cmapR 1.10.0
This notebook will walk through some of the basic functionality in the cmapR package, which is largely centered around working with matrix data in GCT and GCTX format, commonly used by the Connectivity Map (CMap) project.
The cmapR package can be installed from Bioconductor by running the following commands in an R session.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("cmapR")
## Bioconductor version 3.16 (BiocManager 1.30.19), R 4.2.1 (2022-06-23)
## Warning: package(s) not installed when version(s) same as or greater than current; use
## `force = TRUE` to re-install: 'cmapR'
cmapR source code can be also obtained from github.
cmapR can be loaded within an R session or script just like any other package.
library(cmapR)
The main class of objects in cmapR
is the GCT
class. The GCT
object contains a data matrix
and (optionally) row and column annotations as data.frame
objects. cmapR has comes with an example GCT object called ds
(short for dataset). We can view its structure by simply typing its name.
ds
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:978, 1:272] -0.524 -0.372 0.578 0.569 1.48 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:978] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. .. ..$ : chr [1:272] "CPC006_A549_6H:BRD-U88459701-000-01-8:10" "CPC020_A375_6H:BRD-A82307304-001-01-8:10" "CPC020_HT29_6H:BRD-A82307304-001-01-8:10" "CPC020_PC3_24H:BRD-A82307304-001-01-8:10" ...
## ..@ rid : chr [1:978] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ cid : chr [1:272] "CPC006_A549_6H:BRD-U88459701-000-01-8:10" "CPC020_A375_6H:BRD-A82307304-001-01-8:10" "CPC020_HT29_6H:BRD-A82307304-001-01-8:10" "CPC020_PC3_24H:BRD-A82307304-001-01-8:10" ...
## ..@ rdesc :'data.frame': 978 obs. of 6 variables:
## .. ..$ id : chr [1:978] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. ..$ is_bing : int [1:978] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ is_lm : int [1:978] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ pr_gene_id : int [1:978] 5720 466 6009 2309 387 3553 427 5898 23365 6657 ...
## .. ..$ pr_gene_symbol: chr [1:978] "PSME1" "ATF1" "RHEB" "FOXO3" ...
## .. ..$ pr_gene_title : chr [1:978] "proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)" "activating transcription factor 1" "Ras homolog enriched in brain" "forkhead box O3" ...
## ..@ cdesc :'data.frame': 272 obs. of 16 variables:
## .. ..$ brew_prefix : chr [1:272] "CPC006_A549_6H" "CPC020_A375_6H" "CPC020_HT29_6H" "CPC020_PC3_24H" ...
## .. ..$ cell_id : chr [1:272] "A549" "A375" "HT29" "PC3" ...
## .. ..$ distil_cc_q75 : num [1:272] 0.18 0.46 0.14 0.57 0.2 ...
## .. ..$ distil_nsample : int [1:272] 4 5 4 5 7 5 3 2 2 2 ...
## .. ..$ distil_ss : num [1:272] 2.65 3.21 2.14 4.62 2.27 ...
## .. ..$ id : chr [1:272] "CPC006_A549_6H:BRD-U88459701-000-01-8:10" "CPC020_A375_6H:BRD-A82307304-001-01-8:10" "CPC020_HT29_6H:BRD-A82307304-001-01-8:10" "CPC020_PC3_24H:BRD-A82307304-001-01-8:10" ...
## .. ..$ is_gold : int [1:272] 0 1 0 1 1 1 1 0 0 1 ...
## .. ..$ ngenes_modulated_dn_lm: int [1:272] 15 14 4 67 8 95 42 20 14 80 ...
## .. ..$ ngenes_modulated_up_lm: int [1:272] 10 17 7 50 6 98 19 21 14 36 ...
## .. ..$ pct_self_rank_q25 : num [1:272] 5.526 1.567 9.072 0 0.353 ...
## .. ..$ pert_id : chr [1:272] "BRD-U88459701" "BRD-A82307304" "BRD-A82307304" "BRD-A82307304" ...
## .. ..$ pert_idose : chr [1:272] "10 <b5>M" "10 <b5>M" "10 <b5>M" "10 <b5>M" ...
## .. ..$ pert_iname : chr [1:272] "atorvastatin" "atorvastatin" "atorvastatin" "atorvastatin" ...
## .. ..$ pert_itime : chr [1:272] "6 h" "6 h" "6 h" "24 h" ...
## .. ..$ pert_type : chr [1:272] "trt_cp" "trt_cp" "trt_cp" "trt_cp" ...
## .. ..$ pool_id : chr [1:272] "epsilon" "epsilon" "epsilon" "epsilon" ...
## ..@ version: chr(0)
## ..@ src : chr "inst/extdata/modzs_n272x978.gctx"
GCT
objects contain the following components, or slots
.
