is related to the false positive rate (FPR) by

```
FPR = 1 - pnorm(z)
An FPR of 0.05 thus corresponds to
z_factor <- qnorm(0.05, lower.tail = FALSE)
The threshold is then calculated by: 1 - z_factor * ssd</pre>
```

Each patient is then assigned to a group as follows. If the response to ibrutinib was lower than the calculated threshold, we assign patient to BTK group. If not, we check the drug response value to everlimus in the same fashion. If still the value is not lower than the threshold, the procedure is repeated for selumetinib. If none of the responses mentioned above is below the threshold, we assign patient to the non-responder group.

Usage

```
defineResponseGroups(1pd)
```

drpar 9

Arguments

1pd

lpd object with comprehensive data

Value

data.frame

Author(s)

Wolfgang Huber <wolfgang.huber@embl.de>, Małgorzata Oleś <malgorzata.oles@embl.de>

drpar

Cell viability data from the high-throughput drug screen

Description

This "NChannelSet" object contains normalized (to the control wells) viability data for 48 h incubation period within the drug screen. Patient samples are annotated in columns and drugs are annotated in rows. Seven channels are available: 'viaraw.1', 'viaraw.2', 'viaraw.3', 'viaraw.4', 'viaraw.5' - containing viability information for drug concentrations from c1 (highest) to c5 (lowest) respectively (see also conctab), and 'viaraw.1_5', 'viaraw.4_5' - containing the mean viability of all five concentrations and the two lowest concentrations used, respectively. pData contains two columns: 'PatientID' and 'ExpDate'. The second one contains the date at which the ATP content of the wells after 48 h of incubation was measured.

Usage

drpar

Format

"NChannelSet" object with 249 patient samples (columns) and 64 drugs (rows).

Author(s)

Malgorzata Oles

10 exp10div

drugs

Meta data of the compounds

Description

This data set contains additional information about the drugs used in the drug screens. Row names contain drug IDs. The data.frame contains 8 columns, which provide information on: the official drug name ('name'), main targets ('main_targets'), target category ('target_category'), pathway annotation ('group', 'pathway'), distributor, and whether the drug was approved ('approved_042016') or was in the development stage ('devel_042016').

Usage

drugs

Format

data.frame with 91 rows and 8 columns.

Author(s)

Malgorzata Oles

exp10div

Axis labels for p-values

Description

The function formats axis labels of p-values in a nice way.

Usage

exp10div(x)

Arguments

Х

numeric

Value

Object of class expression

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

exprTreat 11

Examples

exp10div(-10)

exprTreat

Gene expression before and after drug treatment

Description

This "ExpressionSet" object contains microarray data for 12 patient samples before and 12 h after treatment with everolimus, ibrutinib, selumetinib, idelalisib and a negative control (chaetoglobosin A). For annotation, please refer to pData(exprTreat). The data underwent variance stabilization (vsn2 function from vsn R/Bioconductor package) and quantile normalization (normalizeQuantiles function from limma R/Bioconductor package).

Usage

exprTreat

Format

"ExpressionSet" object with 12 patient samples and 48107 features.

Author(s)

Sascha Dietrich

giveDrugLabel

Convert extended drug IDs to drug names

Description

The function converts drug IDs given in a format $X1_X2_Y1$ or $X1_X2_Y2$, where $X1_X2$ is a drug id, Y1 is a number of drug concentration step and Y2 is a drug concentration, to format "Z Y2 μ M", where Z is a drug name.

Usage

```
giveDrugLabel(drid, ctab, dtab)
```

Arguments

drid	character vector
ctab	data frame
dtab	data frame

log10div

Details

The drug ID (X) has to be present in row names of dtab object. ctab is a data frame with drug concentrations (columns are concentrations and rows are the drugs). dtab is a data frame with drugs in the rows and at least one column with drug characteristics. Here the column "name" with the name of the drug is needed.

Value

character vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

Examples

```
data("drugs","conctab")
giveDrugLabel(c("D_001-4", "D_002-0.02", "D_001_4", "D_002_1"),
conctab, drugs)
```

log10div

log10 with sign

Description

The function calculates the log10 of the given value and returns it together with the sign of the input value.

Usage

```
log10div(x)
```

Arguments

Х

numeric vector

Details

This function is useful when coloring p-values stratified by two possible effect directions (sensitivity and resistance in our case).

