## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(segmentSeq) ## ----results='hide', eval = TRUE---------------------------------------------- if(FALSE) { # set to FALSE if you don't want parallelisation numCores <- min(8, detectCores()) cl <- makeCluster(numCores) } else { cl <- NULL } ## ----------------------------------------------------------------------------- datadir <- system.file("extdata", package = "segmentSeq") files <- c( "short_18B_C24_C24_trim.fastq_CG_methCalls.gz", "short_Sample_17A_trimmed.fastq_CG_methCalls.gz", "short_13_C24_col_trim.fastq_CG_methCalls.gz", "short_Sample_28_trimmed.fastq_CG_methCalls.gz") mD <- readMeths(files = files, dir = datadir, libnames = c("A1", "A2", "B1", "B2"), replicates = c("A","A","B","B"), nonconversion = c(0.004777, 0.005903, 0.016514, 0.006134)) ## ----fig = FALSE, height = 10, width = 12, fig.cap = "Distributions of methylation on the genome (first two million bases of chromosome 1)."---- par(mfrow = c(2,1)) dists <- plotMethDistribution(mD, main = "Distributions of methylation", chr = "Chr1") plotMethDistribution(mD, subtract = rowMeans(sapply(dists, function(x) x[,2])), main = "Differences between distributions", chr = "Chr1") ## ----------------------------------------------------------------------------- sD <- processAD(mD, cl = cl) ## ----echo = FALSE, results = 'hide'------------------------------------------- if(nrow(sD) != 249271) stop("sD object is the wrong size (should have 249271 rows). Failure.") ## ----------------------------------------------------------------------------- thresh = 0.2 hS <- heuristicSeg(sD = sD, aD = mD, prop = thresh, cl = cl, gap = 100, getLikes = FALSE) hS ## ----echo = FALSE, results = 'hide'------------------------------------------- if(nrow(hS) != 2955) stop("hS object is the wrong size (should have 2955 rows). Failure.") ## ----------------------------------------------------------------------------- hS <- mergeMethSegs(hS, mD, gap = 5000, cl = cl) ## ----eval = FALSE------------------------------------------------------------- # hSL <- lociLikelihoods(hS, mD, cl = cl) ## ----echo = FALSE------------------------------------------------------------- data(hSL) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # %eBS <- classifySeg(sD, hS, mD, cl = cl) ## ----fig = FALSE, height = 10, width = 12, fig.caption = "Methylation and identified loci on the first ten thousand bases of chromosome 1."---- plotMeth(mD, hSL, chr = "Chr1", limits = c(1, 50000), cap = 10) ## ----------------------------------------------------------------------------- groups(hSL) <- list(NDE = c(1,1,1,1), DE = c("A", "A", "B", "B")) ## ----------------------------------------------------------------------------- hSL <- methObservables(hSL) ## ----------------------------------------------------------------------------- densityFunction(hSL) <- bbNCDist ## ----getPriors, eval=FALSE---------------------------------------------------- # hSL <- getPriors(hSL, cl = cl) ## ----getLikelihoods, eval=FALSE----------------------------------------------- # hSL <- getLikelihoods(hSL, cl = cl) ## ----eval=FALSE--------------------------------------------------------------- # topCounts(hSL, "DE") ## ----stopCluster-------------------------------------------------------------- if(!is.null(cl)) stopCluster(cl) ## ----------------------------------------------------------------------------- sessionInfo()