mat
- the data matrixrdesc
- a data.frame
of row annotations, with one row per matrix rowcdesc
- a data.frame
of column annotations, with one row per matrix columnrid
- a character vector of unique row identifierscid
- a character vector of unique column identifierssrc
- a character string indicating the source (usually a file path) of the dataThe components of a GCT
object can be accessed or modified using a set of accessor functions.
# access the data matrix
m <- mat(ds)
# access the row and column metadata
rdesc <- meta(ds, dimension = "row")
cdesc <- meta(ds, dimension = "column")
# access the row and column ids
rid <- ids(ds, dimension = "row")
cid <- ids(ds, dimension = "column")
# update the matrix data to set some values to zero
# note that the updated matrix must be the of the same dimensions as
# the current matrix
m[1:10, 1:10] <- 0
mat(ds) <- m
# replace row and column metadata
meta(ds, dimension = "row") <- data.frame(x=sample(letters, nrow(m),
replace=TRUE))
meta(ds, dimension = "column") <- data.frame(x=sample(letters, ncol(m),
replace=TRUE))
# replace row and column ids
ids(ds, dimension = "row") <- as.character(seq_len(nrow(m)))
ids(ds, dimension = "column") <- as.character(seq_len(ncol(m)))
# and let's look at the modified object
ds
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:978, 1:272] 0 0 0 0 0 0 0 0 0 0 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:978] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. .. ..$ : chr [1:272] "CPC006_A549_6H:BRD-U88459701-000-01-8:10" "CPC020_A375_6H:BRD-A82307304-001-01-8:10" "CPC020_HT29_6H:BRD-A82307304-001-01-8:10" "CPC020_PC3_24H:BRD-A82307304-001-01-8:10" ...
## ..@ rid : chr [1:978] "1" "2" "3" "4" ...
## ..@ cid : chr [1:272] "1" "2" "3" "4" ...
## ..@ rdesc :'data.frame': 978 obs. of 1 variable:
## .. ..$ x: chr [1:978] "k" "m" "b" "c" ...
## ..@ cdesc :'data.frame': 272 obs. of 1 variable:
## .. ..$ x: chr [1:272] "a" "c" "a" "p" ...
## ..@ version: chr(0)
## ..@ src : chr "inst/extdata/modzs_n272x978.gctx"
You can parse both GCT and GCTX files using the parse_gctx
method. This method will read the corresponding GCT or GCTX file and return an object of class GCT
into your R session.
If the file is small enough to fit in memory, you can parse the entire file at once.
# create a variable to store the path to the GCTX file
# here we'll use a file that's internal to the cmapR package, but
# in practice this could be any valid path to a GCT or GCTX file
ds_path <- system.file("extdata", "modzs_n25x50.gctx", package="cmapR")
my_ds <- parse_gctx(ds_path)
## reading /tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx
## done
You can view the structure of this newly-created GCT object just by typing its name.
my_ds
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:50, 1:25] -1.145 -1.165 0.437 0.139 -0.673 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. .. ..$ : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ rid : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ cid : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ rdesc :'data.frame': 50 obs. of 6 variables:
## .. ..$ id : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. ..$ is_bing : int [1:50] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ is_lm : int [1:50] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ pr_gene_id : int [1:50] 5720 466 6009 2309 387 3553 427 5898 23365 6657 ...
## .. ..$ pr_gene_symbol: chr [1:50] "PSME1" "ATF1" "RHEB" "FOXO3" ...
## .. ..$ pr_gene_title : chr [1:50] "proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)" "activating transcription factor 1" "Ras homolog enriched in brain" "forkhead box O3" ...