Value

numeric vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

lpdAll

Examples

log10div(x=c(-10,10))

lpdA11

An assembly of drug viability data, methylation clusters, important mutations and copy number variants

Description

Columns indicate patients and rows different omics features.

pData() contains some basic patient characteristics.

fData()\$type contains information to which omics data type each feature belongs to:

1) viab (viability values for n=448 data points): 'D_001' stands for the drug as coded in the object drugs and '_01' indicates the concentration step. '_1:5' corresponds to the average across all five concentration steps and '_4:5' corresponds to all the concentration steps . 2) gen (n=89): important gene mutations and copy number variants derived from WES, SNP arrays, FISH and targeted sequencing. 3) Methylation_Cluster: The association of each CLL patient with one of the three Methylation Cluster was determined as described in the methods section. 4) IGHV mutation status for CLL patients was determined as described in the methods section.

Usage

lpdAll

Format

"ExpressionSet" with Features 539 and Samples 249.

Author(s)

Wolfgang Huber

meltWholeDF

Wide format to long format data conversion

Description

The function converts wide format data which is either a data.frame or a matrix (with dimnames present) to a long format structure. The output data.frame have three columns: X, Y, and Measure. These are: column names, row names and values of the input object, respectively.

Usage

```
meltWholeDF(df)
```

14 methData

Arguments

df

data.frame

Details

This function is particularly useful to prepare data for plotting with ggplot2 package.

Value

data.frame

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

Examples

```
df = data.frame(A=1:4, B=4:7, row.names=letters[1:4])
meltWholeDF(df)
```

methData

DNA methylation data

Description

The data set includes methylation data for the 5000 most variable CpG sites of the CLL samples. The data was produced with the use of either 450k or 850k methylation arrays. Preprocessing of raw IDAT files was made using minfi R/Bioconductor package version 1.19.16. Intensities were normalized using the functional normalization algorithm. CpG sites containing SNPs inside the probe body were removed.

Usage

methData

Format

"RangedSummarizedExperiment" object with Features 5000 and Samples 196.

Author(s)

Andreas Mock, Malgorzata Oles

References

Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, Wang Q, Imbusch CD, Serva A, Koser SD, et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 2016;48(3):253-64

moround 15

moround

Round numbers to the ceiling of a given base

Description

The function rounds the value up (either numeric or a numeric vector) to the multiplication of the specified base.

Usage

```
moround(x,base)
```

Arguments

x numeric vector

base numeric vector

Details

Both arguments could be either single numeric or numeric vectors. Base argument should be either of length 1 or the divisible of the length of argument x.

Value

numeric vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

```
moround(x=c(1.23, 5, 5.1, 8), base=5)
moround(x=c(1.23, 5, 5.1, 8), base=c(2, 5))
```

16 nrisk

mutCOM

Genetic information of patient samples

Description

This "NChannelSet" object contains genetic data for samples investigated in any of the three experiments: whole exome sequencing, targeted sequencing or fluorescent in situ hybridization. Object consists of one channel called binary, with values: 0 if the mutation was absent, 1 if mutation was present or NA if the mutation was not investigated. Feature data of the object contains detailed information about mutation in TP53 and BRAF genes - the variant(s) detected ('*_CDS' and '*_AA' columns) and the percentage at which each variant was detected ('*_For TP53, BRAF, KRAS, del17p13, UMODL1, CREBBP, PRPF8 and trisomy12 mutation an additional column 'cs' summarizes the clone size of the mutated population. This value is a fraction at which the most abundant variant is present in a sample.

Usage

mutCOM

Format

"NChannelSet" object with 89 genes (columns) and 265 patient samples (rows).

Author(s)

Malgorzata Oles

nrisk

Get number-at-risk from a survfit object

Description

Retrieve the number-at-risk from a survfit object for the specified times, for each strata.

Usage

```
nrisk(x, times = pretty(x$time))
```

Arguments

x An object of type survfit. times The timepoints of interest.

Details

This function was written and documented by Aron Charles Eklund in his package survplot version 0.0.7.

patmeta 17

Value

A matrix indicating the number-at-risk for each timepoint (columns) and stratum (rows).