## ..@ cdesc :'data.frame': 25 obs. of 16 variables:
## .. ..$ brew_prefix : chr [1:25] "CPC004_PC3_24H" "BRAF001_HEK293T_24H" "CPC006_HT29_24H" "CVD001_HEPG2_24H" ...
## .. ..$ cell_id : chr [1:25] "PC3" "HEK293T" "HT29" "HEPG2" ...
## .. ..$ distil_cc_q75 : num [1:25] 0.05 0.1 0.17 0.45 0.24 ...
## .. ..$ distil_nsample : int [1:25] 5 9 4 3 4 5 2 3 2 2 ...
## .. ..$ distil_ss : num [1:25] 2.9 1.88 2.71 4.06 3.83 ...
## .. ..$ id : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## .. ..$ is_gold : int [1:25] 0 0 0 1 1 0 1 0 0 0 ...
## .. ..$ ngenes_modulated_dn_lm: int [1:25] 11 3 8 38 36 23 12 11 33 13 ...
## .. ..$ ngenes_modulated_up_lm: int [1:25] 10 7 25 40 16 17 23 14 37 22 ...
## .. ..$ pct_self_rank_q25 : num [1:25] 26.904 17.125 7.06 0.229 4.686 ...
## .. ..$ pert_id : chr [1:25] "BRD-A51714012" "BRD-U73308409" "BRD-U88459701" "BRD-U88459701" ...
## .. ..$ pert_idose : chr [1:25] "10 <b5>M" "500 nM" "10 <b5>M" "10 <b5>M" ...
## .. ..$ pert_iname : chr [1:25] "venlafaxine" "vemurafenib" "atorvastatin" "atorvastatin" ...
## .. ..$ pert_itime : chr [1:25] "24 h" "24 h" "24 h" "24 h" ...
## .. ..$ pert_type : chr [1:25] "trt_cp" "trt_cp" "trt_cp" "trt_cp" ...
## .. ..$ pool_id : chr [1:25] "epsilon" "epsilon" "epsilon" "epsilon" ...
## ..@ version: chr(0)
## ..@ src : chr "/tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx"
As you can see from looking at the @mat
slot, this small dataset has 50 rows and 25 columns.
Note: only GCTX files (not GCT) support parsing subsets.
When working with large GCTX files, it is usually not possible to read the entire file into memory all at once. In these cases, it’s helpful to read subsets of the data. These subsets can be defined by numeric row or column index, as shown below.
# read just the first 10 columns, using numeric indices
(my_ds_10_columns <- parse_gctx(ds_path, cid=1:10))
## reading /tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx
## done
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:50, 1:10] -1.145 -1.165 0.437 0.139 -0.673 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. .. ..$ : chr [1:10] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ rid : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ cid : chr [1:10] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ rdesc :'data.frame': 50 obs. of 6 variables:
## .. ..$ id : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. ..$ is_bing : int [1:50] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ is_lm : int [1:50] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ pr_gene_id : int [1:50] 5720 466 6009 2309 387 3553 427 5898 23365 6657 ...
## .. ..$ pr_gene_symbol: chr [1:50] "PSME1" "ATF1" "RHEB" "FOXO3" ...
## .. ..$ pr_gene_title : chr [1:50] "proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)" "activating transcription factor 1" "Ras homolog enriched in brain" "forkhead box O3" ...
## ..@ cdesc :'data.frame': 10 obs. of 16 variables:
## .. ..$ brew_prefix : chr [1:10] "CPC004_PC3_24H" "BRAF001_HEK293T_24H" "CPC006_HT29_24H" "CVD001_HEPG2_24H" ...
## .. ..$ cell_id : chr [1:10] "PC3" "HEK293T" "HT29" "HEPG2" ...
## .. ..$ distil_cc_q75 : num [1:10] 0.05 0.1 0.17 0.45 0.24 ...
## .. ..$ distil_nsample : int [1:10] 5 9 4 3 4 5 2 3 2 2
## .. ..$ distil_ss : num [1:10] 2.9 1.88 2.71 4.06 3.83 ...
## .. ..$ id : chr [1:10] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## .. ..$ is_gold : int [1:10] 0 0 0 1 1 0 1 0 0 0
## .. ..$ ngenes_modulated_dn_lm: int [1:10] 11 3 8 38 36 23 12 11 33 13
## .. ..$ ngenes_modulated_up_lm: int [1:10] 10 7 25 40 16 17 23 14 37 22
## .. ..$ pct_self_rank_q25 : num [1:10] 26.904 17.125 7.06 0.229 4.686 ...
## .. ..$ pert_id : chr [1:10] "BRD-A51714012" "BRD-U73308409" "BRD-U88459701" "BRD-U88459701" ...
## .. ..$ pert_idose : chr [1:10] "10 <b5>M" "500 nM" "10 <b5>M" "10 <b5>M" ...
## .. ..$ pert_iname : chr [1:10] "venlafaxine" "vemurafenib" "atorvastatin" "atorvastatin" ...
## .. ..$ pert_itime : chr [1:10] "24 h" "24 h" "24 h" "24 h" ...
## .. ..$ pert_type : chr [1:10] "trt_cp" "trt_cp" "trt_cp" "trt_cp" ...
## .. ..$ pool_id : chr [1:10] "epsilon" "epsilon" "epsilon" "epsilon" ...
## ..@ version: chr(0)
## ..@ src : chr "/tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx"
As expected, we see that we’ve now got a 10-column dataset.
More commonly, we’ll want to identify a subset of the data that is of particular interest and read only those rows and/or columns. In either case, we’ll use the rid
and/or cid
arguments to parse_gctx
to extract only the data we want. In this example, we’ll use the GCTX file’s embedded column annotations to identify the columns corresponding to the compound vemurafenib and then read only those columns. We can extract these annotations using the read_gctx_meta
function.
# read the column metadata
col_meta <- read_gctx_meta(ds_path, dim="col")
# figure out which signatures correspond to vorinostat by searching the 'pert_iname' column
idx <- which(col_meta$pert_iname=="vemurafenib")
# read only those columns from the GCTX file by using the 'cid' parameter
vemurafenib_ds <- parse_gctx(ds_path, cid=idx)
## reading /tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx
## done
In the example above we used numeric column indices, but the rid
and cid
arguments also accept character vectors of ids. The following is equally valid.
# get a vector of character ids, using the id column in col_meta
col_ids <- col_meta$id[idx]
vemurafenib_ds2 <- parse_gctx(ds_path, cid=col_ids)
## reading /tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx
## done
identical(vemurafenib_ds, vemurafenib_ds2)
## [1] TRUE
It’s also possible to create a GCT
object from existing objects in your R workspace. You will minimally need to have a matrix object, but can also optionally include data.frame
s of row and column annotations. This is done using the new
constructor function.
# initialize a matrix object
# note that you either must assign values to the rownames and colnames
# of the matrix, or pass them,
# as the 'rid' and 'cid' arguments to GCT"
m <- matrix(stats::rnorm(100), ncol=10)
rownames(m) <- letters[1:10]
colnames(m) <- LETTERS[1:10]
(my_new_ds <- new("GCT", mat=m))
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:10, 1:10] -0.998 -0.284 1.35 -0.334 -2.864 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:10] "a" "b" "c" "d" ...
## .. .. ..$ : chr [1:10] "A" "B" "C" "D" ...
## ..@ rid : chr [1:10] "a" "b" "c" "d" ...
## ..@ cid : chr [1:10] "A" "B" "C" "D" ...
## ..@ rdesc :'data.frame': 0 obs. of 0 variables
## Formal class 'data.frame' [package "methods"] with 4 slots
## .. .. ..@ .Data : list()
## .. .. ..@ names : chr(0)
## .. .. ..@ row.names: int(0)
## .. .. ..@ .S3Class : chr "data.frame"
## ..@ cdesc :'data.frame': 0 obs. of 0 variables
## Formal class 'data.frame' [package "methods"] with 4 slots
## .. .. ..@ .Data : list()
## .. .. ..@ names : chr(0)
## .. .. ..@ row.names: int(0)
## .. .. ..@ .S3Class : chr "data.frame"
## ..@ version: chr(0)
## ..@ src : chr(0)
# we can also include the row/column annotations as data.frames
# note these are just arbitrary annotations used to illustrate the function call
rdesc <- data.frame(id=letters[1:10], type=rep(c(1, 2), each=5))
cdesc <- data.frame(id=LETTERS[1:10], type=rep(c(3, 4), each=5))
(my_new_ds <- new("GCT", mat=m, rdesc=rdesc, cdesc=cdesc))
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:10, 1:10] -0.998 -0.284 1.35 -0.334 -2.864 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:10] "a" "b" "c" "d" ...