Author(s)

Aron Charles Eklund (survplot version 0.0.7)

See Also

survplot

Examples

```
library(survival)
data(colon)
surv <- Surv(colon$time, colon$status)
## example with stratification
nrisk(survfit(surv ~ colon$rx))
## example without stratification
nrisk(survfit(surv ~ 1))</pre>
```

patmeta

Meta data of the patient samples

Description

This data set contains basic clinical information of patients who donated the samples. Row names code for Patient IDs. The data.frame contains such information as diagnosis ('Diagnosis'), sex ('Gender'), IGHV status ('IGHV'), methyation cluster assignment ('ConsClust'), age of patient at which the sample was taken ('Age4Main'). Moreover, the binary columns: 'treatedAfter' - TRUE if the patient was treated after the sample was taken, 'died' - TRUE if the patient died, 'IC50beforeTreatment' - TRUE if the patient was treated before the sample was taken. Column 'T5' includes time (in years) which passed from taking the sample to the next treatment. Column 'T6' includes time (in years) which passed from taking the sample to patients' death.

Usage

patmeta

Format

data.frame with 265 rows and 10 columns

Author(s)

Malgorzata Oles

percentAxisScale

Fraction to percent converter

Description

The function converts fractions to percent by multiplying input value by 100.

Usage

```
percentAxisScale(x)
```

Arguments

Х

numeric vector

Value

numeric vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

Examples

```
percentAxisScale(x=c(0, 0.1, 1))
```

pheatmapwh

A modification of pheatmap from the pheatmap package by Raivo Kolde: draw clustered heatmaps.

Description

A function to draw clustered heatmaps where one has better control over some graphical parameters such as cell size, etc.

Usage

```
pheatmapwh(mat, color = colorRampPalette(rev(brewer.pal(n = 7, name =
   "RdYlBu")))(100), kmeans_k = NA, breaks = NA, border_color = "grey60",
   cellwidth = NA, cellheight = NA, scale = "none", cluster_rows = TRUE,
   cluster_cols = TRUE, clustering_distance_rows = "euclidean",
   clustering_distance_cols = "euclidean", clustering_method = "complete",
   clustering_callback = identity2, cutree_rows = NA, cutree_cols = NA,
   treeheight_row = ifelse(cluster_rows, 50, 0),
   treeheight_col = ifelse(cluster_cols, 50, 0), legend = TRUE,
```

```
legend_breaks = NA, legend_labels = NA, annotation_row = NA,
annotation_col = NA, annotation = NA, annotation_colors = NA,
annotation_legend = TRUE, drop_levels = TRUE, show_rownames = T,
show_colnames = T, main = NA, fontsize = 10, fontsize_row = fontsize,
fontsize_col = fontsize, display_numbers = F, number_format = "%.2f",
number_color = "grey30", fontsize_number = 0.8 * fontsize,
gaps_row = NULL, gaps_col = NULL, labels_row = NULL,
labels_col = NULL, filename = NA, width = NA, height = NA,
silent = FALSE, ...)
```

Arguments

mat numeric matrix of the values to be plotted.

color vector of colors used in heatmap.

kmeans_k the number of kmeans clusters to make, if we want to agggregate the rows before

drawing heatmap. If NA then the rows are not aggregated.

breaks a sequence of numbers that covers the range of values in mat and is one element

longer than color vector. Used for mapping values to colors. Useful, if needed to map certain values to certain colors, to certain values. If value is NA then the

breaks are calculated automatically.

border_color color of cell borders on heatmap, use NA if no border should be drawn.

cellwidth individual cell width in points. If left as NA, then the values depend on the size

of plotting window.

cellheight individual cell height in points. If left as NA, then the values depend on the size

of plotting window.

scale character indicating if the values should be centered and scaled in either the row

direction or the column direction, or none. Corresponding values are "row",

"column" and "none"

cluster_rows boolean values determining if rows should be clustered,

cluster_cols boolean values determining if columns should be clustered.

clustering_distance_rows

distance measure used in clustering rows. Possible values are "correlation" for Pearson correlation and all the distances supported by dist, such as "euclidean", etc. If the value is none of the above it is assumed that a distance matrix is pro-

vided.

clustering_distance_cols

distance measure used in clustering columns. Possible values the same as for

clustering_distance_rows.

clustering_method

clustering method used. Accepts the same values as hclust.

clustering_callback

callback function to modify the clustering. Is called with two parameters: original hclust object and the matrix used for clustering. Must return a hclust

object.

cutree_rows number of clusters the rows are divided into, based on the hierarchical clustering

(using cutree), if rows are not clustered, the argument is ignored

cutree_cols similar to cutree_rows, but for columns

treeheight_row the height of a tree for rows, if these are clustered. Default value 50 points.

treeheight_col the height of a tree for columns, if these are clustered. Default value 50 points.

legend logical to determine if legend should be drawn or not.

legend_breaks vector of breakpoints for the legend.
legend_labels vector of labels for the legend_breaks.

annotation_row data frame that specifies the annotations shown on left side of the heatmap.