## .. .. ..$ : chr [1:10] "A" "B" "C" "D" ...
## ..@ rid : chr [1:10] "a" "b" "c" "d" ...
## ..@ cid : chr [1:10] "A" "B" "C" "D" ...
## ..@ rdesc :'data.frame': 10 obs. of 2 variables:
## .. ..$ id : chr [1:10] "a" "b" "c" "d" ...
## .. ..$ type: num [1:10] 1 1 1 1 1 2 2 2 2 2
## ..@ cdesc :'data.frame': 10 obs. of 2 variables:
## .. ..$ id : chr [1:10] "A" "B" "C" "D" ...
## .. ..$ type: num [1:10] 3 3 3 3 3 4 4 4 4 4
## ..@ version: chr(0)
## ..@ src : chr(0)
When working with GCT
objects, it’s often convenient to have the row and column annotations embedded as the rdesc
and cdesc
slots, respectively. If these metadata are stored separatly from the GCTX file itself, you can read them in separately and then apply them to the GCT
object using the annotate.gct
function. Let’s parse the dataset again, only this time reading only the matrix. We’ll then apply the column annotations we read in previously.
# we'll use the matrix_only argument to extract just the matrix
(my_ds_no_meta <- parse_gctx(ds_path, matrix_only = TRUE))
## reading /tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx
## done
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:50, 1:25] -1.145 -1.165 0.437 0.139 -0.673 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. .. ..$ : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ rid : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ cid : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ rdesc :'data.frame': 50 obs. of 1 variable:
## .. ..$ id: chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ cdesc :'data.frame': 25 obs. of 1 variable:
## .. ..$ id: chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ version: chr(0)
## ..@ src : chr "/tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx"
Note in this case that cmapR still populates 1-column data.frames
containing the row and column ids, but the rest of the annotations have been omitted.
Now we’ll apply the column annotations using annotate.gct
.
# note we need to specifiy which dimension to annotate (dim)
# and which column in the annotations corresponds to the column
# ids in the matrix (keyfield)
(my_ds_no_meta <- annotate_gct(my_ds_no_meta, col_meta, dim="col",
keyfield="id"))
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:50, 1:25] -1.145 -1.165 0.437 0.139 -0.673 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. .. ..$ : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ rid : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ cid : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ rdesc :'data.frame': 50 obs. of 1 variable:
## .. ..$ id: chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ cdesc :'data.frame': 25 obs. of 16 variables:
## .. ..$ id : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## .. ..$ brew_prefix : chr [1:25] "CPC004_PC3_24H" "BRAF001_HEK293T_24H" "CPC006_HT29_24H" "CVD001_HEPG2_24H" ...