Each row defines the features for a specific row. The rows in the data and in the annotation are matched using corresponding row names. Note that color

schemes takes into account if variable is continuous or discrete.

annotation_col similar to annotation_row, but for columns.

annotation deprecated parameter that currently sets the annotation_col if it is missing

annotation_colors

list for specifying annotation_row and annotation_col track colors manually. It is possible to define the colors for only some of the features. Check examples

for details.

annotation_legend

boolean value showing if the legend for annotation tracks should be drawn.

drop_levels logical to determine if unused levels are also shown in the legend

show_rownames boolean specifying if column names are be shown. show_colnames boolean specifying if column names are be shown.

main the title of the plot

fontsize base fontsize for the plot

fontsize_row fontsize for rownames (Default: fontsize)
fontsize_col fontsize for colnames (Default: fontsize)

display_numbers

logical determining if the numeric values are also printed to the cells. If this is a matrix (with same dimensions as original matrix), the contents of the matrix are

shown instead of original values.

number_format format strings (C printf style) of the numbers shown in cells. For example

"%.2f" shows 2 decimal places and "%.1e" shows exponential notation (see

more in sprintf).

number_color color of the text

fontsize_number

fontsize of the numbers displayed in cells

gaps_row vector of row indices that show shere to put gaps into heatmap. Used only if

the rows are not clustered. See cutree_row to see how to introduce gaps to

clustered rows.

gaps_col similar to gaps_row, but for columns.

labels_row custom labels for rows that are used instead of rownames.

labels_col similar to labels_row, but for columns.

filename	file path where to save the picture. Filetype is decided by the extension in the path. Currently following formats are supported: png, pdf, tiff, bmp, jpeg. Even if the plot does not fit into the plotting window, the file size is calculated so that the plot would fit there, unless specified otherwise.
width	manual option for determining the output file width in inches.
height	manual option for determining the output file height in inches.
silent	do not draw the plot (useful when using the gtable output)
	graphical parameters for the text used in plot. Parameters passed to grid.text, see gpar.

Details

The function also allows to aggregate the rows using kmeans clustering. This is advisable if number of rows is so big that R cannot handle their hierarchical clustering anymore, roughly more than 1000. Instead of showing all the rows separately one can cluster the rows in advance and show only the cluster centers. The number of clusters can be tuned with parameter kmeans_k.

Value

Invisibly a list of components

- tree_row the clustering of rows as hclust object
- tree_col the clustering of columns as hclust object
- kmeans the kmeans clustering of rows if parameter kmeans_k was specified

Author(s)

Raivo Kolde <rkolde@gmail.com>

```
# Create test matrix
test = matrix(rnorm(200), 20, 10)
test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
colnames(test) = paste("Test", 1:10, sep = "")
rownames(test) = paste("Gene", 1:20, sep = "")
# Draw heatmaps
pheatmapwh(test)
pheatmapwh(test, kmeans_k = 2)
pheatmapwh(test, scale = "row", clustering_distance_rows = "correlation")
pheatmapwh(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50))
pheatmapwh(test, cluster_row = FALSE)
pheatmapwh(test, legend = FALSE)
# Show text within cells
pheatmapwh(test, display_numbers = TRUE)
```

```
pheatmapwh(test, display_numbers = TRUE, number_format = "\%.1e")
pheatmapwh(test, display_numbers = matrix(ifelse(test > 5, "*", ""), nrow(test)))
pheatmapwh(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0",
"1e-4", "1e-3", "1e-2", "1e-1", "1"))
# Fix cell sizes and save to file with correct size
pheatmapwh(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
pheatmapwh(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = "test.pdf")
# Generate annotations for rows and columns
annotation_col = data.frame(
                   CellType = factor(rep(c("CT1", "CT2"), 5)),
                   Time = 1:5
rownames(annotation_col) = paste("Test", 1:10, sep = "")
annotation_row = data.frame(
                   GeneClass = factor(rep(c("Path1", "Path2", "Path3"), c(10, 4, 6)))
               )
rownames(annotation_row) = paste("Gene", 1:20, sep = "")
# Display row and color annotations
pheatmapwh(test, annotation_col = annotation_col)
pheatmapwh(test, annotation_col = annotation_col, annotation_legend = FALSE)
pheatmapwh(test, annotation_col = annotation_col, annotation_row = annotation_row)
# Specify colors
ann_colors = list(
   Time = c("white", "firebrick"),
   CellType = c(CT1 = "#1B9E77", CT2 = "#D95F02"),
   GeneClass = c(Path1 = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E")
pheatmapwh(test, annotation_col = annotation_col, annotation_colors = ann_colors, main = "Title")
pheatmapwh(test, annotation_col = annotation_col, annotation_row = annotation_row,
        annotation_colors = ann_colors)
pheatmapwh(test, annotation_col = annotation_col, annotation_colors = ann_colors[2])
# Gaps in heatmaps
pheatmapwh(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14))
pheatmapwh(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14),
        cutree\_col = 2)
# Show custom strings as row/col names
"", "", "Il10", "Il15", "Il1b")
pheatmapwh(test, annotation_col = annotation_col, labels_row = labels_row)
# Specifying clustering from distance matrix
drows = dist(test, method = "minkowski")
dcols = dist(t(test), method = "minkowski")
```

safeMatch 23

```
pheatmapwh(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)

# Modify ordering of the clusters using clustering callback option
callback = function(hc, mat){
    sv = svd(t(mat))$v[,1]
    dend = reorder(as.dendrogram(hc), wts = sv)
    as.hclust(dend)
}

pheatmapwh(test, clustering_callback = callback)

## Not run:
# Same using dendsort package
library(dendsort)

callback = function(hc, ...){dendsort(hc)}
pheatmapwh(test, clustering_callback = callback)

## End(Not run)
```

safeMatch

safe version of the match function that throws an error if there is no match

Description

While match returns an NA if no match is found, this function will throw an error

Usage

```
safeMatch (x, ...)
```

Arguments

x string to be matched, will be passed on as first argument to match

... passed on to match

```
safeMatch("oranges", c("apples", "oranges") )
```

24 smunlist

scientific_10

log10 scale labels in ggplot2

Description

This function is useful for formatting labels in ggplot2 of log10 axis.

Usage

```
scientific_10
```

Value

numeric vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

Examples

```
## scale_x_log10(labels=scientific_10)
```

smunlist

Unlist with name preservation

Description

Collapses list to a named vector with keeping the names as they were in the lowest leaves in a list.

Usage

```
smunlist(li)
```

Arguments

li

list

Details

The function works for the lists of multiple levels. These levels can be named, unnamed, or mixture of both. The names of the returned vector are preserved exactly as they were in a lowest leaves of the list, which means that they can be duplicated.

Value

named character vector

stripConc 25

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

Examples

```
mylist = list(A=setNames(1:3, nm=letters[1:3]), B=list(D=3:4, setNames("a", nm=2)))
smunlist(mylist)
```

stripConc

Convert extended drug IDs to drug names

Description

Out of drug IDs like D_001_1, it extracts the concentration step '_1'.

Usage

```
stripConc(x)
```

Arguments

Х

character vector

Details

x has to be present in row names of drugs object.

Value

character vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

```
data("drugs")
stripConc(c("D_001_1"))
```

26 survplot

survplot	Draw augmented K-M survival curves	

Description

Plot Kaplan-Meier survival curves, automatically generate a key for each strata, and calculate and display hazard ratio if there are exactly two strata. Optionally, indicate the number-at-risk below the main plot.

Usage

Arguments

X	A formula, as would be appropriate for survfit and coxph.
data, subset	Arguments passed to survfit and coxph.
snames	Names for each stratum, to be used in the legend. If missing, these are inferred from the data.
stitle	Title for the strata legend. If missing, this is inferred from x.
col, lty, lwd	Colors, line type, and line width for each stratum (optional).
show.nrisk	Indicate the number-at-risk for each stratum below the plot?
color.nrisk	Color the number-at-risk to match the plot?
hr.pos	Where to put the hazard ratio information, or NA to omit (see legend)
legend.pos	Where to put the legend, or NA to omit (see legend)
	Further parameters sent to plot.survfit.

Details

This function was written and documented by Aron Charles Eklund in his package survplot version 0.0.7.

Hazard ratio (and 95% confidence intervals) and logrank P are calculated and displayed if there are exactly two groups.

If there is exactly one group (no stratification), the legend is omitted.