## .. ..$ cell_id : chr [1:25] "PC3" "HEK293T" "HT29" "HEPG2" ...
## .. ..$ distil_cc_q75 : num [1:25] 0.05 0.1 0.17 0.45 0.24 ...
## .. ..$ distil_nsample : int [1:25] 5 9 4 3 4 5 2 3 2 2 ...
## .. ..$ distil_ss : num [1:25] 2.9 1.88 2.71 4.06 3.83 ...
## .. ..$ is_gold : int [1:25] 0 0 0 1 1 0 1 0 0 0 ...
## .. ..$ ngenes_modulated_dn_lm: int [1:25] 11 3 8 38 36 23 12 11 33 13 ...
## .. ..$ ngenes_modulated_up_lm: int [1:25] 10 7 25 40 16 17 23 14 37 22 ...
## .. ..$ pct_self_rank_q25 : num [1:25] 26.904 17.125 7.06 0.229 4.686 ...
## .. ..$ pert_id : chr [1:25] "BRD-A51714012" "BRD-U73308409" "BRD-U88459701" "BRD-U88459701" ...
## .. ..$ pert_idose : chr [1:25] "10 <b5>M" "500 nM" "10 <b5>M" "10 <b5>M" ...
## .. ..$ pert_iname : chr [1:25] "venlafaxine" "vemurafenib" "atorvastatin" "atorvastatin" ...
## .. ..$ pert_itime : chr [1:25] "24 h" "24 h" "24 h" "24 h" ...
## .. ..$ pert_type : chr [1:25] "trt_cp" "trt_cp" "trt_cp" "trt_cp" ...
## .. ..$ pool_id : chr [1:25] "epsilon" "epsilon" "epsilon" "epsilon" ...
## ..@ version: chr(0)
## ..@ src : chr "/tmp/RtmpUJdkCs/Rinst15f9037c33a4dc/cmapR/extdata/modzs_n25x50.gctx"
Note how now the cdesc
slot is populated after annotating.
Just as it’s possible to read a subset of rows or columns from a GCTX file, it is also possible to extract a subset of rows or columns from a GCT
object in memory. This is done with the subset_gct
function. Just like parse_gctx
, this function uses rid
and cid
parameters to determine which rows and columns to extract. Let’s extract the vemurafenib columns from the my_ds
object in memory.
# in memory slice using the cid parameter
vemurafenib_ds3 <- subset_gct(my_ds,
cid=which(col_meta$pert_iname=="vemurafenib"))
identical(vemurafenib_ds, vemurafenib_ds3)
## [1] FALSE
It’s often useful to have data stored in long form data.frame
objects, especially for compatibility with plotting libraries like ggplot2
. It’s possible to convert a GCT
object into this long form by using the melt_gct
function, which relies on the melt
function in the data.table
package.
# melt to long form
vemurafenib_ds3_melted <- melt_gct(vemurafenib_ds3)
## melting GCT object...
## done
# plot the matrix values grouped by gene
library(ggplot2)
ggplot(vemurafenib_ds3_melted, aes(x=pr_gene_symbol, y=value)) +
geom_boxplot() +
theme(axis.text.x = element_text(angle=45, hjust=1, vjust=1))
You can combine two independent GCT
objects using the merge_gct
function. Note that it is important to specify which dimension (row or column) you wish to merge on and that the two GCT
objects in question share one common dimension.
The @mat
slot of a GCT object is a base R matrix object, so it’s possible to perform standard math operations on this matrix. This matrix can be accessed directly, i.e. my_ds@mat
, but can also be extracted using the get_gct_matrix
function from cmapR
. Below are a few simple examples, but these can easily be extended, particulary through use of the apply
function.
# extract the data matrix from the my_ds object
m <- mat(my_ds)
Now let’s perform a few simple math operations
# compute the row and column means
row_means <- rowMeans(m)
col_means <- colMeans(m)
message("means:")
## means:
head(row_means)
## 200814_at 222103_at 201453_x_at 204131_s_at 200059_s_at 205067_at
## -0.04539519 -0.36639891 -0.40457100 0.35614147 0.40454578 -0.22763633
head(col_means)
## CPC004_PC3_24H:BRD-A51714012-001-03-1:10
## 0.04775844
## BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625
## -0.01296067
## CPC006_HT29_24H:BRD-U88459701-000-01-8:10
## -0.20454084
## CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10
## -0.26358546
## NMH001_NEU_6H:BRD-K69726342-001-02-6:10
## -0.44564062
## CPC020_VCAP_6H:BRD-A82307304-001-01-8:10
## -0.08844710
# using 'apply', compute the max of each row and column
row_max <- apply(m, 1, max)
col_max <- apply(m, 2, max)
message("maxes:")
## maxes:
head(row_max)
## 200814_at 222103_at 201453_x_at 204131_s_at 200059_s_at 205067_at
## 1.204220 1.829283 1.022154 2.507013 3.064311 1.876900
head(col_max)
## CPC004_PC3_24H:BRD-A51714012-001-03-1:10
## 1.8241825
## BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625
## 0.8706381
## CPC006_HT29_24H:BRD-U88459701-000-01-8:10
## 2.5714328
## CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10
## 3.0643106
## NMH001_NEU_6H:BRD-K69726342-001-02-6:10
## 1.8993782
## CPC020_VCAP_6H:BRD-A82307304-001-01-8:10
## 0.8148650
cmapR
also contains a handful of math functions designed specifically for operating on GCT
objects.