Value

If there are exactly two groups, a character vector with the HR and P value is returned invisibly.

toCaps 27

Note

The lower figure margin is increased if the number-at-risk is displayed.

Author(s)

Aron Charles Eklund (survplot version 0.0.7)

See Also

nrisk

Examples

```
library(survival)
surv <- Surv(colon$time / 365, colon$status)</pre>
survplot(surv ~ rx,
 data = colon,
 lty = 1:3,
 main = 'Patients stratified by treatment',
 xlab = 'Time (Years)')
survplot(surv ~ colon$sex,
 main = 'Patients stratified by sex',
 xlab = 'Time (Years)',
 snames = c('F', 'M'),
 stitle = 'Gender')
survplot(surv ~ sex,
 data = colon,
 subset = colon$surg == 1)
## Example without stratification
survplot(surv ~ 1, data = colon)
```

toCaps

Capitalize first character

Description

The function capitalizes the first character of the given string or every element of the character vector.

Usage

```
toCaps(word)
```

28 validateExp

Arguments

word

character vector

Value

character vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

Examples

```
toCaps("abc")
toCaps(c("abc", "Abc", "aBC", "ABC", "4you"))
```

validateExp

Data of the validation drug sensitivity screen using five additional drugs

Description

To validate some of the associations observed in the main screen, including the associations between IGHV status and HSP90 inhibitors and the associations between trisomy 12 and MEK/ERK pathway inhibitors, the effect of five additional drugs, cobimetinib (MEK inhibitor), trametinib (MEK inhibitor), SCH772984 (ERK inhibitor), Ganetespib (HSP90 inhibitor) and Onalespib (HSP90 inhibitor) were tested on 128 CLL samples that were also used in the main screen.

The results were stored in a tidy table (tibble) with four columns:

- 1) 'patientID' The patient identifiers.
- 2) 'Drug' The names of the drugs used in this screen.
- 3) 'Concentration' The concentrations of the drugs in the unit of uM.
- 4) 'viab' Viabilities of the samples after drug treatment, normalized by negative controls (DMSO).

Usage

validateExp

Format

Tidy table with 3200 rows and 4 columns.

Author(s)

Junyan Lu

whichInGrob 29

whichInGrob Return indices of layers of interest from the grob object

Description

The function matches the supplied vector of grob's layer names to the grob object and returns the indices of those layer names.

Usage

```
whichInGrob(grob, layer)
```

Arguments

grob grob

layer character vector

Details

If the layer doesn't exist the function returns NA.

Value

numeric vector

Author(s)

Małgorzata Oleś <malgorzata.oles@embl.de>

```
library("ggplot2")
gg = ggplotGrob(qplot(1,1))
whichInGrob(gg, "xlab-b")
whichInGrob(gg, c("xlab-b", "panel"))
```

Index

* aplot	exprTreat, 11
addNrisk, 3	,
* datasets	giveDrugLabel, 11
conctab, 5	gpar, 21
cytokineViab, 5	grid.text, 21
day23rep, 6	hclust, 19, 21
dds, 6	
drpar, 9	legend, 26
drugs, 10	log10div, 12
exprTreat, 11	lpdA11, 13
lpdAll, 13	match, <i>23</i>
methData, 14	meltWholeDF, 13
mutCOM, 16	methData, 14
patmeta, 17	moround, 15
validateExp, 28	mutCOM, 16
* hplot	
survplot, 26	NChannelSet, 6, 9, 16
* survival	normalizeQuantiles, 11
addNrisk, 3	nrisk, 3, 16, 27
nrisk, 16	patmeta, 17
survplot, 26	percentAxisScale, 18
addNrisk, 3	pheatmap, 18
additi 15k, 5	pheatmapwh, 18
col2hex, 4	plot.survfit, 26
conctab, 5, 9	
coxph, 26	RangedSummarizedExperiment, 14
cytokineViab, 5	safeMatch, 23
•	scientific_10, 24
day23rep, 6	smunlist, 24
dds, 6	sprintf, 20
deckel, 7	stripConc, 25
defineResponseGroups, 8	survfit, <i>3</i> , <i>16</i> , <i>26</i>
DESeqDataSet, 6	survplot, <i>3</i> , <i>17</i> , 26
dist, <i>19</i>	
drpar, 9	toCaps, 27
drugs, 10, <i>13</i>	validateExp, 28
	vsn2, <i>11</i>
exp10div, 10	,
ExpressionSet, 11, 13	whichInGrob, 29