# transposing a GCT object - also swaps row and column annotations
(my_ds_transpose <- transpose_gct(my_ds))
## Formal class 'GCT' [package "cmapR"] with 7 slots
## ..@ mat : num [1:25, 1:50] -1.145 0.142 -0.469 0.457 0.483 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## .. .. ..$ : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ rid : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## ..@ cid : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## ..@ rdesc :'data.frame': 25 obs. of 16 variables:
## .. ..$ brew_prefix : chr [1:25] "CPC004_PC3_24H" "BRAF001_HEK293T_24H" "CPC006_HT29_24H" "CVD001_HEPG2_24H" ...
## .. ..$ cell_id : chr [1:25] "PC3" "HEK293T" "HT29" "HEPG2" ...
## .. ..$ distil_cc_q75 : num [1:25] 0.05 0.1 0.17 0.45 0.24 ...
## .. ..$ distil_nsample : int [1:25] 5 9 4 3 4 5 2 3 2 2 ...
## .. ..$ distil_ss : num [1:25] 2.9 1.88 2.71 4.06 3.83 ...
## .. ..$ id : chr [1:25] "CPC004_PC3_24H:BRD-A51714012-001-03-1:10" "BRAF001_HEK293T_24H:BRD-U73308409-000-01-9:0.625" "CPC006_HT29_24H:BRD-U88459701-000-01-8:10" "CVD001_HEPG2_24H:BRD-U88459701-000-01-8:10" ...
## .. ..$ is_gold : int [1:25] 0 0 0 1 1 0 1 0 0 0 ...
## .. ..$ ngenes_modulated_dn_lm: int [1:25] 11 3 8 38 36 23 12 11 33 13 ...
## .. ..$ ngenes_modulated_up_lm: int [1:25] 10 7 25 40 16 17 23 14 37 22 ...
## .. ..$ pct_self_rank_q25 : num [1:25] 26.904 17.125 7.06 0.229 4.686 ...
## .. ..$ pert_id : chr [1:25] "BRD-A51714012" "BRD-U73308409" "BRD-U88459701" "BRD-U88459701" ...
## .. ..$ pert_idose : chr [1:25] "10 <b5>M" "500 nM" "10 <b5>M" "10 <b5>M" ...
## .. ..$ pert_iname : chr [1:25] "venlafaxine" "vemurafenib" "atorvastatin" "atorvastatin" ...
## .. ..$ pert_itime : chr [1:25] "24 h" "24 h" "24 h" "24 h" ...
## .. ..$ pert_type : chr [1:25] "trt_cp" "trt_cp" "trt_cp" "trt_cp" ...
## .. ..$ pool_id : chr [1:25] "epsilon" "epsilon" "epsilon" "epsilon" ...
## ..@ cdesc :'data.frame': 50 obs. of 6 variables:
## .. ..$ id : chr [1:50] "200814_at" "222103_at" "201453_x_at" "204131_s_at" ...
## .. ..$ is_bing : int [1:50] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ is_lm : int [1:50] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ pr_gene_id : int [1:50] 5720 466 6009 2309 387 3553 427 5898 23365 6657 ...
## .. ..$ pr_gene_symbol: chr [1:50] "PSME1" "ATF1" "RHEB" "FOXO3" ...
## .. ..$ pr_gene_title : chr [1:50] "proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)" "activating transcription factor 1" "Ras homolog enriched in brain" "forkhead box O3" ...
## ..@ version: chr(0)
## ..@ src : chr(0)
# converting a GCT object's matrix to ranks
# the 'dim' option controls the direction along which the ranks are calculated
my_ds_rank_by_column <- rank_gct(my_ds, dim="col")
# plot z-score vs rank for the first 25 genes (rows)
ranked_m <- mat(my_ds_rank_by_column)
plot(ranked_m[1:25, ],
m[1:25, ],
xlab="rank",
ylab="differential expression score",
main="score vs. rank")
GCT
objects can be written to disk either in GCT or GCTX format using the write_gct
and write_gctx
functions, respectively.
# write 'my_ds' in both GCT and GCTX format
write_gct(my_ds, "my_ds")
## Saving file to ./my_ds_n25x50.gct
## Dimensions of matrix: [50x25]
## Setting precision to 4
## Saved.
write_gctx(my_ds, "my_ds")
## writing ./my_ds_n25x50.gctx
## chunk sizes: 50 25
# write_gctx can also compress the dataset upon write,
# which can be controlled using the 'compression_level' option.
# the higher the value, the greater the compression, but the
# longer the read/write time
write_gctx(my_ds, "my_ds_compressed", compression_level = 9)
## writing ./my_ds_compressed_n25x50.gctx
## chunk sizes: 50 25
The GCT
class is quite similar in spirit to the SummarizedExperiment
class from the SummarizedExperiment
package (citation). Converting a GCT
object to a SummarizedExeriment
object is straightforward, as shown below.
# ds is an object of class GCT
(se <- as(ds, "SummarizedExperiment"))
## class: SummarizedExperiment
## dim: 978 272
## metadata(0):
## assays(1): exprs
## rownames(978): 200814_at 222103_at ... 203341_at 205379_at
## rowData names(1): x
## colnames(272): CPC006_A549_6H:BRD-U88459701-000-01-8:10
## CPC020_A375_6H:BRD-A82307304-001-01-8:10 ...
## CPD002_PC3_6H:BRD-A51714012-001-04-9:10
## CPD002_PC3_24H:BRD-A51714012-001-04-9:10
## colData names(1): x
sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggplot2_3.3.6 cmapR_1.10.0 BiocStyle_2.26.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.9 lattice_0.20-45
## [3] RProtoBufLib_2.10.0 assertthat_0.2.1
## [5] digest_0.6.30 utf8_1.2.2
## [7] R6_2.5.1 GenomeInfoDb_1.34.0
## [9] stats4_4.2.1 evaluate_0.17
## [11] highr_0.9 pillar_1.8.1
## [13] zlibbioc_1.44.0 rlang_1.0.6
## [15] data.table_1.14.4 jquerylib_0.1.4
## [17] magick_2.7.3 S4Vectors_0.36.0
## [19] Matrix_1.5-1 rmarkdown_2.17
## [21] labeling_0.4.2 stringr_1.4.1
## [23] RCurl_1.98-1.9 munsell_0.5.0
## [25] DelayedArray_0.24.0 compiler_4.2.1
## [27] xfun_0.34 pkgconfig_2.0.3
## [29] BiocGenerics_0.44.0 htmltools_0.5.3
## [31] tidyselect_1.2.0 SummarizedExperiment_1.28.0
## [33] tibble_3.1.8 GenomeInfoDbData_1.2.9
## [35] bookdown_0.29 IRanges_2.32.0
## [37] matrixStats_0.62.0 fansi_1.0.3
## [39] dplyr_1.0.10 withr_2.5.0
## [41] rhdf5filters_1.10.0 bitops_1.0-7
## [43] grid_4.2.1 jsonlite_1.8.3
## [45] gtable_0.3.1 lifecycle_1.0.3
## [47] DBI_1.1.3 magrittr_2.0.3
## [49] scales_1.2.1 cli_3.4.1
## [51] stringi_1.7.8 cachem_1.0.6
## [53] farver_2.1.1 XVector_0.38.0
## [55] flowCore_2.10.0 bslib_0.4.0
## [57] vctrs_0.5.0 generics_0.1.3
## [59] Rhdf5lib_1.20.0 tools_4.2.1
## [61] Biobase_2.58.0 glue_1.6.2
## [63] MatrixGenerics_1.10.0 fastmap_1.1.0
## [65] yaml_2.3.6 colorspace_2.0-3
## [67] rhdf5_2.42.0 BiocManager_1.30.19
## [69] cytolib_2.10.0 GenomicRanges_1.50.0
## [71] knitr_1.40 sass_0.4.2